

Beginning
Linux® Programming

4th Edition

Neil Matthew
Richard Stones

Wiley Publishing, Inc.

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page v

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page ii

Beginning Linux® Programming 4th Edition

Acknowledgements . x
Foreword. xxiii
Introduction . xxv
Chapter 1: Getting Started . 1
Chapter 2: Shell Programming . 17
Chapter 3: Working with Files . 93
Chapter 4: The Linux Environment . 137
Chapter 5: Terminals . 175
Chapter 6: Managing Text-Based Screens with curses 211
Chapter 7: Data Management . 255
Chapter 8: MySQL . 311
Chapter 9: Development Tools . 377
Chapter 10: Debugging . 429
Chapter 11: Processes and Signals . 461
Chapter 12: POSIX Threads . 495
Chapter 13: Inter-Process Communication: Pipes . 525
Chapter 14: Semaphores, Shared Memory, and Message Queues. 577
Chapter 15: Sockets . 607
Chapter 16: Programming GNOME Using GTK+ . 645
Chapter 17: Programming KDE Using Qt. 701
Chapter 18: Standards for Linux. 747
Index . 761

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page i

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page ii

Beginning
Linux® Programming

4th Edition

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page iii

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page iv

Beginning
Linux® Programming

4th Edition

Neil Matthew
Richard Stones

Wiley Publishing, Inc.

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page v

www.wiley.com

Beginning Linux® Programming, 4th Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-14762-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT
BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affil-
iates, in the United States and other countries, and may not be used without written permission. Linux
is a trademark of Linus Torvalds. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page vi

www.wiley.com

About the Authors
Neil Matthew has been interested in and has programmed computers since 1974. A mathematics
graduate from the University of Nottingham, Neil is just plain keen on programming languages
and likes to explore new ways of solving computing problems. He’s written systems to program in
BCPL, FP (Functional Programming), Lisp, Prolog, and a structured BASIC. He even wrote a 6502
microprocessor emulator to run BBC microcomputer programs on UNIX systems.

In terms of UNIX experience, Neil has used almost every flavor since the late 1970s, including BSD
UNIX, AT&T System V, Sun Solaris, IBM AIX, many others, and of course Linux. He can claim to
have been using Linux since August 1993 when he acquired a floppy disk distribution of Soft
Landing (SLS) from Canada, with kernel version 0.99.11. He’s used Linux-based computers for
hacking C, C++, Icon, Prolog, Tcl, and Java at home and at work.

All of Neil’s “home” projects are developed using Linux. He says Linux is much easier because it
supports quite a lot of features from other systems, so that both BSD- and System V-targeted pro-
grams will generally compile with little or no change.

Neil is currently working as an Enterprise Architect specializing in IT strategy at Celesio AG. He
has a background in technical consultancy, software development techniques, and quality assur-
ance. Neil has also programmed in C and C++ for real-time embedded systems.

Neil is married to Christine and has two children, Alexandra and Adrian. He lives in a converted
barn in Northamptonshire, England. His interests include solving puzzles by computer, music,
science fiction, squash, mountain biking, and not doing it yourself.

Rick Stones started programming at school (more years ago than he cares to remember) on a
6502-powered BBC micro, which, with the help of a few spare parts, continued to function for the
next 15 years. He graduated from Nottingham University with a degree in Electronic Engineering,
but decided software was more fun.

Over the years he has worked for a variety of companies, from the very small with just a dozen
employees, to the very large, including the IT services giant EDS. Along the way he has worked on
a range of projects, from real-time communications to accounting systems, to very large help desk
systems. He is currently working as an IT architect, acting as a technical authority on various major
projects for a large pan-European company.

A bit of a programming linguist, he has programmed in various assemblers, a rather neat proprietary
telecommunications language called SL-1, some FORTRAN, Pascal, Perl, SQL, and smidgeons of
Python and C++, as well as C. (Under duress he even admits that he was once reasonably proficient
in Visual Basic, but tries not to advertise this aberration.)

Rick lives in a village in Leicestershire, England, with his wife Ann, children Jennifer and Andrew,
and a cat. Outside work his main interests are classical music, especially early religious music, and
photography, and he does his best to find time for some piano practice.

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page vii

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page viii

Credits
Acquisitions Editor
Jenny Watson

Development Editor
Sara Shlaer

Technical Editor
Timothy Boronczyk

Production Editor
William A. Barton

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Adrienne Martinez

Graphics and Production Specialists
Mike Park, Happenstance-Type-O-Rama
Craig Woods, Happenstance-Type-O-Rama

Proofreader
Amy McCarthy, Word One

Indexer
Johnna VanHoose Dinse

Anniversary Logo Design
Richard Pacifico

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page ix

Acknowledgments
The authors would like to record their thanks to the many people who helped to make this
book possible.

Neil would like to thank his wife, Christine, for her understanding and children Alex and Adrian
for not complaining too loudly at Dad spending so long in The Den writing.

Rick would like to thank his wife, Ann, and their children, Jennifer and Andrew, for their very con-
siderable patience during the evenings and weekends while Dad was yet again “doing book work.”

As for the publishing team, we’d like to thank the folks at Wiley who helped us get this fourth edition
into print. Thanks to Carol Long for getting the process started and sorting out the contracts, and
especially to Sara Shlaer for her exceptional editing work and Timothy Boronczyk for his excellent
technical reviews. We also wish to thank Jenny Watson for chasing down all those odd bits of extras
and generally guiding the book through the administrative layers, Bill Barton for ensuring proper
organization and presentation, and Kim Cofer for a thorough copyedit. We are very grateful also to
Eric Foster-Johnson for his fantastic work on Chapters 16 and 17. We can say that this is a better book
than it would have been without the efforts of all of you.

We would also like to thank our employers, Scientific Generics, Mobicom, and Celesio for their
support during the production of all four editions of this book.

Finally we would also like to pay homage to two important motivators who have helped make this
book possible. Firstly, Richard Stallman for the excellent GNU tools and the idea of a free software
environment, which is now a reality with GNU/Linux, and secondly, Linus Torvalds for starting and
continuing to inspire the co-operative development that gives us the ever-improving Linux kernel.

47627ffirs.qxd:WroxPro 10/1/07 7:07 AM Page x

Contents

Acknowledgements x
Foreword xxiii
Introduction xxv

Chapter 1: Getting Started 1

An Introduction to UNIX, Linux, and GNU 1
What Is UNIX? 1
What Is Linux? 3
The GNU Project and the Free Software Foundation 3
Linux Distributions 4

Programming Linux 4
Linux Programs 5
Text Editors 6
The C Compiler 7
Development System Roadmap 8

Getting Help 14
Summary 16

Chapter 2: Shell Programming 17

Why Program with a Shell? 18
A Bit of Philosophy 18
What Is a Shell? 19
Pipes and Redirection 21

Redirecting Output 21
Redirecting Input 22
Pipes 22

The Shell as a Programming Language 23
Interactive Programs 23
Creating a Script 24
Making a Script Executable 25

Shell Syntax 27
Variables 27
Conditions 31
Control Structures 34
Functions 46
Commands 49
Command Execution 68

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xi

xii

Contents

Here Documents 73
Debugging Scripts 74

Going Graphical — The dialog Utility 75
Putting It All Together 81

Requirements 82
Design 82

Summary 91

Chapter 3: Working with Files 93

Linux File Structure 94
Directories 94
Files and Devices 95

System Calls and Device Drivers 96
Library Functions 97
Low-Level File Access 98

write 98
read 99
open 100
Initial Permissions 101
Other System Calls for Managing Files 106

The Standard I/O Library 109
fopen 110
fread 110
fwrite 111
fclose 111
fflush 111
fseek 112
fgetc, getc, and getchar 112
fputc, putc, and putchar 112
fgets and gets 113

Formatted Input and Output 113
printf, fprintf, and sprintf 113
scanf, fscanf, and sscanf 115
Other Stream Functions 117
Stream Errors 119
Streams and File Descriptors 119

File and Directory Maintenance 120
chmod 120
chown 120
unlink, link, and symlink 121
mkdir and rmdir 121
chdir and getcwd 122

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xii

xiii

Contents

Scanning Directories 122
opendir 123
readdir 123
telldir 123
seekdir 124
closedir 124

Errors 127
strerror 127
perror 127

The /proc File System 128
Advanced Topics: fcntl and mmap 132

fcntl 132
mmap 133

Summary 135

Chapter 4: The Linux Environment 137

Program Arguments 137
getopt 140
getopt_long 142

Environment Variables 144
Use of Environment Variables 146
The environ Variable 147

Time and Date 148
Temporary Files 156
User Information 158
Host Information 161
Logging 163
Resources and Limits 167
Summary 173

Chapter 5: Terminals 175

Reading from and Writing to the Terminal 175
Talking to the Terminal 180
The Terminal Driver and the General Terminal Interface 182

Overview 183
Hardware Model 183

The termios Structure 184
Input Modes 186
Output Modes 186
Control Modes 187
Local Modes 188

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xiii

xiv

Contents

Special Control Characters 188
Terminal Speed 192
Additional Functions 192

Terminal Output 196
Terminal Type 197
Identify Your Terminal Type 197
Using terminfo Capabilities 200

Detecting Keystrokes 205
Virtual Consoles 207
Pseudo-Terminals 208

Summary 209

Chapter 6: Managing Text-Based Screens with curses 211

Compiling with curses 212
Curses Terminology and Concepts 213
The Screen 216

Output to the Screen 216
Reading from the Screen 217
Clearing the Screen 218
Moving the Cursor 218
Character Attributes 218

The Keyboard 221
Keyboard Modes 221
Keyboard Input 222

Windows 224
The WINDOW Structure 224
Generalized Functions 225
Moving and Updating a Window 225
Optimizing Screen Refreshes 229

Subwindows 230
The Keypad 232
Using Color 235

Redefining Colors 238
Pads 238
The CD Collection Application 240

Starting a New CD Collection Application 240
Looking at main 243
Building the Menu 243
Database File Manipulation 245
Querying the CD Database 250

Summary 254

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xiv

xv

Contents

Chapter 7: Data Management 255

Managing Memory 255
Simple Memory Allocation 256
Allocating Lots of Memory 257
Abusing Memory 260
The Null Pointer 261
Freeing Memory 262
Other Memory Allocation Functions 264

File Locking 264
Creating Lock Files 265
Locking Regions 268
Use of read and write with Locking 271
Competing Locks 276
Other Lock Commands 280
Deadlocks 280

Databases 281
The dbm Database 281
The dbm Routines 283
dbm Access Functions 283
Additional dbm Functions 287

The CD Application 289
Updating the Design 289
The CD Database Application Using dbm 290

Summary 309

Chapter 8: MySQL 311

Installation 312
MySQL Packages 312
Post-Install Configuration 314
Post-Installation Troubleshooting 319

MySQL Administration 320
Commands 320
Creating Users and Giving Them Permissions 325
Passwords 327
Creating a Database 328
Data Types 329
Creating a Table 330
Graphical Tools 333

Accessing MySQL Data from C 335
Connection Routines 337
Error Handling 341

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xv

xvi

Contents

Executing SQL Statements 342
Miscellaneous Functions 357

The CD Database Application 358
Creating the Tables 359
Adding Some Data 362
Accessing the Application Data from C 364

Summary 375

Chapter 9: Development Tools 377

Problems of Multiple Source Files 377
The make Command and Makefiles 378

The Syntax of Makefiles 378
Options and Parameters to make 379
Comments in a Makefile 382
Macros in a Makefile 382
Multiple Targets 384
Built-in Rules 387
Suffix and Pattern Rules 388
Managing Libraries with make 389
Advanced Topic: Makefiles and Subdirectories 391
GNU make and gcc 391

Source Code Control 392
RCS 393
SCCS 399
Comparing RCS and SCCS 399
CVS 400
CVS Front Ends 404
Subversion 405

Writing a Manual Page 406
Distributing Software 409

The patch Program 410
Other Distribution Utilities 411

RPM Packages 413
Working with RPM Package Files 414
Installing RPM Packages 415
Building RPM Packages 415

Other Package Formats 424
Development Environments 424

KDevelop 425
Other Environments 425

Summary 427

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xvi

xvii

Contents

Chapter 10: Debugging 429

Types of Errors 429
General Debugging Techniques 430

A Program with Bugs 430
Code Inspection 433
Instrumentation 434
Controlled Execution 436

Debugging with gdb 437
Starting gdb 437
Running a Program 438
Stack Trace 438
Examining Variables 439
Listing the Program 440
Setting Breakpoints 441
Patching with the Debugger 444
Learning More about gdb 445

More Debugging Tools 445
Lint: Removing the Fluff from Your Programs 446
Function Call Tools 449
Execution Profiling with prof/gprof 451

Assertions 452
Memory Debugging 453

ElectricFence 454
valgrind 455

Summary 459

Chapter 11: Processes and Signals 461

What Is a Process? 461
Process Structure 462

The Process Table 463
Viewing Processes 463
System Processes 464
Process Scheduling 467

Starting New Processes 468
Waiting for a Process 475
Zombie Processes 477
Input and Output Redirection 479
Threads 480

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xvii

xviii

Contents

Signals 481
Sending Signals 484
Signal Sets 489

Summary 493

Chapter 12: POSIX Threads 495

What Is a Thread? 495
Advantages and Drawbacks of Threads 496
A First Threads Program 497
Simultaneous Execution 501
Synchronization 503

Synchronization with Semaphores 503
Synchronization with Mutexes 508

Thread Attributes 512
Canceling a Thread 517
Threads in Abundance 520
Summary 524

Chapter 13: Inter-Process Communication: Pipes 525

What Is a Pipe? 525
Process Pipes 526
Sending Output to popen 528

Passing More Data 529
How popen Is Implemented 530

The Pipe Call 531
Parent and Child Processes 535

Reading Closed Pipes 536
Pipes Used as Standard Input and Output 537

Named Pipes: FIFOs 540
Accessing a FIFO 542
Advanced Topic: Client/Server Using FIFOs 549

The CD Database Application 553
Aims 554
Implementation 555
Client Interface Functions 558
The Server Interface, server.c 565
The Pipe 569
Application Summary 574

Summary 575

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xviii

xix

Contents

Chapter 14: Semaphores, Shared Memory, and Message Queues 577

Semaphores 577
Semaphore Definition 579
A Theoretical Example 579
Linux Semaphore Facilities 580
Using Semaphores 582

Shared Memory 586
shmget 588
shmat 588
shmdt 589
shmctl 589

Message Queues 594
msgget 594
msgsnd 595
msgrcv 595
msgctl 596

The CD Database Application 599
Revising the Server Functions 600
Revising the Client Functions 602

IPC Status Commands 604
Displaying Semaphore Status 604
Displaying Shared Memory Status 604
Displaying Message Queue Status 605

Summary 605

Chapter 15: Sockets 607

What Is a Socket? 608
Socket Connections 608

Socket Attributes 612
Creating a Socket 614
Socket Addresses 615
Naming a Socket 616
Creating a Socket Queue 617
Accepting Connections 617
Requesting Connections 618
Closing a Socket 619
Socket Communications 619
Host and Network Byte Ordering 622

Network Information 624
The Internet Daemon (xinetd/inetd) 629
Socket Options 631

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xix

xx

Contents

Multiple Clients 632
select 635
Multiple Clients 638

Datagrams 642
Summary 644

Chapter 16: Programming GNOME Using GTK+ 645

Introducing X 645
X Server 646
X Client 646
X Protocol 646
Xlib 647
Toolkits 647
Window Managers 647
Other Ways to Create a GUI — Platform-Independent Windowing APIs 648

Introducing GTK+ 648
GLib Type System 649
GTK+ Object System 650
Introducing GNOME 651
Installing the GNOME/GTK+ Development Libraries 652

Events, Signals, and Callbacks 655
Packing Box Widgets 658
GTK+ Widgets 661

GtkWindow 662
GtkEntry 663
GtkSpinButton 666
GtkButton 668
GtkTreeView 672

GNOME Widgets 676
GNOME Menus 677
Dialogs 682

GtkDialog 682
Modal Dialog Box 684
Nonmodal Dialogs 685
GtkMessageDialog 686

CD Database Application 687
Summary 699

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xx

xxi

Contents

Chapter 17: Programming KDE Using Qt 701

Introducing KDE and Qt 701
Installing Qt 702
Signals and Slots 705
Qt Widgets 712

QLineEdit 712
Qt Buttons 716
QComboBox 721
QListView 724

Dialogs 727
QDialog 728
QMessageBox 730
QInputDialog 731
Using qmake to Simplify Writing Makefiles 733

Menus and Toolbars with KDE 733
CD Database Application Using KDE/Qt 738

MainWindow 738
AddCdDialog 742
LogonDialog 743
main.cpp 745

Summary 746

Chapter 18: Standards for Linux 747

The C Programming Language 748
A Brief History Lesson 748
The GNU Compiler Collection 749
gcc Options 749

Interfaces and the Linux Standards Base 751
LSB Standard Libraries 752
LSB Users and Groups 754
LSB System Initialization 754

The Filesystem Hierarchy Standard 755
Further Reading about Standards 758
Summary 759

Index 761

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xxi

47627ftoc.qxd:WroxPro 10/1/07 7:11 AM Page xxii

Foreword

All computer programmers have their own piles of notes and scribbles. They have their code examples
saved from the past heroic dive into the manuals or from Usenet, where sometimes even fools fear to follow.
(The other body of opinion is that fools all get free Usenet access and use it nonstop.) It is therefore perhaps
strange that so few books follow such a style. In the online world there are a lot of short, to-the-point docu-
ments about specific areas of programming and administration. The Linux documentation project released
a whole pile of documents covering everything from installing Linux and Windows on the same machine
to wiring your coffee machine to Linux. Seriously. Take a look at The Linux Documentation Project on
http://www.tldp.org.

The book world, on the other hand, seems to consist mostly of either learned tomes, detailed and very com-
plete works that you don’t have time to read, or books for complete beginners that you buy for friends as a
joke. There are very few books that try to cover the basics of a lot of useful areas. This book is one of them,
a compendium of those programmers’ notes and scribbles, deciphered (try reading a programmer’s hand-
writing), edited, and brought together coherently as a book.

This edition of Beginning Linux Programming has been reviewed and updated to reflect today’s Linux
developments.

—Alan Cox

47627flast.qxd:WroxPro 10/1/07 7:13 AM Page xxiii

47627flast.qxd:WroxPro 10/1/07 7:13 AM Page xxiv

Introduction

Welcome to Beginning Linux Programming, 4th Edition, an easy-to-use guide to developing programs for
Linux and other UNIX-style operating systems.

In this book we aim to give you an introduction to a wide variety of topics important to you as a developer
using Linux. The word Beginning in the title refers more to the content than to your skill level. We’ve struc-
tured the book to help you learn more about what Linux has to offer, however much experience you have
already. Linux programming is a large field and we aim to cover enough about a wide range of topics to
give you a good “beginning” in each subject.

Who’s This Book For?
If you’re a programmer who wishes to get up to speed with the facilities that Linux (or UNIX) offers
software developers, to maximize your programming time and your application’s use of the Linux sys-
tem, you’ve picked up the right book. Clear explanations and a tried and tested step-by-step approach
will help you progress rapidly and pick up all the key techniques.

We assume you have some experience in C and/or C++ programming, perhaps in Windows or some
other system, but we try to keep the book’s examples simple so that you don’t need to be an expert C
coder to follow this book. Where direct comparisons exist between Linux programming and C/C++
programming, these are indicated in the text.

Because it aims to be a tutorial guide to the various tools and sets of functions/libraries available to you
on most Linux systems as well as a handy reference you can return to, this book is unique in its straight-
forward approach, comprehensive coverage, and extensive examples.

What’s Covered in the Book
The book has a number of aims:

❑ To teach the use of the standard Linux C libraries and other facilities as specified by the various
Linux and UNIX standards.

❑ To show how to make the most of the standard Linux development tools.

Watch out if you’re totally new to Linux. This isn’t a book on installing or configur-
ing Linux. If you want to learn more about administering a Linux system, you may
wish to look at some complementary books such as Linux Bible 2007 Edition, by
Christopher Negus (Wiley, ISBN 978-0470082799).

47627flast.qxd:WroxPro 10/1/07 7:13 AM Page xxv

❑ To give a concise introduction to data storage under Linux using both the DBM and MySQL
database systems.

❑ To show how to build graphical user interfaces for the X Window System. We will use both the
GTK (the basis of the GNOME environment) and Qt (the basis of the KDE environment)
libraries.

❑ To encourage and enable you to develop your own real-world applications.

As we cover these topics, we introduce programming theory and then illustrate it with appropriate
examples and a clear explanation. In this way you can learn quickly on a first read and look back over
things to brush up on all the essential elements if you need to.

Though the small examples are designed mainly to illustrate a set of functions or some new theory in
action, throughout the book lies a larger sample project: a simple database application for recording audio
CD details. As your knowledge expands, you can develop, re-implement, and extend the project to your
heart’s content. That said, however, the CD application doesn’t dominate any chapter, so you can skip it if
you want to, but we feel that it provides additional useful, in-depth examples of the techniques that we
discuss. It certainly provides an ideal way to illustrate each of the more advanced topics as they are intro-
duced. Our first discussion of this application occurs at the end of Chapter 2 and shows how a fairly large
shell script is organized, how the shell deals with user input, and how it can construct menus and store
and search data.

After recapping the basic concepts of compiling programs, linking to libraries, and accessing the online
manuals, you will take a sojourn into shells. You then move into C programming, where we cover work-
ing with files, getting information from the Linux environment, dealing with terminal input and output,
and the curses library (which makes interactive input and output more tractable). You’re then ready to
tackle re-implementing the CD application in C. The application design remains the same, but the code
uses the curses library for a screen-based user interface.

From there, we cover data management. Meeting the dbm database library is sufficient cause for us to
re-implement the application, but this time with a design that will re-emerge in some later chapters. In a
later chapter we look at how the data could be stored in a relational database using MySQL, and we also
reuse this data storage technique later in the chapter, so you can see how the techniques compare. The
size of these recent applications means that we then need to deal with such nuts-and-bolts issues as
debugging, source code control, software distribution, and makefiles.

You will also look at how different Linux processes can communicate, using a variety of techniques, and
at how Linux programs can use sockets to support TCP/IP networking to different machines, including
the issues of talking to machines that use different processor architectures.

After getting the foundations of Linux programming in place, we cover the creation of graphical programs.
We do this over two chapters, looking first at the GTK+ toolkit, which underlies the GNOME environment,
and then at the Qt toolkit, which underlies the KDE environment.

We finish off with a brief look at the standards that keep Linux systems from different vendors similar
enough that we can move between them easily and write programs that will work on different distribu-
tions of Linux.

As you’d expect, there’s a fair bit more in between, but we hope that this gives you a good idea of the
material we’ll be discussing.

Introduction

xxvi

47627flast.qxd:WroxPro 10/1/07 7:13 AM Page xxvi

What You Need to Use This Book
In this book, we’ll give you a taste of programming for Linux. To help you get the most from the chap-
ters, you should try out the examples as you read. These also provide a good base for experimentation
and will hopefully inspire you to create programs of your own. We hope you will read this book in con-
junction with experimenting on your own Linux installation.

Linux is available for many different systems. Its adaptability is such that enterprising souls have per-
suaded it to run in one form or another on just about anything with a processor in it! Examples include
systems based on the Alpha, ARM, IBM Cell, Itanium, PA-RISC, PowerPC, SPARC, SuperH, and 68k
CPUs as well as the various x86-class processors, in both 32- and 64-bit versions.

We wrote this book and developed the examples on two Linux systems with different specifications, so
we’re confident that if you can run Linux, you can make good use of this book. Furthermore, we tested
the code on other versions of Linux during the book’s technical review.

To develop this book we primarily used x86-based systems, but very little of what we cover is x86 specific.
Although it is possible to run Linux on a 486 with 8MB RAM, to run a modern Linux distribution success-
fully and follow the examples in this book, we recommend that you pick a recent version of one of the
more popular Linux distributions such as Fedora, openSUSE, or Ubuntu and check the hardware recom-
mendations they give.

As for software requirements, we suggest that you use a recent version of your preferred Linux distribu-
tion and apply the current set of updates, which most vendors make available online by way of auto-
mated updates, to keep your system current and up-to-date with the latest bug fixes. Linux and the GNU
toolset are released under the GNU General Public License (GPL). Most other components of a typical
Linux distribution use either the GPL or one of the many other Open Source licenses, and this means they
have certain properties, one of which is freedom. They will always have the source code available, and no
one can take that freedom away. See http://www.gnu.org/licenses/ for more details of the GPL, and
http://www.opensource.org/ for more details of the definition of Open Source and the different
licenses in use. With GNU/Linux, you will always have the option of support — either doing it yourself
with the source code, hiring someone else, or going to one of the many vendors offering pay-for support.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-14762-7.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you can
go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Introduction

xxvii

47627flast.qxd:WroxPro 10/1/07 7:13 AM Page xxvii

A Note on the Code Downloads
We have tried to provide example programs and code snippets that best illustrate the concepts being dis-
cussed in the text. Please note that, in order to make the new functionality being introduced as clear as
possible, we have taken one or two liberties with coding style.

In particular, we do not always check that the return results from every function we call are what we
expect. In production code for real applications we would certainly do this check, and you too should
adopt a rigorous approach toward error handling. (We discuss some of the ways that errors can be
caught and handled in Chapter 3.)

The GNU General Public License
The source code in the book is made available under the terms of the GNU General Public License ver-
sion 2, http://www.gnu.org/licenses/old-licenses/gpl-2.0.html. The following permission
statement applies to all the source code available in this book:

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book:

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

When we introduce them, we highlight important words in italics. Characters we want you to type are in
bold font. We show keyboard strokes like this: Ctrl+A.

Boxes like this one hold important, not-to-be-forgotten, mission-critical information
that is directly relevant to the surrounding text.

Introduction

xxviii

47627flast.qxd:WroxPro 10/1/07 7:13 AM Page xxviii

We present code and terminal sessions in three different ways:

$ who
root tty1 Sep 10 16:12
rick tty2 Sep 10 16:10

When the command line is shown, it’s in the style at the top of the code, whereas output is in the regular
style. The $ is the prompt (if the superuser is required for the command, the prompt will be a # instead)
and the bold text is what you type in and press Enter (or Return) to execute. Any text following that in
the same font but in non-bold is the output of the bolded command. In the preceding example you type
in the command who, and you see the output below the command.

Prototypes of Linux-defined functions and structures are shown in bold as follows:

#include <stdio.h>

int printf (const char *format, ...);

In our code examples, the code foreground style shows new, important material, such as

/* This is what new, important, and pertinent code looks like. */

whereas code that looks like this (code background style) is less important:

/* This is what code that has been seen before looks like. */

And often when a program is added to throughout a chapter, code that is added later is in foreground
style first and background style later. For example, a new program would look like this:

/* Code example */
/* That ends here. */

And if we add to that program later in the chapter, it looks like this instead:

/* Code example */
/* New code added */
/* on these lines */
/* That ends here. */

The last convention we’ll mention is that we presage example code with a “Try It Out” heading that
aims to split the code up where it’s helpful, highlight the component parts, and show the progression of
the application. When it’s important, we also follow the code with a “How It Works” section to explain
any salient points of the code in relation to previous theory. We find these two conventions help break
up the more formidable code listings into palatable morsels.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty

Introduction

xxix

47627flast.qxd:WroxPro 10/1/07 7:13 AM Page xxix

piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On this
page you can view all errata that has been submitted for this book and posted by Wrox editors. A com-
plete book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Introduction

xxx

47627flast.qxd:WroxPro 10/1/07 7:13 AM Page xxx

1
Getting Star ted

In this chapter, you discover what Linux is and how it relates to its inspiration, UNIX. You take a
guided tour of the facilities provided by a Linux development system, and write and run your first
program. Along the way, you’ll be looking at

❑ UNIX, Linux, and GNU

❑ Programs and programming languages for Linux

❑ How to locate development resources

❑ Static and shared libraries

❑ The UNIX philosophy

An Introduction to UNIX, Linux, and GNU
In recent years Linux has become a phenomenon. Hardly a day goes by without Linux cropping
up in the media in some way. We’ve lost count of the number of applications that have been made
available on Linux and the number of organizations that have adopted it, including some govern-
ment departments and city administrations. Major hardware vendors like IBM and Dell now sup-
port Linux, and major software vendors like Oracle support their software running on Linux.
Linux truly has become a viable operating system, especially in the server market.

Linux owes its success to systems and applications that preceded it: UNIX and GNU software.
This section looks at how Linux came to be and what its roots are.

What Is UNIX?
The UNIX operating system was originally developed at Bell Laboratories, once part of the
telecommunications giant AT&T. Designed in the 1970s for Digital Equipment PDP computers,
UNIX has become a very popular multiuser, multitasking operating system for a wide variety of
hardware platforms, from PC workstations to multiprocessor servers and supercomputers.

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 1

A Brief History of UNIX
Strictly, UNIX is a trademark administered by The Open Group, and it refers to a computer operating
system that conforms to a particular specification. This specification, known as The Single UNIX
Specification, defines the names of, interfaces to, and behaviors of all mandatory UNIX operating sys-
tem functions. The specification is largely a superset of an earlier series of specifications, the P1003, or
POSIX (Portable Operating System Interface) specifications, developed by the IEEE (Institute of
Electrical and Electronic Engineers).

Many UNIX-like systems are available commercially, such as IBM’s AIX, HP’s HP-UX, and Sun’s Solaris.
Some have been made available for free, such as FreeBSD and Linux. Only a few systems currently con-
form to The Open Group specification, which allows them to be marketed with the name UNIX.

In the past, compatibility among different UNIX systems has been a real problem, although POSIX was a
great help in this respect. These days, by following a few simple rules it is possible to create applications
that will run on all UNIX and UNIX-like systems. You can find more details on Linux and UNIX standards
in Chapter 18.

UNIX Philosophy
In the following chapters we hope to convey a flavor of Linux (and therefore UNIX) programming.
Although programming in C is in many ways the same whatever the platform, UNIX and Linux devel-
opers have a special view of program and system development.

The UNIX operating system, and hence Linux, encourages a certain programming style. Following are a
few characteristics shared by typical UNIX programs and systems:

❑ Simplicity: Many of the most useful UNIX utilities are very simple and, as a result, small and
easy to understand. KISS, “Keep It Small and Simple,” is a good technique to learn. Larger, more
complex systems are guaranteed to contain larger, more complex bugs, and debugging is a chore
that we’d all like to avoid!

❑ Focus: It’s often better to make a program perform one task well than to throw in every feature
along with the kitchen sink. A program with “feature bloat” can be difficult to use and difficult
to maintain. Programs with a single purpose are easier to improve as better algorithms or inter-
faces are developed. In UNIX, small utilities are often combined to perform more demanding
tasks when the need arises, rather than trying to anticipate a user’s needs in one large program.

❑ Reusable Components: Make the core of your application available as a library. Well-documented
libraries with simple but flexible programming interfaces can help others to develop variations or
apply the techniques to new application areas. Examples include the dbm database library, which is
a suite of reusable functions rather than a single database management program.

❑ Filters: Many UNIX applications can be used as filters. That is, they transform their input and
produce output. As you’ll see, UNIX provides facilities that allow quite complex applications
to be developed from other UNIX programs by combining them in novel ways. Of course, this
kind of reuse is enabled by the development methods that we’ve previously mentioned.

❑ Open File Formats: The more successful and popular UNIX programs use configuration files
and data files that are plain ASCII text or XML. If either of these is an option for your program
development, it’s a good choice. It enables users to use standard tools to change and search for
configuration items and to develop new tools for performing new functions on the data files.
A good example of this is the ctags source code cross-reference system, which records symbol
location information as regular expressions suitable for use by searching programs.

2

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 2

❑ Flexibility: You can’t anticipate exactly how ingeniously users will use your program. Try to be
as flexible as possible in your programming. Try to avoid arbitrary limits on field sizes or num-
ber of records. If you can, write the program so that it’s network-aware and able to run across a
network as well as on a local machine. Never assume that you know everything that the user
might want to do.

What Is Linux?
As you may already know, Linux is a freely distributed implementation of a UNIX-like kernel, the low-
level core of an operating system. Because Linux takes the UNIX system as its inspiration, Linux and
UNIX programs are very similar. In fact, almost all programs written for UNIX can be compiled and run
on Linux. Also, some commercial applications sold for commercial versions of UNIX can run unchanged
in binary form on Linux systems.

Linux was developed by Linus Torvalds at the University of Helsinki, with the help of UNIX program-
mers from across the Internet. It began as a hobby inspired by Andy Tanenbaum’s Minix, a small UNIX-
like system, but has grown to become a complete system in its own right. The intention is that the Linux
kernel will not incorporate proprietary code but will contain nothing but freely distributable code.

Versions of Linux are now available for a wide variety of computer systems using many different types
of CPUs, including PCs based on 32-bit and 64-bit Intel x86 and compatible processors; workstations and
servers using Sun SPARC, IBM PowerPC, AMD Opteron, and Intel Itanium; and even some handheld
PDAs and Sony’s Playstations 2 and 3. If it’s got a processor, someone somewhere is trying to get Linux
running on it!

The GNU Project and the Free Software Foundation
Linux owes its existence to the cooperative efforts of a large number of people. The operating system kernel
itself forms only a small part of a usable development system. Commercial UNIX systems traditionally come
bundled with applications that provide system services and tools. For Linux systems, these additional pro-
grams have been written by many different programmers and have been freely contributed.

The Linux community (together with others) supports the concept of free software, that is, software that
is free from restrictions, subject to the GNU General Public License (the name GNU stands for the recur-
sive GNU’s Not Unix). Although there may be a cost involved in obtaining the software, it can thereafter
be used in any way desired and is usually distributed in source form.

The Free Software Foundation was set up by Richard Stallman, the author of GNU Emacs, one of the
best-known text editors for UNIX and other systems. Stallman is a pioneer of the free software concept
and started the GNU Project, an attempt to create an operating system and development environment
that would be compatible with UNIX, but not suffer the restrictions of the proprietary UNIX name and
source code. GNU may one day turn out to be very different from UNIX in the way it handles the hard-
ware and manages running programs, but it will still support UNIX-style applications.

The GNU Project has already provided the software community with many applications that closely mimic
those found on UNIX systems. All these programs, so-called GNU software, are distributed under the terms
of the GNU General Public License (GPL); you can find a copy of the license at http://www.gnu.org. This
license embodies the concept of copyleft (a takeoff on “copyright”). Copyleft is intended to prevent others
from placing restrictions on the use of free software.

3

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 3

A few major examples of software from the GNU Project distributed under the GPL follow:

❑ GCC: The GNU Compiler Collection, containing the GNU C compiler

❑ G++: A C++ compiler, included as part of GCC

❑ GDB: A source code–level debugger

❑ GNU make: A version of UNIX make

❑ Bison: A parser generator compatible with UNIX yacc

❑ bash: A command shell

❑ GNU Emacs: A text editor and environment

Many other packages have been developed and released using free software principles and the GPL,
including spreadsheets, source code control tools, compilers and interpreters, Internet tools, graphical
image manipulation tools such as the Gimp, and two complete object-based environments: GNOME and
KDE. We discuss GNOME and KDE in Chapters 16 and 17.

There is now so much free software available that with the addition of the Linux kernel it could be said
that the goal of a creating GNU, a free UNIX-like system, has been achieved with Linux. To recognize the
contribution made by GNU software, many people now refer to Linux systems in general as
GNU/Linux.

You can learn more about the free software concept at http://www.gnu.org.

Linux Distributions
As we have already mentioned, Linux is actually just a kernel. You can obtain the sources for the kernel
to compile and install it on a machine and then obtain and install many other freely distributed software
programs to make a complete Linux installation. These installations are usually referred to as Linux sys-
tems, because they consist of much more than just the kernel. Most of the utilities come from the GNU
Project of the Free Software Foundation.

As you can probably appreciate, creating a Linux system from just source code is a major undertaking.
Fortunately, many people have put together ready-to-install distributions (often called flavors), usually
downloadable or on CD-ROMs or DVDs, that contain not just the kernel but also many other program-
ming tools and utilities. These often include an implementation of the X Window System, a graphical
environment common on many UNIX systems. The distributions usually come with a setup program
and additional documentation (normally all on the CD[s]) to help you install your own Linux system.
Some well-known distributions, particularly on the Intel x86 family of processors, are Red Hat
Enterprise Linux and its community-developed cousin Fedora, Novell SUSE Linux and the free
openSUSE variant, Ubuntu Linux, Slackware, Gentoo, and Debian GNU/Linux. Check out the
DistroWatch site at http://distrowatch.com for details on many more Linux distributions.

Programming Linux
Many people think that programming Linux means using C. It’s true that UNIX was originally written
in C and that the majority of UNIX applications are written in C, but C is not the only option available to

4

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 4

Linux programmers, or UNIX programmers for that matter. In the course of the book, we’ll mention a
couple of the alternatives.

A vast range of programming languages are available for Linux systems, and many of them are free and
available on CD-ROM collections or from FTP archive sites on the Internet. Here’s a partial list of pro-
gramming languages available to the Linux programmer:

We show how you can use a Linux shell (bash) to develop small- to medium-sized applications in
Chapter 2. For the rest of the book, we mainly concentrate on C. We direct our attention mostly toward
exploring the Linux programming interfaces from the perspective of the C programmer, and we assume
knowledge of the C programming language.

Linux Programs
Linux applications are represented by two special types of files: executables and scripts. Executable files
are programs that can be run directly by the computer; they correspond to Windows .exe files. Scripts
are collections of instructions for another program, an interpreter, to follow. These correspond to
Windows .bat or .cmd files, or interpreted BASIC programs.

Linux doesn’t require executables or scripts to have a specific filename or any extension whatsoever. File
system attributes, which we discuss in Chapter 2, are used to indicate that a file is a program that may
be run. In Linux, you can replace scripts with compiled programs (and vice versa) without affecting
other programs or the people who call them. In fact, at the user level, there is essentially no difference
between the two.

When you log in to a Linux system, you interact with a shell program (often bash) that runs programs in
the same way that the Windows command prompt does. It finds the programs you ask for by name by

Ada C C++

Eiffel Forth Fortran

Icon Java JavaScript

Lisp Modula 2 Modula 3

Oberon Objective C Pascal

Perl PostScript Prolog

Python Ruby Smalltalk

PHP Tcl/Tk Bourne Shell

In fact, the first version of UNIX was written in PDP 7 assembler language in 1969. C
was conceived by Dennis Ritchie around that time, and in 1973 he and Ken Thompson
rewrote essentially the entire UNIX kernel in C, quite a feat in the days when system
software was written in assembly language.

5

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 5

searching for a file with the same name in a given set of directories. The directories to search are stored
in a shell variable, PATH, in much the same way as with Windows. The search path (to which you can
add) is configured by your system administrator and will usually contain some standard places where
system programs are stored. These include:

❑ /bin: Binaries, programs used in booting the system

❑ /usr/bin: User binaries, standard programs available to users

❑ /usr/local/bin: Local binaries, programs specific to an installation

An administrator’s login, such as root, may use a PATH variable that includes directories where system
administration programs are kept, such as /sbin and /usr/sbin.

Optional operating system components and third-party applications may be installed in subdirectories
of /opt, and installation programs might add to your PATH variable by way of user install scripts.

Note that Linux, like UNIX, uses the colon (:) character to separate entries in the PATH variable, rather
than the semicolon (;) that MS-DOS and Windows use. (UNIX chose : first, so ask Microsoft why
Windows is different, not why UNIX is different!) Here’s a sample PATH variable:

/usr/local/bin:/bin:/usr/bin:.:/home/neil/bin:/usr/X11R6/bin

Here the PATH variable contains entries for the standard program locations, the current directory (.), a
user’s home directory, and the X Window System.

Text Editors
To write and enter the code examples in the book, you’ll need to use an editor. There are many to choose
from on a typical Linux system. The vi editor is popular with many users.

Both of the authors like Emacs, so we suggest you take the time to learn some of the features of this
powerful editor. Almost all Linux distributions have Emacs as an optional package you can install, or
you can get it from the GNU website at http://www.gnu.org or a version for graphical environments
at the XEmacs site at http://www.xemacs.org.

To learn more about Emacs, you can use its online tutorial. To do this, start the editor by running the
emacs command, and then type Ctrl+H followed by t for the tutorial. Emacs also has its entire manual
available. When in Emacs, type Ctrl+H and then i for information. Some versions of Emacs may have
menus that you can use to access the manual and tutorial.

Remember, Linux uses a forward slash (/) to separate directory names in a filename
rather than the backslash (\) of Windows. Again, UNIX got there first.

It’s not a good idea to delete directories from PATH unless you are sure that you
understand what will result if you do.

6

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 6

The C Compiler
On POSIX-compliant systems, the C compiler is called c89. Historically, the C compiler was simply
called cc. Over the years, different vendors have sold UNIX-like systems with C compilers with differ-
ent facilities and options, but often still called cc.

When the POSIX standard was prepared, it was impossible to define a standard cc command with
which all these vendors would be compatible. Instead, the committee decided to create a new standard
command for the C compiler, c89. When this command is present, it will always take the same options,
independent of the machine.

On Linux systems that do try to implement the standards, you might find that any or all of the com-
mands c89, cc, and gcc refer to the system C compiler, usually the GNU C compiler, or gcc. On UNIX
systems, the C compiler is almost always called cc.

In this book, we use gcc because it’s provided with Linux distributions and because it supports the
ANSI standard syntax for C. If you ever find yourself using a UNIX system without gcc, we recommend
that you obtain and install it. You can find it at http://www.gnu.org. Wherever we use gcc in the
book, simply substitute the relevant command on your system.

Try It Out Your First Linux C Program
In this example you start developing for Linux using C by writing, compiling, and running your first
Linux program. It might as well be that most famous of all starting points, Hello World.

1. Here’s the source code for the file hello.c:

#include <stdio.h>

#include <stdlib.h>

int main()

{

printf(“Hello World\n”);

exit(0);

}

2. Now compile, link, and run your program.

$ gcc -o hello hello.c

$./hello

Hello World

$

7

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 7

How It Works
You invoked the GNU C compiler (on Linux this will most likely be available as cc too) that translated
the C source code into an executable file called hello. You ran the program and it printed a greeting.
This is just about the simplest example there is, but if you can get this far with your system, you should
be able to compile and run the remainder of the examples in the book. If this did not work for you, make
sure that the C compiler is installed on your system. For example, many Linux distributions have an
install option called Software Development (or something similar) that you should select to make sure
the necessary packages are installed.

Because this is the first program you’ve run, it’s a good time to point out some basics. The hello pro-
gram will probably be in your home directory. If PATH doesn’t include a reference to your home direc-
tory, the shell won’t be able to find hello. Furthermore, if one of the directories in PATH contains
another program called hello, that program will be executed instead. This would also happen if such a
directory is mentioned in PATH before your home directory. To get around this potential problem, you
can prefix program names with ./ (for example, ./hello). This specifically instructs the shell to execute
the program in the current directory with the given name. (The dot is an alias for the current directory.)

If you forget the -o name option that tells the compiler where to place the executable, the compiler will
place the program in a file called a.out (meaning assembler output). Just remember to look for an
a.out if you think you’ve compiled a program and you can’t find it! In the early days of UNIX, people
wanting to play games on the system often ran them as a.out to avoid being caught by system adminis-
trators, and some UNIX installations routinely delete all files called a.out every evening.

Development System Roadmap
For a Linux developer, it can be important to know a little about where tools and development resources
are located. The following sections provide a brief look at some important directories and files.

Applications
Applications are usually kept in directories reserved for them. Applications supplied by the system for
general use, including program development, are found in /usr/bin. Applications added by system
administrators for a specific host computer or local network are often found in /usr/local/bin or /opt.

Administrators favor /opt and /usr/local, because they keep vendor-supplied files and later addi-
tions separate from the applications supplied by the system. Keeping files organized in this way may
help when the time comes to upgrade the operating system, because only /opt and /usr/local need
be preserved. We recommend that you compile your applications to run and access required files from
the /usr/local hierarchy for system-wide applications. For development and personal applications it’s
best just to use a folder in your home directory.

Additional features and programming systems may have their own directory structures and program
directories. Chief among these is the X Window System, which is commonly installed in the /usr/X11 or
/usr/bin/X11 directory. Linux distributions typically use the X.Org Foundation version of the X Window
System, based on Revision 7 (X11R7). Other UNIX-like systems may choose different versions of the X
Window System installed in different locations, such as /usr/openwin for Sun’s Open Windows provided
with Solaris.

8

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 8

The GNU compiler system’s driver program, gcc (which you used in the preceding programming
example), is typically located in /usr/bin or /usr/local/bin, but it will run various compiler-
support applications from another location. This location is specified when you compile the compiler
itself and varies with the host computer type. For Linux systems, this location might be a version-
specific subdirectory of /usr/lib/gcc/. On one of the author’s machines at the time of writing it is
/usr/lib/gcc/i586-suse-linux/4.1.3. The separate passes of the GNU C/C++ compiler, and
GNU-specific header files, are stored here.

Header Files
For programming in C and other languages, you need header files to provide definitions of constants and
declarations for system and library function calls. For C, these are almost always located in /usr/include
and subdirectories thereof. You can normally find header files that depend on the particular incarnation of
Linux that you are running in /usr/include/sys and /usr/include/linux.

Other programming systems will also have header files that are stored in directories that get searched
automatically by the appropriate compiler. Examples include /usr/include/X11 for the X Window
System and /usr/include/c++ for GNU C++.

You can use header files in subdirectories or nonstandard places by specifying the -I flag (for include)
to the C compiler. For example,

$ gcc -I/usr/openwin/include fred.c

will direct the compiler to look in the directory /usr/openwin/include, as well as the standard places,
for header files included in the fred.c program. Refer to the manual page for the C compiler (man gcc) for
more details.

It’s often convenient to use the grep command to search header files for particular definitions and func-
tion prototypes. Suppose you need to know the name of the #defines used for returning the exit status
from a program. Simply change to the /usr/include directory and grep for a probable part of the
name like this:

$ grep EXIT_ *.h
...
stdlib.h:#define EXIT_FAILURE 1 /* Failing exit status. */
stdlib.h:#define EXIT_SUCCESS 0 /* Successful exit status. */
...
$

Here grep searches all the files in the directory with a name ending in .h for the string EXIT_. In this
example, it has found (among others) the definition you need in the file stdlib.h.

Library Files
Libraries are collections of precompiled functions that have been written to be reusable. Typically, they con-
sist of sets of related functions to perform a common task. Examples include libraries of screen-handling
functions (the curses and ncurses libraries) and database access routines (the dbm library). We show you
some libraries in later chapters.

9

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 9

Standard system libraries are usually stored in /lib and /usr/lib. The C compiler (or more exactly, the
linker) needs to be told which libraries to search, because by default it searches only the standard C library.
This is a remnant of the days when computers were slow and CPU cycles were expensive. It’s not enough
to put a library in the standard directory and hope that the compiler will find it; libraries need to follow a
very specific naming convention and need to be mentioned on the command line.

A library filename always starts with lib. Then follows the part indicating what library this is (like c for
the C library, or m for the mathematical library). The last part of the name starts with a dot (.), and specifies
the type of the library:

❑ .a for traditional, static libraries

❑ .so for shared libraries (see the following)

The libraries usually exist in both static and shared formats, as a quick ls /usr/lib will show. You
can instruct the compiler to search a library either by giving it the full path name or by using the -l
flag. For example,

$ gcc -o fred fred.c /usr/lib/libm.a

tells the compiler to compile file fred.c, call the resulting program file fred, and search the mathematical
library in addition to the standard C library to resolve references to functions. A similar result is achieved
with the following command:

$ gcc -o fred fred.c -lm

The -lm (no space between the l and the m) is shorthand (shorthand is much valued in UNIX circles)
for the library called libm.a in one of the standard library directories (in this case /usr/lib). An addi-
tional advantage of the -lm notation is that the compiler will automatically choose the shared library
when it exists.

Although libraries are usually found in standard places in the same way as header files, you can add to
the search directories by using the -L (uppercase letter) flag to the compiler. For example,

$ gcc -o x11fred -L/usr/openwin/lib x11fred.c -lX11

will compile and link a program called x11fred using the version of the library libX11 found in the
/usr/openwin/lib directory.

Static Libraries
The simplest form of library is just a collection of object files kept together in a ready-to-use form. When a
program needs to use a function stored in the library, it includes a header file that declares the function.
The compiler and linker take care of combining the program code and the library into a single executable
program. You must use the –l option to indicate which libraries other than the standard C runtime library
are required.

Static libraries, also known as archives, conventionally have names that end with .a. Examples are /usr/
lib/libc.a and /usr/lib/libX11.a for the standard C library and the X11 library, respectively.

10

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 10

You can create and maintain your own static libraries very easily by using the ar (for archive) program
and compiling functions separately with gcc -c. Try to keep functions in separate source files as much
as possible. If functions need access to common data, you can place them in the same source file and use
static variables declared in that file.

Try It Out Static Libraries
In this example, you create your own small library containing two functions and then use one of them in
an example program. The functions are called fred and bill and just print greetings.

1. First, create separate source files (imaginatively called fred.c and bill.c) for each function.
Here’s the first:

#include <stdio.h>

void fred(int arg)

{

printf(“fred: we passed %d\n”, arg);

}

And here’s the second:

#include <stdio.h>

void bill(char *arg)

{

printf(“bill: we passed %s\n”, arg);

}

2. You can compile these functions individually to produce object files ready for inclusion into a
library. Do this by invoking the C compiler with the -c option, which prevents the compiler
from trying to create a complete program. Trying to create a complete program would fail
because you haven’t defined a function called main.

$ gcc -c bill.c fred.c

$ ls *.o

bill.o fred.o

3. Now write a program that calls the function bill. First, it’s a good idea to create a header file
for your library. This will declare the functions in your library and should be included by all
applications that want to use your library. It’s a good idea to include the header file in the files
fred.c and bill.c too. This will help the compiler pick up any errors.

/*

This is lib.h. It declares the functions fred and bill for users

11

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 11

*/

void bill(char *);

void fred(int);

4. The calling program (program.c) can be very simple. It includes the library header file and
calls one of the functions from the library.

#include <stdlib.h>

#include “lib.h”

int main()

{

bill(“Hello World”);

exit(0);

}

5. You can now compile the program and test it. For now, specify the object files explicitly to the
compiler, asking it to compile your file and link it with the previously compiled object module
bill.o.

$ gcc -c program.c

$ gcc -o program program.o bill.o

$./program

bill: we passed Hello World

$

6. Now you’ll create and use a library. Use the ar program to create the archive and add your
object files to it. The program is called ar because it creates archives, or collections, of individual
files placed together in one large file. Note that you can also use ar to create archives of files of
any type. (Like many UNIX utilities, ar is a generic tool.)

$ ar crv libfoo.a bill.o fred.o

a - bill.o

a - fred.o

7. The library is created and the two object files added. To use the library successfully, some sys-
tems, notably those derived from Berkeley UNIX, require that a table of contents be created for
the library. Do this with the ranlib command. In Linux, this step isn’t necessary (but it is harm-
less) when you’re using the GNU software development tools.

$ ranlib libfoo.a

12

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 12

Your library is now ready to use. You can add to the list of files to be used by the compiler to create your
program like this:

$ gcc -o program program.o libfoo.a
$./program
bill: we passed Hello World
$

You could also use the –l option to access the library, but because it is not in any of the standard places,
you have to tell the compiler where to find it by using the –L option like this:

$ gcc –o program program.o –L. –lfoo

The –L. option tells the compiler to look in the current directory (.) for libraries. The –lfoo option tells
the compiler to use a library called libfoo.a (or a shared library, libfoo.so, if one is present). To see
which functions are included in an object file, library, or executable program, you can use the nm com-
mand. If you take a look at program and lib.a, you see that the library contains both fred and bill,
but that program contains only bill. When the program is created, it includes only functions from the
library that it actually needs. Including the header file, which contains declarations for all of the func-
tions in the library, doesn’t cause the entire library to be included in the final program.

If you’re familiar with Windows software development, there are a number of direct analogies here,
illustrated in the following table.

Shared Libraries
One disadvantage of static libraries is that when you run many applications at the same time and they
all use functions from the same library, you may end up with many copies of the same functions in
memory and indeed many copies in the program files themselves. This can consume a large amount of
valuable memory and disk space.

Many UNIX systems and Linux-support shared libraries can overcome this disadvantage. A complete
discussion of shared libraries and their implementation on different systems is beyond the scope of this
book, so we’ll restrict ourselves to the visible implementation under Linux.

Shared libraries are stored in the same places as static libraries, but shared libraries have a different filename
suffix. On a typical Linux system, the shared version of the standard math library is /lib/libm.so.

When a program uses a shared library, it is linked in such a way that it doesn’t contain function code
itself, but references to shared code that will be made available at run time. When the resulting program
is loaded into memory to be executed, the function references are resolved and calls are made to the
shared library, which will be loaded into memory if needed.

Item UNIX Windows

object module func.o FUNC.OBJ

static library lib.a LIB.LIB

program program PROGRAM.EXE

13

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 13

In this way, the system can arrange for a single copy of a shared library to be used by many applications
at once and stored just once on the disk. An additional benefit is that the shared library can be updated
independently of the applications that rely on it. Symbolic links from the /lib/libm.so file to the actual
library revision (/lib/libm.so.N where N represents a major version number — 6 at the time of writing)
are used. When Linux starts an application, it can take into account the version of a library required by the
application to prevent major new versions of a library from breaking older applications.

For Linux systems, the program (the dynamic loader) that takes care of loading shared libraries and resolv-
ing client program function references is called ld.so and may be made available as ld-linux.so.2 or
ld-lsb.so.2 or ld-lsb.so.3. The additional locations searched for shared libraries are configured in the
file /etc/ld.so.conf, which needs to be processed by ldconfig if changed (for example, if X11 shared
libraries are added when the X Window System is installed).

You can see which shared libraries are required by a program by running the utility ldd. For example, if
you try running it on your example application, you get the following:

$ ldd program
linux-gate.so.1 => (0xffffe000)
libc.so.6 => /lib/libc.so.6 (0xb7db4000)
/lib/ld-linux.so.2 (0xb7efc000)

In this case, you see that the standard C library (libc) is shared (.so). The program requires major
Version 6. Other UNIX systems will make similar arrangements for access to shared libraries. Refer to
your system documentation for details.

In many ways, shared libraries are similar to dynamic-link libraries used under Windows. The .so
libraries correspond to .DLL files and are required at run time, and the .a libraries are similar to .LIB
files included in the program executable.

Getting Help
The vast majority of Linux systems are reasonably well documented with respect to the system program-
ming interfaces and standard utilities. This is true because, since the earliest UNIX systems, programmers
have been encouraged to supply a manual page with their applications. These manual pages, which are
sometimes provided in a printed form, are invariably available electronically.

The man command provides access to the online manual pages. The pages vary considerably in quality
and detail. Some may simply refer the reader to other, more thorough documentation, whereas others
give a complete list of all options and commands that a utility supports. In either case, the manual page
is a good place to start.

The GNU software suite and some other free software use an online documentation system called info.
You can browse full documentation online using a special program, info, or via the info command of

The following example outputs are taken from a SUSE 10.3 distribution. Your output
may differ slightly if you are not using this distribution.

14

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 14

the emacs editor. The benefit of the info system is that you can navigate the documentation using links
and cross-references to jump directly to relevant sections. For the documentation author, the info system
has the benefit that its files can be automatically generated from the same source as the printed, typeset
documentation.

Try It Out Manual Pages and info
Let’s look for documentation of the GNU C compiler (gcc).

1. First take a look at the manual page.

$ man gcc

GCC(1) GNU GCC(1)

NAME
gcc - GNU project C and C++ compiler

SYNOPSIS
gcc [-c|-S|-E] [-std=standard]

[-g] [-pg] [-Olevel]
[-Wwarn...] [-pedantic]
[-Idir...] [-Ldir...]
[-Dmacro[=defn]...] [-Umacro]
[-foption...] [-mmachine-option...]
[-o outfile] infile...

Only the most useful options are listed here; see below
for the remainder. g++ accepts mostly the same options as
gcc.

DESCRIPTION
When you invoke GCC, it normally does preprocessing, com
pilation, assembly and linking. The ``overall options’‘
allow you to stop this process at an intermediate stage.
For example, the -c option says not to run the linker.
Then the output consists of object files output by the
assembler.

Other options are passed on to one stage of processing.
Some options control the preprocessor and others the com
piler itself. Yet other options control the assembler and
linker; most of these are not documented here, since we
rarely need to use any of them.

...

If you want, you can read about the options that the compiler supports. The manual page in this case is
quite long, but it forms only a small part of the total documentation for GNU C (and C++).

When reading manual pages, you can use the spacebar to read the next page, Enter (or Return if your
keyboard has that key instead) to read the next line, and q to quit altogether.

15

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 15

2. To get more information on GNU C, you can try info.

$ info gcc

File: gcc.info, Node: Top, Next: G++ and GCC, Up: (DIR)
Introduction

This manual documents how to use the GNU compilers, as well as their
features and incompatibilities, and how to report bugs. It corresponds
to GCC version 4.1.3. The internals of the GNU compilers, including how
to port them to new targets and some information about how to write
front ends for new languages, are documented in a separate manual.
*Note Introduction: (gccint)Top.

* Menu:

* G++ and GCC:: You can compile C or C++ Applications.
* Standards:: Language standards supported by GCC.
* Invoking GCC:: Command options supported by `gcc’.
* C Implementation:: How GCC implements the ISO C specification.
* C Extensions:: GNU extensions to the C language family.
* C++ Extensions:: GNU extensions to the C++ language.
* Objective-C:: GNU Objective-C runtime features.
* Compatibility:: Binary Compatibility
--zz-Info: (gcc.info.gz)Top, 39 lines --Top--------------------------------
Welcome to Info version 4.8. Type ? for help, m for menu item.

You’re presented with a long menu of options that you can select to move around a complete text ver-
sion of the documentation. Menu items and a hierarchy of pages allow you to navigate a very large doc-
ument. On paper, the GNU C documentation runs to many hundreds of pages.

The info system also contains its own help page in info form pages, of course. If you type Ctrl+H,
you’ll be presented with some help that includes a tutorial on using info. The info program is avail-
able with many Linux distributions and can be installed on other UNIX systems.

Summary
In this introductory chapter, we’ve looked at Linux programming and the things Linux holds in com-
mon with proprietary UNIX systems. We’ve noted the wide variety of programming systems available
to UNIX developers. We’ve also presented a simple program and library to demonstrate the basic C
tools, comparing them with their Windows equivalents.

16

Chapter 1: Getting Started

47627c01.qxd:WroxPro 9/28/07 8:56 PM Page 16

2
Shell Programming

Having started this book on programming Linux using C, we now take a detour into writing shell
programs. Why? Well, Linux isn’t like systems where the command-line interface is an afterthought to
the graphical interface. UNIX, Linux’s inspiration, originally had no graphical interface at all; every-
thing was done from the command line. Consequently, the command-line system of UNIX underwent
a lot of development and became a very powerful feature. This has been carried into Linux, and some
of the most powerful things that you can do are most easily done from the shell. Because the shell is so
important to Linux, and is so useful for automating simple tasks, shell programming is covered early.

Throughout this chapter, we’ll be showing you the syntax, structures, and commands available to you
when you’re programming the shell, usually making use of interactive (screen-based) examples. These
should serve as a useful synopsis of most of the shell’s features and their effects. We will also sneak a
look at a couple of particularly useful command-line utilities often called from the shell: grep and
find. While looking at grep, we also cover the fundamentals of regular expressions, which crop up in
Linux utilities and in programming languages such as Perl, Ruby, and PHP. At the end of the chapter,
you’ll learn how to program a real-life script, which is reprogrammed and extended in C throughout
the book. This chapter covers the following:

❑ What a shell is

❑ Basic considerations

❑ The subtleties of syntax: variables, conditions, and program control

❑ Lists

❑ Functions

❑ Commands and command execution

❑ Here documents

❑ Debugging

❑ grep and regular expressions

❑ find

Whether you’re faced with a complex shell script in your system administration, or you want to
prototype your latest big (but beautifully simple) idea, or just want to speed up some repetitive
task, this chapter is for you.

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 17

Why Program with a Shell?
One reason to use the shell for programming is that you can program the shell quickly and simply.
Moreover, a shell is always available even on the most basic Linux installation, so for simple prototyp-
ing you can find out if your idea works. The shell is also ideal for any small utilities that perform some
relatively simple task for which efficiency is less important than easy configuration, maintenance, and
portability. You can use the shell to organize process control, so that commands run in a predeter-
mined sequence dependent on the successful completion of each stage.

Although the shell has superficial similarities to the Windows command prompt, it’s much more powerful,
capable of running reasonably complex programs in its own right. Not only can you execute commands
and call Linux utilities, you can also write them. The shell executes shell programs, often referred to as
scripts, which are interpreted at runtime. This generally makes debugging easier because you can easily
execute single lines, and there’s no recompile time. However, this can make the shell unsuitable for time-
critical or processor-intensive tasks.

A Bit of Philosophy
Here we come to a bit of UNIX — and of course Linux — philosophy. UNIX is built on and depends
on a high level of code reuse. You build a small and simple utility and people use it as one link in a
string of others to form a command. One of the pleasures of Linux is the variety of excellent tools
available. A simple example is this command:

$ ls -al | more

This command uses the ls and more utilities and pipes the output of the file listing to a screen-at-a-time
display. Each utility is one more building block. You can often use many small scripts together to create
large and complex suites of programs.

For example, if you want to print a reference copy of the bash manual pages, then use

$ man bash | col -b | lpr

Furthermore, because of Linux’s automatic file type handling, the users of these utilities usually don’t
need to know what language the utilities are written in. If the utility needs to run faster, it’s quite com-
mon to prototype utilities in the shell and reimplement them later in C or C++, Perl, Python, or some
other language that executes more swiftly once an idea has proven its worth. Conversely, if the utility
works adequately in the shell, you can leave well enough alone.

Whether or not you ever reimplement the script depends on whether it needs optimizing, whether it
needs to be portable, whether it should be easy to change, and whether (as usually happens) it outgrows
its original purpose.

Numerous examples of shell scripts are already loaded on your Linux system in case you’re curious,
including package installers, .xinitrc and startx, and the scripts in /etc/rc.d to configure the
system on boot-up.

18

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 18

What Is a Shell?
Before jumping in and discussing how to program using a shell, let’s review the shell’s function and the
different shells available for Linux. A shell is a program that acts as the interface between you and the Linux
system, enabling you to enter commands for the operating system to execute. In that respect, it resembles the
Windows command prompt, but as mentioned earlier, Linux shells are much more powerful. For example,
input and output can be redirected using < and >, data piped between simultaneously executing programs
using |, and output from a subprocess grabbed by using $(...). On Linux it’s quite feasible to have multi-
ple shells installed, with different users able to pick the one they prefer. Figure 2-1 shows how the shell (two
shells actually, both bash and csh) and other programs sit around the Linux kernel.

Figure 2-1

Because Linux is so modular, you can slot in one of the many different shells in use, although most of
them are derived from the original Bourne shell. On Linux, the standard shell that is always installed as
/bin/sh is called bash (the GNU Bourne-Again SHell), from the GNU suite of tools. Because this is an
excellent shell that is always installed on Linux systems, is open source, and is portable to almost all
UNIX variants, bash is the shell we will be using. This chapter uses bash version 3 and mostly uses the
features common to all POSIX-compatible shells. We assume that the shell has been installed as /bin/sh
and that it is the default shell for your login. On most Linux distributions, the program /bin/sh, the
default shell, is actually a link to the program /bin/bash.

You can check the version of bash you have with the following command:

$ /bin/bash --version
GNU bash, version 3.2.9(1)-release (i686-pc-linux-gnu)
Copyright (C) 2005 Free Software Foundation, Inc.

To change to a different shell — if bash isn’t the default on your system, for example —
just execute the desired shell’s program (e.g., /bin/bash) to run the new shell and
change the command prompt. If you are using UNIX, and bash isn’t installed, you
can download it free from the GNU Web site at www.gnu.org. The sources are highly
portable, and chances are good that it will compile on your version of UNIX straight
out of the box.

The
X Window
System

Other
programs

bash

csh

Kernel

19

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 19

When you create Linux users, you can set the shell that they will use, either when the user is created or
afterwards by modifying their details. Figure 2-2 shows the selection of the shell for a user using Fedora.

Figure 2-2

Many other shells are available, either free or commercially. The following table offers a brief summary
of some of the more common shells available:

Shell Name A Bit of History

sh (Bourne) The original shell from early versions of UNIX

csh, tcsh, zsh The C shell, and its derivatives, originally created by Bill Joy of
Berkeley UNIX fame. The C shell is probably the third most popular
type of shell after bash and the Korn shell.

ksh, pdksh The Korn shell and its public domain cousin. Written by David
Korn, this is the default shell on many commercial UNIX versions.

bash The Linux staple shell from the GNU project. bash, or Bourne Again
SHell, has the advantage that the source code is freely available, and
even if it’s not currently running on your UNIX system, it has proba-
bly been ported to it. bash has many similarities to the Korn shell.

20

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 20

Except for the C shell and a small number of derivatives, all of these are very similar and are closely aligned
with the shell specified in the X/Open 4.2 and POSIX 1003.2 specifications. POSIX 1003.2 provides the mini-
mum specification for a shell, but the extended specification in X/Open provides a more friendly and pow-
erful shell. X/Open is usually the more demanding specification, but it also yields a friendlier system.

Pipes and Redirection
Before we get down to the details of shell programs, we need to say a little about how inputs and out-
puts of Linux programs (not just shell programs) can be redirected.

Redirecting Output
You may already be familiar with some redirection, such as

$ ls -l > lsoutput.txt

which saves the output of the ls command into a file called lsoutput.txt.

However, there is much more to redirection than this simple example reveals. You’ll learn more about the
standard file descriptors in Chapter 3, but for now all you need to know is that file descriptor 0 is the stan-
dard input to a program, file descriptor 1 is the standard output, and file descriptor 2 is the standard error
output. You can redirect each of these independently. In fact, you can also redirect other file descriptors, but
it’s unusual to want to redirect any other than the standard ones: 0, 1, and 2.

The preceding example redirects the standard output into a file by using the > operator. By default, if the
file already exists, then it will be overwritten. If you want to change the default behavior, you can use
the command set -o noclobber (or set -C), which sets the noclobber option to prevent a file from
being overwritten using redirection. You can cancel this option using set +o noclobber. You’ll see
more options for the set command later in the chapter.

To append to the file, use the >> operator. For example,

$ ps >> lsoutput.txt

will append the output of the ps command to the end of the specified file.

To redirect the standard error output, preface the > operator with the number of the file descriptor you
wish to redirect. Because the standard error is on file descriptor 2, use the 2> operator. This is often use-
ful to discard error information and prevent it from appearing on the screen.

Suppose you want to use the kill command to kill a process from a script. There is always a slight risk
that the process will die before the kill command is executed. If this happens, kill will write an error
message to the standard error output, which, by default, will appear on the screen. By redirecting both the
standard output and the error, you can prevent the kill command from writing any text to the screen.

The command

$ kill -HUP 1234 >killout.txt 2>killerr.txt

will put the output and error information into separate files.

21

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 21

If you prefer to capture both sets of output into a single file, you can use the >& operator to combine the
two outputs. Therefore,

$ kill -1 1234 >killouterr.txt 2>&1

will put both the output and error outputs into the same file. Notice the order of the operators. This
reads as “redirect standard output to the file killouterr.txt, and then direct standard error to the
same place as the standard output.” If you get the order wrong, the redirect won’t work as you expect.

Because you can discover the result of the kill command using the return code (discussed in more
detail later in this chapter), you don’t often want to save either standard output or standard error. You
can use the Linux universal “bit bucket” of /dev/null to efficiently discard the entire output, like this:

$ kill -1 1234 >/dev/null 2>&1

Redirecting Input
Rather like redirecting output, you can also redirect input. For example,

$ more < killout.txt

Obviously, this is a rather trivial example under Linux; the Linux more command is quite happy to
accept filenames as parameters, unlike the Windows command-line equivalent.

Pipes
You can connect processes using the pipe operator (|). In Linux, unlike in MS-DOS, processes connected
by pipes can run simultaneously and are automatically rescheduled as data flows between them. As a
simple example, you could use the sort command to sort the output from ps.

If you don’t use pipes, you must use several steps, like this:

$ ps > psout.txt
$ sort psout.txt > pssort.out

A much more elegant solution is to connect the processes with a pipe:

$ ps | sort > pssort.out

Because you probably want to see the output paginated on the screen, you could connect a third process,
more, all on the same command line:

$ ps | sort | more

There’s practically no limit to the permissible number of connected processes. Suppose you want to see
all the different process names that are running excluding shells. You could use

$ ps –xo comm | sort | uniq | grep -v sh | more

This takes the output of ps, sorts it into alphabetical order, extracts processes using uniq, uses grep -v
sh to remove the process named sh, and finally displays it paginated on the screen.

22

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 22

As you can see, this is a much more elegant solution than a string of separate commands, each with its
own temporary file. However, be wary of one thing here: If you have a string of commands, the output
file is created or written to immediately when the set of commands is created, so never use the same file-
name twice in a string of commands. If you try to do something like

cat mydata.txt | sort | uniq > mydata.txt

you will end up with an empty file, because you will overwrite the mydata.txt file before you read it.

The Shell as a Programming Language
Now that you’ve seen some basic shell operations, it’s time to move on to some actual shell programs. There
are two ways of writing shell programs. You can type a sequence of commands and allow the shell to exe-
cute them interactively, or you can store those commands in a file that you can then invoke as a program.

Interactive Programs
Just typing the shell script on the command line is a quick and easy way of trying out small code frag-
ments, and is very useful while you are learning or just testing things out.

Suppose you have a large number of C files and wish to examine the files that contain the string POSIX.
Rather than search using the grep command for the string in the files and then list the files individually,
you could perform the whole operation in an interactive script like this:

$ for file in *
> do
> if grep -l POSIX $file
> then
> more $file
> fi
> done
posix
This is a file with POSIX in it - treat it well
$

Note how the normal $ shell prompt changes to a > when the shell is expecting further input. You can
type away, letting the shell decide when you’re finished, and the script will execute immediately.

In this example, the grep command prints the files it finds containing POSIX and then more displays
the contents of the file to the screen. Finally, the shell prompt returns. Note also that you called the shell
variable that deals with each of the files to self-document the script. You could equally well have used i,
but file is more meaningful for humans to read.

The shell also performs wildcard expansion (often referred to as globbing). You are almost certainly
aware of the use of ‘*‘ as a wildcard to match a string of characters. What you may not know is that
you can request single-character wildcards using ?, while [set] allows any of a number of single char-
acters to be checked. [^set] negates the set — that is, it includes anything but the set you’ve specified.
Brace expansion using {} (available on some shells, including bash) allows you to group arbitrary
strings together in a set that the shell will expand. For example,

$ ls my_{finger,toe}s

23

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 23

will list the files my_fingers and my_toes. This command uses the shell to check every file in the cur-
rent directory. We will come back to these rules for matching patterns near the end of the chapter when
we look in more detail at grep and the power of regular expressions.

Experienced Linux users would probably perform this simple operation in a much more efficient way,
perhaps with a command such as

$ more `grep -l POSIX *`

or the synonymous construction

$ more $(grep -l POSIX *)

In addition,

$ grep -l POSIX * | more

will output the name of the file whose contents contained the string POSIX. In this script, you see the
shell making use of other commands, such as grep and more, to do the hard work. The shell simply
enables you to glue several existing commands together in new and powerful ways. You will see wild-
card expansion used many times in the following scripts, and we’ll look at the whole area of expansion
in more detail when we look at regular expressions in the section on the grep command.

Going through this long rigmarole every time you want to execute a sequence of commands is a bore.
You need to store the commands in a file, conventionally referred to as a shell script, so you can execute
them whenever you like.

Creating a Script
Using any text editor, you need to create a file containing the commands; create a file called first that
looks like this:

#!/bin/sh

first
This file looks through all the files in the current
directory for the string POSIX, and then prints the names of
those files to the standard output.

for file in *
do
if grep -q POSIX $file
then
echo $file

fi
done

exit 0

Comments start with a # and continue to the end of a line. Conventionally, though, # is kept in the first col-
umn. Having made such a sweeping statement, we next note that the first line, #!/bin/sh, is a special form

24

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 24

of comment; the #! characters tell the system that the argument that follows on the line is the program to be
used to execute this file. In this case, /bin/sh is the default shell program.

Note the absolute path specified in the comment. It is conventional to keep this shorter than 32 charac-
ters for backward compatibility, because some older UNIX versions can only use this limited number of
characters when using #!, although Linux generally does not have this limitation.

Since the script is essentially treated as standard input to the shell, it can contain any Linux commands
referenced by your PATH environment variable.

The exit command ensures that the script returns a sensible exit code (more on this later in the chapter).
This is rarely checked when programs are run interactively, but if you want to invoke this script from
another script and check whether it succeeded, returning an appropriate exit code is very important.
Even if you never intend to allow your script to be invoked from another, you should still exit with a
reasonable code. Have faith in the usefulness of your script: Assume it may need to be reused as part of
another script someday.

A zero denotes success in shell programming. Since the script as it stands can’t detect any failures, it
always returns success. We’ll come back to the reasons for using a zero exit code for success later in the
chapter, when we look at the exit command in more detail.

Notice that this script does not use any filename extension or suffix; Linux, and UNIX in general, rarely
makes use of the filename extension to determine the type of a file. You could have used .sh or added a
different extension, but the shell doesn’t care. Most preinstalled scripts will not have any filename exten-
sion, and the best way to check if they are scripts or not is to use the file command — for example,
file first or file /bin/bash. Use whatever convention is applicable where you work, or suits you.

Making a Script Executable
Now that you have your script file, you can run it in two ways. The simpler way is to invoke the shell
with the name of the script file as a parameter:

$ /bin/sh first

This should work, but it would be much better if you could simply invoke the script by typing its name,
giving it the respectability of other Linux commands. Do this by changing the file mode to make the file
executable for all users using the chmod command:

$ chmod +x first

You can then execute it using the command

$ first

Of course, this isn’t the only way to use chmod to make a file executable. Use man
chmod to find out more about octal arguments and other options.

25

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 25

You may get an error saying the command wasn’t found. This is almost certainly because the shell envi-
ronment variable PATH isn’t set to look in the current directory for commands to execute. To change this,
either type PATH=$PATH:. on the command line or edit your .bash_profile file to add this command
to the end of the file; then log out and log back in again. Alternatively, type ./first in the directory
containing the script, to give the shell the full relative path to the file.

Specifying the path prepended with ./ does have one other advantage: It ensures that you don’t acci-
dentally execute another command on the system with the same name as your script file.

Once you’re confident that your script is executing properly, you can move it to a more appropriate loca-
tion than the current directory. If the command is just for your own use, you could create a bin directory
in your home directory and add that to your path. If you want the script to be executable by others, you
could use /usr/local/bin or another system directory as a convenient location for adding new pro-
grams. If you don’t have root permissions on your system, you could ask the system administrator to
copy your file for you, although you may have to convince them of its worth first. To prevent other users
from changing the script, perhaps accidentally, you should remove write access from it. The sequence of
commands for the administrator to set ownership and permissions would be something like this:

cp first /usr/local/bin
chown root /usr/local/bin/first
chgrp root /usr/local/bin/first
chmod 755 /usr/local/bin/first

Notice that rather than alter a specific part of the permission flags, you use the absolute form of the
chmod here because you know exactly what permissions you require.

If you prefer, you can use the rather longer, but perhaps more obvious, form of the chmod command:

chmod u=rwx,go=rx /usr/local/bin/first

Check the manual page of chmod for more details.

In Linux you can delete a file if you have write permission on the directory that
contains it. To be safe, ensure that only the superuser can write to directories con-
taining files that you want to keep safe. This makes sense because a directory is just
another file, and having write permission to a directory file allows users to add and
remove names.

You shouldn’t change the PATH variable like this for the superuser, conventionally
the user name root. It’s a security loophole, because the system administrator
logged in as root can be tricked into invoking a fake version of a standard command.
One of the authors admits to doing this once — just to prove a point to the system
administrator about security, of course! It’s only a slight risk on ordinary accounts to
include the current directory in the path, so if you are particularly concerned, just
get into the habit of prepending ./ to all commands that are in the local directory.

26

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 26

Shell Syntax
Now that you’ve seen an example of a simple shell program, it’s time to look in greater depth at the pro-
gramming power of the shell. The shell is quite an easy programming language to learn, not least because
it’s easy to test small program fragments interactively before combining them into bigger scripts. You can
use the bash shell to write quite large, structured programs. The next few sections cover the following:

❑ Variables: strings, numbers, environments, and parameters

❑ Conditions: shell Booleans

❑ Program control: if, elif, for, while, until, case

❑ Lists

❑ Functions

❑ Commands built into the shell

❑ Getting the result of a command

❑ Here documents

Variables
You don’t usually declare variables in the shell before using them. Instead, you create them by simply
using them (for example, when you assign an initial value to them). By default, all variables are consid-
ered and stored as strings, even when they are assigned numeric values. The shell and some utilities will
convert numeric strings to their values in order to operate on them as required. Linux is a case-sensitive
system, so the shell considers the variable foo to be different from Foo, and both to be different from FOO.

Within the shell you can access the contents of a variable by preceding its name with a $. Whenever you
extract the contents of a variable, you must give the variable a preceding $. When you assign a value to a
variable, just use the name of the variable, which is created dynamically if necessary. An easy way to check
the contents of a variable is to echo it to the terminal, preceding its name with a $.

On the command line, you can see this in action when you set and check various values of the variable
salutation:

$ salutation=Hello
$ echo $salutation
Hello
$ salutation=”Yes Dear”
$ echo $salutation
Yes Dear
$ salutation=7+5
$ echo $salutation
7+5

Note how a string must be delimited by quote marks if it contains spaces. In addition,
there can’t be any spaces on either side of the equals sign.

27

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 27

You can assign user input to a variable by using the read command. This takes one parameter, the
name of the variable to be read into, and then waits for the user to enter some text. The read normally
completes when the user presses Enter. When reading a variable from the terminal, you don’t usually
need the quote marks:

$ read salutation
Wie geht’s?
$ echo $salutation
Wie geht’s?

Quoting
Before moving on, you should be clear about one feature of the shell: the use of quotes.

Normally, parameters in scripts are separated by whitespace characters (e.g., a space, a tab, or a newline
character). If you want a parameter to contain one or more whitespace characters, you must quote the
parameter.

The behavior of variables such as $foo inside quotes depends on the type of quotes you use. If you
enclose a $ variable expression in double quotes, then it’s replaced with its value when the line is exe-
cuted. If you enclose it in single quotes, then no substitution takes place. You can also remove the special
meaning of the $ symbol by prefacing it with a \.

Usually, strings are enclosed in double quotes, which protects variables from being separated by white
space but allows $ expansion to take place.

Try It Out Playing with Variables
This example shows the effect of quotes on the output of a variable:

#!/bin/sh

myvar=”Hi there”

echo $myvar
echo “$myvar”
echo ‘$myvar’
echo \$myvar

echo Enter some text
read myvar

echo ‘$myvar’ now equals $myvar
exit 0

This behaves as follows:

$./variable
Hi there
Hi there
$myvar
$myvar

28

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 28

Enter some text
Hello World
$myvar now equals Hello World

How It Works
The variable myvar is created and assigned the string Hi there. The contents of the variable are dis-
played with the echo command, showing how prefacing the variable with a $ character expands the
contents of the variable. You see that using double quotes doesn’t affect the substitution of the variable,
while single quotes and the backslash do. You also use the read command to get a string from the user.

Environment Variables
When a shell script starts, some variables are initialized from values in the environment. These are nor-
mally in all uppercase form to distinguish them from user-defined (shell) variables in scripts, which are
conventionally lowercase. The variables created depend on your personal configuration. Many are listed
in the manual pages, but the principal ones are listed in the following table:

If you want to check out how the program works in a different environment by run-
ning the env <command>, try looking at the env manual pages. Later in the chapter
you’ll see how to set environment variables in subshells using the export command.

Environment Variable Description

$HOME The home directory of the current user

$PATH A colon-separated list of directories to search for commands

$PS1 A command prompt, frequently $, but in bash you can use some
more complex values; for example, the string [\u@\h \W]$ is a
popular default that tells you the user, machine name, and current
directory, as well as providing a $ prompt.

$PS2 A secondary prompt, used when prompting for additional
input; usually >.

$IFS An input field separator. This is a list of characters that are used to
separate words when the shell is reading input, usually space, tab,
and newline characters.

$0 The name of the shell script

$# The number of parameters passed

$$ The process ID of the shell script, often used inside a script for gener-
ating unique temporary filenames; for example /tmp/tmpfile_$$

29

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 29

Parameter Variables
If your script is invoked with parameters, some additional variables are created. If no parameters are
passed, the environment variable $# still exists but has a value of 0.

The parameter variables are listed in the following table:

It’s easy to see the difference between $@ and $* by trying them out:

$ IFS=’‘
$ set foo bar bam
$ echo “$@“
foo bar bam
$ echo “$*“
foobarbam
$ unset IFS
$ echo “$*“
foo bar bam

As you can see, within double quotes, $@ expands the positional parameters as separate fields, regard-
less of the IFS value. In general, if you want access to the parameters, $@ is the sensible choice.

In addition to printing the contents of variables using the echo command, you can also read them by
using the read command.

Try It Out Manipulating Parameter and Environment Variables
The following script demonstrates some simple variable manipulation. Once you’ve typed the script and
saved it as try_var, don’t forget to make it executable with chmod +x try_var.

#!/bin/sh

salutation=”Hello”
echo $salutation
echo “The program $0 is now running”
echo “The second parameter was $2”
echo “The first parameter was $1”
echo “The parameter list was $*“
echo “The user’s home directory is $HOME”

Parameter Variable Description

$1, $2, … The parameters given to the script

$* A list of all the parameters, in a single variable, separated by the first
character in the environment variable IFS. If IFS is modified, then
the way $* separates the command line into parameters will change.

$@ A subtle variation on $*; it doesn’t use the IFS environment vari-
able, so parameters are not run together even if IFS is empty.

30

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 30

echo “Please enter a new greeting”
read salutation

echo $salutation
echo “The script is now complete”
exit 0

If you run this script, you get the following output:

$./try_var foo bar baz
Hello
The program ./try_var is now running
The second parameter was bar
The first parameter was foo
The parameter list was foo bar baz
The user’s home directory is /home/rick
Please enter a new greeting
Sire
Sire
The script is now complete
$

How It Works
This script creates the variable salutation, displays its contents, and then shows how various parame-
ter variables and the environment variable $HOME already exist and have appropriate values.

We’ll return to parameter substitution in more detail later in the chapter.

Conditions
Fundamental to all programming languages is the ability to test conditions and perform different actions
based on those decisions. Before we talk about that, though, let’s look at the conditional constructs that
you can use in shell scripts and then examine the control structures that use them.

A shell script can test the exit code of any command that can be invoked from the command line, includ-
ing the scripts that you have written yourself. That’s why it’s important to always include an exit com-
mand with a value at the end of any scripts that you write.

The test or [Command
In practice, most scripts make extensive use of the [or test command, the shell’s Boolean check.
On some systems, the [and test commands are synonymous, except that when the [command is
used, a trailing] is also used for readability. Having a [command might seem a little odd, but within
the code it does make the syntax of commands look simple, neat, and more like other programming
languages.

31

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 31

We’ll introduce the test command using one of the simplest conditions: checking to see whether a file
exists. The command for this is test -f <filename>, so within a script you can write

if test -f fred.c
then
...
fi

You can also write it like this:

if [-f fred.c]
then
...
fi

The test command’s exit code (whether the condition is satisfied) determines whether the conditional
code is run.

The condition types that you can use with the test command fall into three types: string comparison,
arithmetic comparison, and file conditionals. The following table describes these condition types:

Note that you must put spaces between the [braces and the condition being checked.
You can remember this by remembering that [is just the same as writing test, and
you would always leave a space after the test command.

If you prefer putting then on the same line as if, you must add a semicolon to separate
the test from the then:

if [-f fred.c]; then
...
fi

These commands call an external program in some older UNIX shells, but they tend
to be built in to more modern ones. We’ll come back to this when we look at com-
mands in a later section.

Because the test command is infrequently used outside shell scripts, many Linux
users who have never written shell scripts try to write simple programs and call
them test. If such a program doesn’t work, it’s probably conflicting with the shell’s
test command. To find out whether your system has an external command of a
given name, try typing something like which test, to check which test command
is being executed, or use ./test to ensure that you execute the script in the current
directory. When in doubt, just get into the habit of executing your scripts by preced-
ing the script name with ./ when invoking them.

32

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 32

String Comparison Result

string1 = string2 True if the strings are equal

string1 != string2 True if the strings are not equal

-n string True if the string is not null

-z string True if the string is null (an empty string)

Arithmetic Comparison Result

expression1 -eq expression2 True if the expressions are equal

expression1 -ne expression2 True if the expressions are not equal

expression1 -gt expression2 True if expression1 is greater than expression2

expression1 -ge expression2 True if expression1 is greater than or equal to
expression2

expression1 -lt expression2 True if expression1 is less than expression2

expression1 -le expression2 True if expression1 is less than or equal to
expression2

! expression True if the expression is false, and vice versa

File Conditional Result

-d file True if the file is a directory

-e file True if the file exists. Note that historically the -e option
has not been portable, so -f is usually used.

-f file True if the file is a regular file

-g file True if set-group-id is set on file

-r file True if the file is readable

-s file True if the file has nonzero size

-u file True if set-user-id is set on file

-w file True if the file is writable

-x file True if the file is executable

33

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 33

We’re getting ahead of ourselves slightly, but following is an example of how you would test the state of
the file /bin/bash, just so you can see what these look like in use:

#!/bin/sh

if [-f /bin/bash]
then
echo “file /bin/bash exists”

fi

if [-d /bin/bash]
then
echo “/bin/bash is a directory”

else
echo “/bin/bash is NOT a directory”

fi

Before the test can be true, all the file conditional tests require that the file also exists. This list contains
just the more commonly used options to the test command, so for a complete list refer to the manual
entry. If you’re using bash, where test is built in, use the help test command to get more details.
We’ll use some of these options later in the chapter.

Now that you know about conditions, you can look at the control structures that use them.

Control Structures
The shell has a set of control structures, which are very similar to other programming languages.

if
The if statement is very simple: It tests the result of a command and then conditionally executes a
group of statements:

if condition
then
statements

In the following sections, the statements are the series of commands to perform
when, while, or until the condition is fulfilled.

You may be wondering what the set-group-id and set-user-id (also known as
set-gid and set-uid) bits are. The set-uid bit gives a program the permissions of
its owner, rather than its user, while the set-gid bit gives a program the permissions
of its group. The bits are set with chmod, using the s and g options. The set-gid
and set-uid flags have no effect on files containing shell scripts, only on executable
binary files.

34

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 34

else
statements

fi

A common use for if is to ask a question and then make a decision based on the answer:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

if [$timeofday = “yes”]; then
echo “Good morning”

else
echo “Good afternoon”

fi

exit 0

This would give the following output:

Is it morning? Please answer yes or no
yes
Good morning
$

This script uses the [command to test the contents of the variable timeofday. The result is evaluated by
the if command, which then allows different lines of code to be executed.

elif
Unfortunately, there are several problems with this very simple script. For one thing, it will take any
answer except yes as meaning no. You can prevent this by using the elif construct, which allows you
to add a second condition to be checked when the else portion of the if is executed.

Try It Out Doing Checks with an elif
You can modify the previous script so that it reports an error message if the user types in anything other
than yes or no. Do this by replacing the else with elif and then adding another condition:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

if [$timeofday = “yes”]
then
echo “Good morning”

Notice that you use extra white space to indent the statements inside the if. This is
just a convenience for the human reader; the shell ignores the additional white space.

35

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 35

elif [$timeofday = “no”]; then
echo “Good afternoon”

else
echo “Sorry, $timeofday not recognized. Enter yes or no”
exit 1

fi

exit 0

How It Works
This is quite similar to the previous example, but now the elif command tests the variable again if
the first if condition is not true. If neither of the tests is successful, an error message is printed and the
script exits with the value 1, which the caller can use in a calling program to check whether the script
was successful.

A Problem with Variables
This fixes the most obvious defect, but a more subtle problem is lurking. Try this new script, but just press
Enter (or Return on some keyboards), rather than answering the question. You’ll get this error message:

[: =: unary operator expected

What went wrong? The problem is in the first if clause. When the variable timeofday was tested, it
consisted of a blank string. Therefore, the if clause looks like

if [= “yes”]

which isn’t a valid condition. To avoid this, you must use quotes around the variable:

if [“$timeofday” = “yes”]

An empty variable then gives the valid test:

if [“” = “yes”]

The new script is as follows:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

if [“$timeofday” = “yes”]
then
echo “Good morning”

elif [“$timeofday” = “no”]; then
echo “Good afternoon”

else
echo “Sorry, $timeofday not recognized. Enter yes or no”

36

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 36

exit 1
fi

exit 0

This is safe should a user just press Enter in answer to the question.

echo -n “Is it morning? Please answer yes or no: “

Note that you need to leave an extra space before the closing quotes so that there is a gap before the user-
typed response, which looks neater.

for
Use the for construct to loop through a range of values, which can be any set of strings. They could be
simply listed in the program or, more commonly, the result of a shell expansion of filenames.

The syntax is simple:

for variable in values
do
statements

done

Try It Out Using a for Loop with Fixed Strings
The values are normally strings, so you can write the following:

#!/bin/sh

for foo in bar fud 43
do
echo $foo

done
exit 0

That results in the following output:

bar
fud
43

If you want the echo command to delete the trailing new line, the most portable
option is to use the printf command (see the printf section later in this chapter),
rather than the echo command. Some shells use echo –e, but that’s not supported on
all systems. bash allows echo -n to suppress the new line, so if you are confident
your script needs to work only on bash, we suggest using that syntax.

37

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 37

How It Works
This example creates the variable foo and assigns it a different value each time around the for loop.
Since the shell considers all variables to contain strings by default, it’s just as valid to use the string 43 as
the string fud.

Try It Out Using a for Loop with Wildcard Expansion
As mentioned earlier, it’s common to use the for loop with a shell expansion for filenames. This means
using a wildcard for the string value and letting the shell fill out all the values at run time.

You’ve already seen this in the original example, first. The script used shell expansion, the * expand-
ing to the names of all the files in the current directory. Each of these in turn is used as the variable
$file inside the for loop.

Let’s quickly look at another wildcard expansion. Imagine that you want to print all the script files start-
ing with the letter “f” in the current directory, and you know that all your scripts end in .sh. You could
do it like this:

#!/bin/sh

for file in $(ls f*.sh); do
lpr $file

done
exit 0

How It Works
This illustrates the use of the $(command) syntax, which is covered in more detail later (in the section on
command execution). Basically, the parameter list for the for command is provided by the output of the
command enclosed in the $() sequence.

The shell expands f*.sh to give the names of all the files matching this pattern.

Remember that all expansion of variables in shell scripts is done when the script is
executed, never when it’s written, so syntax errors in variable declarations are found
only at execution time, as shown earlier when we were quoting empty variables.

What would happen if you changed the first line from for foo in bar fud 43
to for foo in “bar fud 43”? Remember that adding the quotes tells the shell to
consider everything between them as a single string. This is one way of getting
spaces to be stored in a variable.

38

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 38

while
Because all shell values are considered strings by default, the for loop is good for looping through a
series of strings, but is not so useful when you don’t know in advance how many times you want the
loop to be executed.

When you need to repeat a sequence of commands, but don’t know in advance how many times they
should execute, you will normally use a while loop, which has the following syntax:

while condition do
statements

done

For example, here is a rather poor password-checking program:

#!/bin/sh

echo “Enter password”
read trythis

while [“$trythis” != “secret”]; do
echo “Sorry, try again”
read trythis

done
exit 0

An example of the output from this script is as follows:

Enter password
password
Sorry, try again
secret
$

Clearly, this isn’t a very secure way of asking for a password, but it does serve to illustrate the while
statement. The statements between do and done are continuously executed until the condition is no
longer true. In this case, you’re checking whether the value of trythis is equal to secret. The loop will
continue until $trythis equals secret. You then continue executing the script at the statement imme-
diately following the done.

until
The until statement has the following syntax:

until condition
do
statements

done

This is very similar to the while loop, but with the condition test reversed. In other words, the loop con-
tinues until the condition becomes true, not while the condition is true.

39

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 39

As an example of an until loop, you can set up an alarm that is initiated when another user, whose
login name you pass on the command line, logs on:

#!/bin/bash

until who | grep “$1” > /dev/null
do

sleep 60
done

now ring the bell and announce the expected user.

echo -e ‘\a’
echo “**** $1 has just logged in ****“

exit 0

If the user is already logged on, the loop doesn’t need to execute at all, so using until is a more natural
choice than while.

case
The case construct is a little more complex than those you have encountered so far. Its syntax is as follows:

case variable in
pattern [| pattern] ...) statements;;
pattern [| pattern] ...) statements;;
...

esac

This may look a little intimidating, but the case construct enables you to match the contents of a variable
against patterns in quite a sophisticated way and then allows execution of different statements, depending
on which pattern was matched. It is much simpler than the alternative way of checking several conditions,
which would be to use multiple if, elif, and else statements.

Notice that each pattern line is terminated with double semicolons (;;). You can put multiple state-
ments between each pattern and the next, so a double semicolon is needed to mark where one statement
ends and the next pattern begins.

The capability to match multiple patterns and then execute multiple related statements makes the case
construct a good way of dealing with user input. The best way to see how case works is with an example.
We’ll develop it over three Try It Out examples, improving the pattern matching each time.

Be careful with the case construct if you are using wildcards such as ‘*‘ in the pat-
tern. The problem is that the first matching pattern will be taken, even if a later
pattern matches more exactly.

In general, if a loop should always execute at least once, use a while loop; if it may
not need to execute at all, use an until loop.

40

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 40

Try It Out Case I: User Input
You can write a new version of the input-testing script and, using the case construct, make it a little
more selective and forgiving of unexpected input:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

case “$timeofday” in
yes) echo “Good Morning”;;
no) echo “Good Afternoon”;;
y) echo “Good Morning”;;
n) echo “Good Afternoon”;;
*) echo “Sorry, answer not recognized”;;

esac

exit 0

How It Works
When the case statement is executing, it takes the contents of timeofday and compares it to each
string in turn. As soon as a string matches the input, the case command executes the code following
the) and finishes.

The case command performs normal expansion on the strings that it’s using for comparison. You can
therefore specify part of a string followed by the * wildcard. Using a single * will match all possible
strings, so always put one after the other matching strings to ensure that the case statement ends with
some default action if no other strings are matched. This is possible because the case statement com-
pares against each string in turn. It doesn’t look for a best match, just the first match. The default condi-
tion often turns out to be the impossible condition, so using * can help in debugging scripts.

Try It Out Case II: Putting Patterns Together
The preceding case construction is clearly more elegant than the multiple if statement version, but by
putting the patterns together, you can make a much cleaner version:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

case “$timeofday” in
yes | y | Yes | YES) echo “Good Morning”;;
n* | N*) echo “Good Afternoon”;;
*) echo “Sorry, answer not recognized”;;

esac

exit 0

41

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 41

How It Works
This script uses multiple strings in each entry of the case so that case tests several different strings for
each possible statement. This makes the script both shorter and, with practice, easier to read. This code
also shows how the * wildcard can be used, although this may match unintended patterns. For exam-
ple, if the user enters never, then this will be matched by n* and Good Afternoon will be displayed,
which isn’t the intended behavior. Note also that the * wildcard expression doesn’t work within quotes.

Try It Out Case IIl: Executing Multiple Statements
Finally, to make the script reusable, you need to have a different exit value when the default pattern is
used because the input was not understood:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

case “$timeofday” in
yes | y | Yes | YES)

echo “Good Morning”
echo “Up bright and early this morning”
;;

[nN]*)
echo “Good Afternoon”
;;

*)
echo “Sorry, answer not recognized”
echo “Please answer yes or no”
exit 1
;;

esac

exit 0

How It Works
To show a different way of pattern matching, this code changes the way in which the no case is matched.
You also see how multiple statements can be executed for each pattern in the case statement. You must
be careful to put the most explicit matches first and the most general match last. This is important
because case executes the first match it finds, not the best match. If you put the *) first, it would always
be matched, regardless of what was input.

Note that the ;; before esac is optional. Unlike C programming, where leaving out a break is poor pro-
gramming practice, leaving out the final ;; is no problem if the last case is the default because no other
cases will be considered.

To make the case matching more powerful, you could use something like this:

[yY] | [Yy][Ee][Ss])

42

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 42

This restricts the permitted letters while allowing a variety of answers, and offers more control than the
* wildcard.

Lists
Sometimes you want to connect commands in a series. For instance, you may want several different con-
ditions to be met before you execute a statement:

if [-f this_file]; then
if [-f that_file]; then

if [-f the_other_file]; then
echo “All files present, and correct”

fi
fi

fi

Or you might want at least one of a series of conditions to be true:

if [-f this_file]; then
foo=”True”

elif [-f that_file]; then
foo=”True”

elif [-f the_other_file]; then
foo=”True”

else
foo=”False”

fi
if [“$foo” = “True”]; then

echo “One of the files exists”
fi

Although these can be implemented using multiple if statements, you can see that the results are awk-
ward. The shell has a special pair of constructs for dealing with lists of commands: the AND list and the
OR list. These are often used together, but we’ll review their syntax separately.

The AND List
The AND list construct enables you to execute a series of commands, executing the next command only
if all the previous commands have succeeded. The syntax is

statement1 && statement2 && statement3 && ...

Starting at the left, each statement is executed; if it returns true, the next statement to the right is executed.
This continues until a statement returns false, after which no more statements in the list are executed. The
&& tests the condition of the preceding command.

Each statement is executed independently, enabling you to mix many different commands in a single
list, as the following script shows. The AND list as a whole succeeds if all commands are executed suc-
cessfully, but it fails otherwise.

43

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 43

Try It Out AND Lists
In the following script, you touch file_one (to check whether it exists and create it if it doesn’t) and
then remove file_two. Then the AND list tests for the existence of each of the files and echoes some
text in between.

#!/bin/sh

touch file_one
rm -f file_two

if [-f file_one] && echo “hello” && [-f file_two] && echo “ there”
then

echo “in if”
else

echo “in else”
fi

exit 0

Try the script and you’ll get the following result:

hello
in else

How It Works
The touch and rm commands ensure that the files in the current directory are in a known state. The && list
then executes the [-f file_one] statement, which succeeds because you just made sure that the file
existed. Because the previous statement succeeded, the echo command is executed. This also succeeds
(echo always returns true). The third test, [-f file_two], is then executed. It fails because the file
doesn’t exist. Because the last command failed, the final echo statement isn’t executed. The result of the &&
list is false because one of the commands in the list failed, so the if statement executes its else condition.

The OR List
The OR list construct enables us to execute a series of commands until one succeeds, and then not exe-
cute any more. The syntax is as follows:

statement1 || statement2 || statement3 || ...

Starting at the left, each statement is executed. If it returns false, then the next statement to the right is
executed. This continues until a statement returns true, at which point no more statements are executed.

The || list is very similar to the && list, except that the rule for executing the next statement is that the
previous statement must fail.

44

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 44

Try It Out OR Lists
Copy the previous example and change the shaded lines in the following listing:

#!/bin/sh

rm -f file_one

if [-f file_one] || echo “hello” || echo “ there”
then

echo “in if”
else

echo “in else”
fi

exit 0

This results in the following output:

hello
in if

How It Works
The first two lines simply set up the files for the rest of the script. The first command, [-f file_one],
fails because the file doesn’t exist. The echo statement is then executed. Surprise, surprise — this returns
true, and no more commands in the || list are executed. The if succeeds because one of the commands
in the || list (the echo) was true.

The result of both of these constructs is the result of the last statement to be executed.

These list-type constructs execute in a similar way to those in C when multiple conditions are being
tested. Only the minimum number of statements is executed to determine the result. Statements that
can’t affect the result are not executed. This is commonly referred to as short circuit evaluation.

Combining these two constructs is a logician’s heaven. Try out the following:

[-f file_one] && command for true || command for false

This will execute the first command if the test succeeds and the second command otherwise. It’s always
best to experiment with these more unusual lists, and in general you should use braces to force the order
of evaluation.

Statement Blocks
If you want to use multiple statements in a place where only one is allowed, such as in an AND or OR
list, you can do so by enclosing them in braces {} to make a statement block. For example, in the appli-
cation presented later in this chapter, you’ll see the following code:

get_confirm && {
grep -v “$cdcatnum” $tracks_file > $temp_file

45

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 45

cat $temp_file > $tracks_file
echo
add_record_tracks

}

Functions
You can define functions in the shell; and if you write shell scripts of any size, you’ll want to use them to
structure your code.

To define a shell function, simply write its name followed by empty parentheses and enclose the state-
ments in braces:

function_name () {
statements

}

Try It Out A Simple Function
Let’s start with a really simple function:

#!/bin/sh

foo() {
echo “Function foo is executing”

}

echo “script starting”
foo
echo “script ended”

exit 0

Running the script will output the following:

script starting
Function foo is executing
script ending

As an alternative, you could break a large script into lots of smaller scripts, each of
which performs a small task. This has some drawbacks: Executing a second script
from within a script is much slower than executing a function. It’s more difficult to
pass back results, and there can be a very large number of small scripts. You should
consider the smallest part of your script that sensibly stands alone and use that as
your measure of when to break a large script into a collection of smaller ones.

46

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 46

How It Works
This script starts executing at the top, so nothing is different there, but when it finds the foo() { con-
struct, it knows that a function called foo is being defined. It stores the fact that foo refers to a function
and continues executing after the matching }. When the single line foo is executed, the shell knows to
execute the previously defined function. When this function completes, execution resumes at the line
after the call to foo.

You must always define a function before you can invoke it, a little like the Pascal style of function defi-
nition before invocation, except that there are no forward declarations in the shell. This isn’t a problem,
because all scripts start executing at the top, so simply putting all the functions before the first call of any
function will always cause all functions to be defined before they can be invoked.

When a function is invoked, the positional parameters to the script, $*, $@, $#, $1, $2, and so on, are
replaced by the parameters to the function. That’s how you read the parameters passed to the function.
When the function finishes, they are restored to their previous values.

You can make functions return numeric values using the return command. The usual way to make
functions return strings is for the function to store the string in a variable, which can then be used after
the function finishes. Alternatively, you can echo a string and catch the result, like this:

foo () { echo JAY;}

...

result=”$(foo)“

Note that you can declare local variables within shell functions by using the local keyword. The variable is
then only in scope within the function. Otherwise, the function can access the other shell variables that are
essentially global in scope. If a local variable has the same name as a global variable, it overlays that variable,
but only within the function. For example, you can make the following changes to the preceding script to see
this in action:

#!/bin/sh

sample_text=”global variable”

foo() {

local sample_text=”local variable”
echo “Function foo is executing”
echo $sample_text

}

echo “script starting”
echo $sample_text

Some older shells may not restore the value of positional parameters after functions
execute. It’s wise not to rely on this behavior if you want your scripts to be portable.

47

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 47

foo

echo “script ended”
echo $sample_text

exit 0

In the absence of a return command specifying a return value, a function returns the exit status of the
last command executed.

Try It Out Returning a Value
The next script, my_name, shows how parameters to a function are passed and how functions can return
a true or false result. You call this script with a parameter of the name you want to use in the ques-
tion.

1. After the shell header, define the function yes_or_no:

#!/bin/sh

yes_or_no() {
echo “Is your name $* ?”
while true
do
echo -n “Enter yes or no: “
read x
case “$x” in
y | yes) return 0;;
n | no) return 1;;
*) echo “Answer yes or no”

esac
done

}

2. Then the main part of the program begins:

echo “Original parameters are $*“

if yes_or_no “$1”
then
echo “Hi $1, nice name”

else
echo “Never mind”

fi
exit 0

Typical output from this script might be as follows:

$./my_name Rick Neil
Original parameters are Rick Neil
Is your name Rick ?

48

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 48

Enter yes or no: yes
Hi Rick, nice name
$

How It Works
As the script executes, the function yes_or_no is defined but not yet executed. In the if statement, the
script executes the function yes_or_no, passing the rest of the line as parameters to the function after sub-
stituting the $1 with the first parameter to the original script, Rick. The function uses these parameters,
which are now stored in the positional parameters $1, $2, and so on, and returns a value to the caller.
Depending on the return value, the if construct executes the appropriate statement.

As you’ve seen, the shell has a rich set of control structures and conditional statements. You need to
learn some of the commands that are built into the shell; then you’ll be ready to tackle a real program-
ming problem with no compiler in sight!

Commands
You can execute two types of commands from inside a shell script. There are “normal” commands that
you could also execute from the command prompt (called external commands), and there are “built-in” com-
mands (called internal commands), as mentioned earlier. Built-in commands are implemented internally to
the shell and can’t be invoked as external programs. However, most internal commands are also provided
as standalone programs — this requirement is part of the POSIX specification. It generally doesn’t matter if
the command is internal or external, except that internal commands execute more efficiently.

Here we’ll cover only the main commands, both internal and external, that we use when we’re program-
ming scripts. As a Linux user, you probably know many other commands that are valid at the command
prompt. Always remember that you can use any of these in a script in addition to the built-in commands
presented here.

break
Use break for escaping from an enclosing for, while, or until loop before the controlling condition has
been met. You can give break an additional numeric parameter, which is the number of loops to break out
of, but this can make scripts very hard to read, so we don’t suggest you use it. By default, break escapes a
single level.

#!/bin/sh

rm -rf fred*
echo > fred1
echo > fred2
mkdir fred3
echo > fred4

for file in fred*
do

if [-d “$file”]; then
break;

49

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 49

fi
done

echo first directory starting fred was $file

rm -rf fred*
exit 0

The : Command
The colon command is a null command. It’s occasionally useful to simplify the logic of conditions, being
an alias for true. Since it’s built-in, : runs faster than true, though its output is also much less readable.

You may see it used as a condition for while loops; while : implements an infinite loop in place of the
more common while true.

The : construct is also useful in the conditional setting of variables. For example,

: ${var:=value}

Without the :, the shell would try to evaluate $var as a command.

#!/bin/sh

rm -f fred
if [-f fred]; then

:
else

echo file fred did not exist
fi

exit 0

continue
Rather like the C statement of the same name, this command makes the enclosing for, while, or until
loop continue at the next iteration, with the loop variable taking the next value in the list:

#!/bin/sh

rm -rf fred*
echo > fred1
echo > fred2
mkdir fred3
echo > fred4

In some, mostly older, shell scripts, you may see the colon used at the start of a line
to introduce a comment, but modern scripts should always use # to start a comment
line because this executes more efficiently.

50

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 50

for file in fred*
do

if [-d “$file”]; then
echo “skipping directory $file”

continue
fi
echo file is $file

done

rm -rf fred*
exit 0

continue can take the enclosing loop number at which to resume as an optional parameter so that you
can partially jump out of nested loops. This parameter is rarely used, as it often makes scripts much
harder to understand. For example,

for x in 1 2 3
do
echo before $x
continue 1
echo after $x

done

The output for the preceding will be

before 1
before 2
before 3

The . Command
The dot (.) command executes the command in the current shell:

. ./shell_script

Normally, when a script executes an external command or script, a new environment (a subshell) is cre-
ated, the command is executed in the new environment, and the environment is then discarded apart
from the exit code that is returned to the parent shell. However, the external source and the dot com-
mand (two more synonyms) run the commands listed in a script in the same shell that called the script.

Because, by default, a new environment is created when a shell script is executed, any changes to environ-
ment variables that the script makes are lost. The dot command, on the other hand, allows the executed
script to change the current environment. This is often useful when you use a script as a wrapper to set up
your environment for the later execution of some other command. For example, when you’re working on
several different projects at the same time, you may find you need to invoke commands with different
parameters, perhaps to invoke an older version of the compiler for maintaining an old program.

In shell scripts, the dot command works a little like the #include directive in C or C++. Though it doesn’t
literally include the script, it does execute the command in the current context, so you can use it to incor-
porate variable and function definitions into a script.

51

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 51

Try It Out The Dot Command
The following example uses the dot command on the command line, but you can just as well use it
within a script:

1. Suppose you have two files containing the environment settings for two different development
environments. To set the environment for the old, classic commands, classic_set, you could
use the following:

#!/bin/sh

version=classic
PATH=/usr/local/old_bin:/usr/bin:/bin:.
PS1=”classic> “

2. For the new commands, use latest_set:

#!/bin/sh

version=latest
PATH=/usr/local/new_bin:/usr/bin:/bin:.
PS1=” latest version> “

You can set the environment by using these scripts in conjunction with the dot command, as in the fol-
lowing sample session:

$. ./classic_set
classic> echo $version
classic
classic> . /latest_set
latest version> echo $version
latest
latest version>

How It Works
The scripts are executed using the dot command, so each script is executed in the current shell. This
enables the script to change environment settings in the current shell, which remains changed even
when the script finishes executing.

echo
Despite the X/Open exhortation to use the printf command in modern shells, we’ve been following
common practice by using the echo command to output a string followed by a newline character.

A common problem is how to suppress the newline character. Unfortunately, different versions of UNIX
have implemented different solutions. The common method in Linux is to use

echo -n “string to output”

52

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 52

but you’ll often come across

echo -e “string to output\c”

The second option, echo -e, ensures that the interpretation of backslashed escape characters, such as \c
for suppressing a newline, \t for outputting a tab and \n for outputting carriage returns, is enabled. In
older versions of bash this was often set by default, but more recent versions often default to not interpret-
ing backslashed escape characters. See the manual pages for details of the behavior on your distribution.

eval
The eval command enables you to evaluate arguments. It’s built into the shell and doesn’t normally
exist as a separate command. It’s probably best demonstrated with a short example borrowed from the
X/Open specification itself:

foo=10
x=foo
y=’$’$x
echo $y

This gives the output $foo. However,

foo=10
x=foo
eval y=’$’$x
echo $y

gives the output 10. Thus, eval is a bit like an extra $: It gives you the value of the value of a variable.

The eval command is very useful, enabling code to be generated and run on-the-fly. It does complicate
script debugging, but it enables you to do things that are otherwise difficult or even impossible.

exec
The exec command has two different uses. Its typical use is to replace the current shell with a different
program. For example,

exec wall “Thanks for all the fish”

in a script will replace the current shell with the wall command. No lines in the script after the exec
will be processed, because the shell that was executing the script no longer exists.

If you need a portable way to remove the trailing newline, you can use the external
tr command to get rid of it, but it will execute somewhat more slowly. If you need
portability to UNIX systems, it’s generally better to stick to printf if you need to
lose the newline. If your scripts need to work only on Linux and bash, echo -n
should be fine, though you may need to start the file with #!/bin/bash, to make it
explicit that you desire bash-style behavior.

53

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 53

The second use of exec is to modify the current file descriptors:

exec 3< afile

This causes file descriptor three to be opened for reading from file afile. It’s rarely used.

exit n
The exit command causes the script to exit with exit code n. If you use it at the command prompt of
any interactive shell, it will log you out. If you allow your script to exit without specifying an exit status,
then the status of the last command executed in the script is used as the return value. It’s always good
practice to supply an exit code.

In shell script programming, exit code 0 is success, and codes 1 through 125, inclusive, are error codes that
can be used by scripts. The remaining values have reserved meanings, as shown in the following table:

Using zero as success may seem a little unusual to many C or C++ programmers. The big advantage in
scripts is that they enable you to use 125 user-defined error codes without the need for a global error
code variable.

Here’s a simple example that returns success if a file called .profile exists in the current directory:

#!/bin/sh

if [-f .profile]; then
exit 0

fi

exit 1

If you’re a glutton for punishment, or at least for terse scripts, you can rewrite this script using the com-
bined AND and OR list shown earlier, all on one line:

[-f .profile] && exit 0 || exit 1

export
The export command makes the variable named as its parameter available in subshells. By default,
variables created in a shell are not available in further (sub)shells invoked from that shell. The export
command creates an environment variable from its parameter that can be seen by other scripts and pro-
grams invoked from the current program. More technically, the exported variables form the environ-
ment variables in any child processes derived from the shell. This is best illustrated with an example of
two scripts, export1 and export2.

Exit Code Description

126 The file was not executable

127 A command was not found

128 and above A signal occurred

54

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 54

Try It Out Exporting Variables
1. First, list export2:

#!/bin/sh

echo “$foo”
echo “$bar”

2. Now for export1. At the end of this script, invoke export2:

#!/bin/sh

foo=”The first meta-syntactic variable”
export bar=”The second meta-syntactic variable”

export2

If you run these, you get the following:

$./export1

The second meta-syntactic variable
$

How It Works
The export2 script simply echoes the values of the two variables. The export1 script sets both the vari-
ables, but only marks bar as exported, so when it subsequently invokes export1, the value of foo has
been lost, but the value of bar has been exported to the second script. The blank line occurs because
$foo evaluated to nothing, and echoing a null variable gives a newline.

Once a variable has been exported from a shell, it’s exported to any scripts invoked from that shell and
to any shell they invoke in turn, and so on. If the script export2 called another script, it would also have
the value of bar available to it.

expr
The expr command evaluates its arguments as an expression. It’s most commonly used for simple arith-
metic in the following form:

x=`expr $x + 1`

The commands set -a or set -allexport will export all variables thereafter.

55

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 55

The `` (backtick) characters make x take the result of executing the command expr $x + 1. You could
also write it using the syntax $() rather than backticks, like this:

x=$(expr $x + 1)

The expr command is powerful and can perform many expression evaluations. The principal ones are
shown in the following table:

In newer scripts, the use of expr is normally replaced with the more efficient $((…)) syntax, which is
covered later in the chapter.

printf
The printf command is available only in more recent shells. X/Open suggests that it should be used in
preference to echo for generating formatted output, though few people seem to follow this advice.

The syntax is

printf “format string“ parameter1 parameter2 ...

The format string is very similar to that used in C or C++, with some restrictions. Principally, floating
point isn’t supported, because all arithmetic in the shell is performed as integers. The format string con-
sists of any combination of literal characters, escape sequences, and conversion specifiers. All characters
in the format string other than % and \ appear literally in the output.

Expression Evaluation Description

expr1 | expr2 expr1 if expr1 is nonzero, otherwise expr2

expr1 & expr2 Zero if either expression is zero, otherwise expr1

expr1 = expr2 Equal

expr1 > expr2 Greater than

expr1 >= expr2 Greater than or equal to

expr1 < expr2 Less than

expr1 <= expr2 Less than or equal to

expr1 != expr2 Not equal

expr1 + expr2 Addition

expr1 - expr2 Subtraction

expr1 * expr2 Multiplication

expr1 / expr2 Integer division

expr1 % expr2 Integer modulo

56

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 56

The following escape sequences are supported:

The conversion specifier is quite complex, so we list only the common usage here. More details can be
found in the bash online manual or in the printf pages from section 1 of the online manual (man 1
printf). (If you can’t find it in section 1 of the manual, try section 3 as an alternative). The conversion
specifier consists of a % character, followed by a conversion character. The principal conversions are
shown in the following table:

The format string is then used to interpret the remaining parameters and output the result, as shown in
the following example,

$ printf “%s\n” hello
hello
$ printf “%s %d\t%s” “Hi There” 15 people
Hi There 15 people

Conversion Specifier Description

D Output a decimal number.

C Output a character.

S Output a string.

% Output the % character.

Escape Sequence Description

\“ Double quote

\\ Backslash character

\a Alert (ring the bell or beep)

\b Backspace character

\c Suppress further output

\f Form feed character

\n Newline character

\r Carriage return

\t Tab character

\v Vertical tab character

\ooo The single character with octal value ooo

\xHH The single character with the hexadecimal value HH

57

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 57

Notice you must use “ “ to protect the Hi There string and make it a single parameter.

return
The return command causes functions to return, as mentioned when we looked at functions earlier.
return takes a single numeric parameter that is available to the script calling the function. If no parame-
ter is specified, then return defaults to the exit code of the last command.

set
The set command sets the parameter variables for the shell. It can be a useful way of using fields in
commands that output space-separated values.

Suppose you want to use the name of the current month in a shell script. The system provides a date com-
mand, which contains the month as a string, but you need to separate it from the other fields. You can do
this using a combination of the set command and the $(...) construct to execute the date command and
return the result (described in more detail very soon). The date command output has the month string as
its second parameter:

#!/bin/sh

echo the date is $(date)
set $(date)
echo The month is $2

exit 0

This program sets the parameter list to the date command’s output and then uses the positional param-
eter $2 to get at the month.

Notice that we used the date command as a simple example to show how to extract positional parameters.
Since the date command is sensitive to the language locale, in reality you would have extracted the name
of the month using date +%B. The date command has many other formatting options; see the manual
page for more details.

You can also use the set command to control the way the shell executes by passing it parameters. The
most commonly used form of the command is set -x, which makes a script display a trace of its cur-
rently executing command. We discuss set and more of its options when we look at debugging, later in
the chapter.

shift
The shift command moves all the parameter variables down by one, so that $2 becomes $1, $3 becomes
$2, and so on. The previous value of $1 is discarded, while $0 remains unchanged. If a numerical parame-
ter is specified in the call to shift, the parameters move that many spaces. The other variables, $*, $@, and
$#, are also modified in line with the new arrangement of parameter variables.

shift is often useful for scanning through parameters passed into a script, and if your script requires
10 or more parameters, you’ll need shift to access the tenth and beyond.

58

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 58

For example, you can scan through all the positional parameters like this:

#!/bin/sh

while [“$1” != “”]; do
echo “$1”
shift

done

exit 0

trap
The trap command is used to specify the actions to take on receipt of signals, which you’ll meet in more
detail later in the book. A common use is to tidy up a script when it is interrupted. Historically, shells
always used numbers for the signals, but new scripts should use names taken from the #include file
signal.h, with the SIG prefix omitted. To see the signal numbers and associated names, you can just
type trap -l at a command prompt.

The trap command is passed the action to take, followed by the signal name (or names) to trap on:

trap command signal

Remember that the scripts are normally interpreted from top to bottom, so you must specify the trap
command before the part of the script you wish to protect.

To reset a trap condition to the default, simply specify the command as -. To ignore a signal, set the com-
mand to the empty string ‘’. A trap command with no parameters prints out the current list of traps
and actions.

The following table lists the more important signals covered by the X/Open standard that can be caught
(with the conventional signal number in parentheses). More details can be found in the signal manual
pages in section 7 of the online manual (man 7 signal).

Signal Description

HUP (1) Hang up; usually sent when a terminal goes offline, or a user logs out

INT (2) Interrupt; usually sent by pressing Ctrl+C

QUIT (3) Quit; usually sent by pressing Ctrl+\

ABRT (6) Abort; usually sent on some serious execution error

ALRM (14) Alarm; usually used for handling timeouts

TERM (15) Terminate; usually sent by the system when it’s shutting down

For those not familiar with signals, they are events sent asynchronously to a pro-
gram. By default, they normally cause the program to terminate.

59

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 59

Try It Out Trapping Signals
The following script demonstrates some simple signal handling:

#!/bin/sh

trap ‘rm -f /tmp/my_tmp_file_$$’ INT
echo creating file /tmp/my_tmp_file_$$
date > /tmp/my_tmp_file_$$

echo “press interrupt (CTRL-C) to interrupt”
while [-f /tmp/my_tmp_file_$$]; do

echo File exists
sleep 1

done
echo The file no longer exists

trap INT
echo creating file /tmp/my_tmp_file_$$
date > /tmp/my_tmp_file_$$

echo “press interrupt (control-C) to interrupt”
while [-f /tmp/my_tmp_file_$$]; do

echo File exists
sleep 1

done

echo we never get here
exit 0

If you run this script, holding down Ctrl and then pressing C (or whatever your interrupt key combina-
tion is) in each of the loops, you get the following output:

creating file /tmp/my_tmp_file_141
press interrupt (CTRL-C) to interrupt
File exists
File exists
File exists
File exists
The file no longer exists
creating file /tmp/my_tmp_file_141
press interrupt (CTRL-C) to interrupt
File exists
File exists
File exists
File exists

60

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 60

How It Works
This script uses the trap command to arrange for the command rm -f /tmp/my_tmp_file_$$ to be exe-
cuted when an INT (interrupt) signal occurs. The script then enters a while loop that continues while the
file exists. When the user presses Ctrl+C, the statement rm -f /tmp/my_tmp_file_$$ is executed, and
then the while loop resumes. Since the file has now been deleted, the first while loop terminates normally.

The script then uses the trap command again, this time to specify that no command be executed when
an INT signal occurs. It then re-creates the file and loops inside the second while statement. When the
user presses Ctrl+C this time, no statement is configured to execute, so the default behavior occurs,
which is to immediately terminate the script. Because the script terminates immediately, the final echo
and exit statements are never executed.

unset
The unset command removes variables or functions from the environment. It can’t do this to read-only
variables defined by the shell itself, such as IFS. It’s not often used.

The following script writes Hello World once and a newline the second time:

#!/bin/sh

foo=”Hello World”
echo $foo

unset foo
echo $foo

Two More Useful Commands and Regular Expressions
Before you see how to put this new knowledge of shell programming to use, let’s look at a couple of
other very useful commands, which, although not part of the shell, are often useful when writing shell
programs. Along the way we will also be looking at regular expressions, a pattern-matching feature that
crops up all over Linux and its associated programs.

The find Command
The first command you will look at is find. This command, which you use to search for files, is extremely
useful, but newcomers to Linux often find it a little tricky to use, not least because it takes options, tests, and
action-type arguments, and the results of one argument can affect the processing of subsequent arguments.

Writing foo= would have a very similar, but not identical, effect to unset in the pre-
ceding program. Writing foo= has the effect of setting foo to null, but foo still exists.
Using unset foo has the effect of removing the variable foo from the environment.

61

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 61

Before delving into the options, tests, and arguments, let’s look at a very simple example for the file test
on your local machine. Do this as root to ensure that you have permissions to search the whole machine:

find / -name test -print
/usr/bin/test
#

Depending on your installation, you may well find several other files also called test. As you can prob-
ably guess, this says “search starting at / for a file named test and then print out the name of the file.”
Easy, wasn’t it? Of course.

However, it did take quite a while to run on our machine, and the disk on our Windows machine on the
network rattled away as well. This is because our Linux machine mounts (using SAMBA) a chunk of
the Windows machine’s file system. It seems like that might have been searched as well, even though
we knew the file we were looking for would be on the Linux machine.

This is where the first of the options comes in. If you specify -mount, you can tell find not to search
mounted directories:

find / -mount -name test -print
/usr/bin/test
#

We still find the file on our machine, but faster this time, and without searching other mounted file sys-
tems.

The full syntax for the find command is as follows:

find [path] [options] [tests] [actions]

The path part is nice and easy: You can use either an absolute path, such as /bin, or a relative path,
such as .. If you need to, you can also specify multiple paths — for example, find /var /home.

There are several options; the main ones are shown in the following table:

Now for the tests. A large number of tests can be given to find, and each test returns either true or
false. When find is working, it considers each file it finds in turn and applies each test, in the order
they were defined, on that file. If a test returns false, then find stops considering the file it is currently
looking at and moves on; if the test returns true, then find processes the next test or action on the cur-
rent file. The tests listed in the following table are just the most common; consult the manual pages for
the extensive list of possible tests you can apply using find.

Option Meaning

-depth Search the contents of a directory before looking at the directory itself.

-follow Follow symbolic links.

-maxdepths N Search at most N levels of the directory when searching.

-mount (or -xdev) Don’t search directories on other file systems.

62

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 62

You can also combine tests using operators. Most have two forms: a short form and a longer form, as
shown in the following table:

You can force the precedence of tests and operators by using parentheses. Since these have a special
meaning to the shell, you also have to quote the braces using a backslash. In addition, if you use a pat-
tern for the filename, then you must use quotes so that the name is not expanded by the shell but passed
directly to the find command. For example, if you wanted to write the test “newer than file X or called a
name that starts with an underscore,” you could write the following test:

\(-newer X -o -name “_*“ \)

We present an example just after the next “How it Works” section.

Try It Out Using find with Tests
Try searching in the current directory for files modified more recently than the file while2:

$ find . -newer while2 -print
.
./elif3
./words.txt
./words2.txt
./_trap
$

Operator, Short Form Operator, Long Form Meaning

! -not Invert the test.

-a -and Both tests must be true.

-o -or Either test must be true.

Test Meaning

-atime N The file was last accessed N days ago.

-mtime N The file was last modified N days ago.

-name pattern The name of the file, excluding any path, matches the pattern pro-
vided. To ensure that the pattern is passed to find, and not evaluated
by the shell immediately, the pattern must always be in quotes.

-newer otherfile The file is newer than the file otherfile.

-type C The file is of type C, where C can be of a particular type; the most
common are “d” for a directory and “f” for a regular file. For other
types consult the manual pages.

-user username The file is owned by the user with the given name.

63

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 63

That looks good, except that you also find the current directory, which you didn’t want. You were inter-
ested only in regular files, so you add an additional test, -type f:

$ find . -newer while2 -type f -print
./elif3
./words.txt
./words2.txt
./_trap
$

How It Works
How did it work? You specified that find should search in the current directory (.), for files newer than
the file while2 (-newer while2) and that, if that test passed, then to also test that the file was a regular file
(-type f). Finally, you used the action you already met, -print, just to confirm which files were found.

Now find files that either start with an underscore or are newer than the file while2, but must in either
case be regular files. This will show you how to combine tests using parentheses:

$ find . \(-name “_*“ -or -newer while2 \) -type f -print
./elif3
./words.txt
./words2.txt
./_break
./_if
./_set
./_shift
./_trap
./_unset
./_until
$

That wasn’t so hard, was it? You had to escape the parentheses so that they were not processed by the
shell, and quote the * so that it was passed directly into find as well.

Now that you can reliably search for files, look at the actions you can perform when you find a file matching
your specification. Again, this is just a list of the most common actions; the manual page has the full set.

Action Meaning

-exec command Execute a command. This is one of the most common actions. See the
explanation following this table for how parameters may be passed to
the command. This action must be terminated with a \; character pair.

-ok command Like -exec, except that it prompts for user confirmation of each file on
which it will carry out the command before executing the command.
This action must be terminated with a \; character pair.

-print Print out the name of the file.

-ls Use the command ls -dils on the current file.

64

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 64

The -exec and -ok commands take subsequent parameters on the line as part of their parameters, until ter-
minated with a \; sequence. Effectively, the -exec and -ok commands are executing an embedded com-
mand, so that embedded command has to be terminated with an escaped semicolon so that the find
command can determine when it should resume looking for command-line options that are intended for
itself. The magic string “{}” is a special type of parameter to an -exec or -ok command and is replaced
with the full path to the current file.

That explanation is perhaps not so easy to understand, but an example should make things clearer. Take
a look at a simple example, using a nice safe command like ls:

$ find . -newer while2 -type f -exec ls -l {} \;
-rwxr-xr-x 1 rick rick 275 Feb 8 17:07 ./elif3
-rwxr-xr-x 1 rick rick 336 Feb 8 16:52 ./words.txt
-rwxr-xr-x 1 rick rick 1274 Feb 8 16:52 ./words2.txt
-rwxr-xr-x 1 rick rick 504 Feb 8 18:43 ./_trap
$

As you can see, the find command is extremely useful; it just takes a little practice to use it well.
However, that practice will pay dividends, so do experiment with the find command.

The grep Command
The second very useful command to look at is grep, an unusual name that stands for general regular
expression parser. You use find to search your system for files, but you use grep to search files for
strings. Indeed, it’s quite common to have grep as a command passed after -exec when using find.

The grep command takes options, a pattern to match, and files to search in:

grep [options] PATTERN [FILES]

If no filenames are given, it searches standard input.

Let’s start by looking at the principal options to grep. Again we list only the principal options here; see
the manual pages for the full list.

Option Meaning

-c Rather than print matching lines, print a count of the number of lines
that match.

-E Turn on extended expressions.

-h Suppress the normal prefixing of each output line with the name of the file it was
found in.

-i Ignore case.

-l List the names of the files with matching lines; don’t output the actual matched line.

-v Invert the matching pattern to select nonmatching lines, rather than matching lines.

65

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 65

Try It Out Basic grep Usage
Take a look at grep in action with some simple matches:

$ grep in words.txt
When shall we three meet again. In thunder, lightning, or in rain?
I come, Graymalkin!
$ grep -c in words.txt words2.txt
words.txt:2
words2.txt:14
$ grep -c -v in words.txt words2.txt
words.txt:9
words2.txt:16
$

How It Works
The first example uses no options; it simply searches for the string “in” in the file words.txt and prints
out any lines that match. The filename isn’t printed because you are searching on just a single file.

The second example counts the number of matching lines in two different files. In this case, the file-
names are printed out.

Finally, use the -v option to invert the search and count lines in the two files that don’t match.

Regular Expressions
As you have seen, the basic usage of grep is very easy to master. Now it’s time to look at the basics of
regular expressions, which enable you to do more sophisticated matching. As mentioned earlier in the
chapter, regular expressions are used in Linux and many other open-source languages. You can use them
in the vi editor and in writing Perl scripts, with the basic principles common wherever they appear.

During the use of regular expressions, certain characters are processed in a special way. The most fre-
quently used are shown in the following table:

Character Meaning

^ Anchor to the beginning of a line

$ Anchor to the end of a line

. Any single character

[] The square braces contain a range of characters, any one of which
may be matched, such as a range of characters like a–e or an inverted
range by preceding the range with a ^ symbol.

66

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 66

If you want to use any of these characters as “normal” characters, precede them with a \. For example, if
you wanted to look for a literal “$” character, you would simply use \$.

There are also some useful special match patterns that can be used in square braces, as described in the
following table:

In addition, if the -E for extended matching is also specified, other characters that control the comple-
tion of matching may follow the regular expression (see the following table). With grep it is also neces-
sary to precede these characters with a \.

Option Meaning

? Match is optional but may be matched at most once

* Must be matched zero or more times

+ Must be matched one or more times

{n} Must be matched n times

{n,} Must be matched n or more times

{n,m} Must be matched between n or m times, inclusive

Match Pattern Meaning

[:alnum:] Alphanumeric characters

[:alpha:] Letters

[:ascii:] ASCII characters

[:blank:] Space or tab

[:cntrl:] ASCII control characters

[:digit:] Digits

[:graph:] Noncontrol, nonspace characters

[:lower:] Lowercase letters

[:print:] Printable characters

[:punct:] Punctuation characters

[:space:] Whitespace characters, including vertical tab

[:upper:] Uppercase letters

[:xdigit:] Hexadecimal digits

67

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 67

That all looks a little complex, but if you take it in stages, you will see it’s not as complex as it perhaps
looks at first sight. The easiest way to get the hang of regular expressions is simply to try a few:

1. Start by looking for lines that end with the letter e. You can probably guess you need to use the
special character $:

$ grep e$ words2.txt
Art thou not, fatal vision, sensible
I see thee yet, in form as palpable
Nature seems dead, and wicked dreams abuse
$

As you can see, this finds lines that end in the letter e.

2. Now suppose you want to find words that end with the letter a. To do this, you need to use the
special match characters in braces. In this case, you use [[:blank:]], which tests for a space or
a tab:

$ grep a[[:blank:]] words2.txt
Is this a dagger which I see before me,
A dagger of the mind, a false creation,
Moves like a ghost. Thou sure and firm-set earth,
$

3. Now look for three-letter words that start with Th. In this case, you need both [[:space:]] to
delimit the end of the word and . to match a single additional character:

$ grep Th.[[:space:]] words2.txt
The handle toward my hand? Come, let me clutch thee.
The curtain’d sleep; witchcraft celebrates
Thy very stones prate of my whereabout,
$

4. Finally, use the extended grep mode to search for lowercase words that are exactly 10 characters
long. Do this by specifying a range of characters to match a to z, and a repetition of 10 matches:

$ grep -E [a-z]\{10\} words2.txt
Proceeding from the heat-oppressed brain?
And such an instrument I was to use.
The curtain’d sleep; witchcraft celebrates
Thy very stones prate of my whereabout,
$

This only touches on the more important parts of regular expressions. As with most things in Linux,
there is a lot more documentation out there to help you discover more details, but the best way of learn-
ing about regular expressions is to experiment.

Command Execution
When you’re writing scripts, you often need to capture the result of a command’s execution for use in the
shell script; that is, you want to execute a command and put the output of the command into a variable.

68

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 68

You can do this by using the $(command) syntax introduced in the earlier set command example. There is
also an older form, `command`, that is still in common usage.

All new scripts should use the $(...) form, which was introduced to avoid some rather complex rules
covering the use of the characters $, `, and \ inside the backquoted command. If a backtick is used
within the `...` construct, it must be escaped with a \ character. These relatively obscure characters
often confuse programmers, and sometimes even experienced shell programmers are forced to experi-
ment to get the quoting correct in backticked commands.

The result of the $(command) is simply the output from the command. Note that this isn’t the return
status of the command but the string output, as shown here:

#!/bin/sh

echo The current directory is $PWD
echo The current users are $(who)

exit 0

Since the current directory is a shell environment variable, the first line doesn’t need to use this com-
mand execution construct. The result of who, however, does need this construct if it is to be available to
the script.

If you want to get the result into a variable, you can just assign it in the usual way:

whoisthere=$(who)
echo $whoisthere

The capability to put the result of a command into a script variable is very powerful, as it makes it easy
to use existing commands in scripts and capture their output. If you ever find yourself trying to convert
a set of parameters that are the output of a command on standard output and capture them as argu-
ments for a program, you may well find the command xargs can do it for you. Look in the manual
pages for further details.

A problem sometimes arises when the command you want to invoke outputs some white space before
the text you want, or more output than you require. In such a case, you can use the set command as
shown earlier.

Arithmetic Expansion
We’ve already used the expr command, which enables simple arithmetic commands to be processed,
but this is quite slow to execute because a new shell is invoked to process the expr command.

Note that with the older form of the command execution, the backtick, or backquote,
(`), is used, not the single quote (‘) that we used in earlier shell quoting (to protect
against variable expansion). Use this form for shell scripts only when you need
them to be very portable.

69

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 69

A newer and better alternative is $((…)) expansion. By enclosing the expression you wish to evaluate in
$((…)), you can perform simple arithmetic much more efficiently:

#!/bin/sh

x=0
while [“$x” -ne 10]; do

echo $x
x=$(($x+1))

done

exit 0

Parameter Expansion
You’ve seen the simplest form of parameter assignment and expansion:

foo=fred
echo $foo

A problem occurs when you want to append extra characters to the end of a variable. Suppose you want
to write a short script to process files called 1_tmp and 2_tmp. You could try this:

#!/bin/sh

for i in 1 2
do

my_secret_process $i_tmp
done

But on each loop, you’ll get the following:

my_secret_process: too few arguments

What went wrong?

The problem is that the shell tried to substitute the value of the variable $i_tmp, which doesn’t
exist. The shell doesn’t consider this an error; it just substitutes nothing, so no parameters at all were
passed to my_secret_process. To protect the expansion of the $i part of the variable, you need to
enclose the i in braces like this:

#!/bin/sh

for i in 1 2
do

my_secret_process ${i}_tmp
done

Notice that this is subtly different from the x=$(…) command. The double paren-
theses are used for arithmetic substitution. The single parentheses form shown ear-
lier is used for executing commands and grabbing the output.

70

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 70

On each loop, the value of i is substituted for ${i} to give the actual filenames. You substitute the value
of the parameter into a string.

You can perform many parameter substitutions in the shell. Often, these provide an elegant solution to
many parameter-processing problems. The common ones are shown in the following table:

These substitutions are often useful when you’re working with strings. The last four, which remove parts
of strings, are especially useful for processing filenames and paths, as the following example shows.

Try It Out Parameter Processing
Each portion of the following script illustrates the parameter-matching operators:

#!/bin/sh

unset foo
echo ${foo:-bar}

foo=fud
echo ${foo:-bar}

foo=/usr/bin/X11/startx
echo ${foo#*/}
echo ${foo##*/}

bar=/usr/local/etc/local/networks
echo ${bar%local*}
echo ${bar%%local*}

exit 0

Parameter Expansion Description

${param:-default} If param is null, then set it to the value of default.

${#param} Gives the length of param

${param%word} From the end, removes the smallest part of param that
matches word and returns the rest

${param%%word} From the end, removes the longest part of param that
matches word and returns the rest

${param#word} From the beginning, removes the smallest part of param that
matches word and returns the rest

${param##word} From the beginning, removes the longest part of param that
matches word and returns the rest

71

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 71

This gives the following output:

bar
fud
usr/bin/X11/startx
startx
/usr/local/etc
/usr

How It Works
The first statement, ${foo:-bar}, gives the value bar, because foo had no value when the statement
was executed. The variable foo is unchanged, as it remains unset.

The {foo#*/} statement matches and removes only the left / (remember * matches zero or more char-
acters). The {foo##*/} matches and removes as much as possible, so it removes the rightmost / and all
the characters before it.

The {bar%local*} statement matches characters from the right until the first occurrence of local (fol-
lowed by any number of characters) is matched, but the {bar%%local*} matches as many characters as
possible from the right until it finds the leftmost local.

Since both UNIX and Linux are based heavily around the idea of filters, the result of one operation
must often be redirected manually. Let’s say you want to convert a GIF file into a JPEG file using the
cjpeg program:

$ cjpeg image.gif > image.jpg

Sometimes you may want to perform this type of operation on a large number of files. How do you
automate the redirection? It’s as easy as this:

#!/bin/sh

for image in *.gif
do
cjpeg $image > ${image%%gif}jpg

done

This script, giftojpeg, creates a JPEG file for each GIF file in the current directory.

${foo:=bar}, however, would set the variable to $foo. This string operator checks
that foo exists and isn’t null. If it isn’t null, then it returns its value, but otherwise
it sets foo to bar and returns that instead.

${foo:?bar} will print foo: bar and abort the command if foo doesn’t exist or is
set to null. Lastly, ${foo:+bar} returns bar if foo exists and isn’t null. What a set
of choices!

72

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 72

Here Documents
One special way of passing input to a command from a shell script is to use a here document. This docu-
ment allows a command to execute as though it were reading from a file or the keyboard, whereas in fact
it’s getting input from the script.

A here document starts with the leader <<, followed by a special sequence of characters that is repeated
at the end of the document. << is the shell’s label redirector, which in this case forces the command input
to be the here document. This special sequence acts as a marker to tell the shell where the here document
ends. The marker sequence must not appear in the lines to be passed to the command, so it’s best to
make them memorable and fairly unusual.

Try It Out Using Here Documents
The simplest example is simply to feed input to the cat command:

#!/bin/sh

cat <<!FUNKY!
hello
this is a here
document
!FUNKY!

This gives the following output:

hello
this is a here
document

Here documents might seem a rather curious feature, but they’re very powerful because they enable you
to invoke an interactive program such as an editor and feed it some predefined input. However, they’re
more commonly used for outputting large amounts of text from inside a script, as you saw previously,
and avoiding having to use echo statements for each line. You can use exclamation marks (!)on each
side of the identifier to ensure that there’s no confusion.

If you wish to process several lines in a file in a predetermined way, you could use the ed line editor and
feed it commands from a here document in a shell script.

Try It Out Another Use for a Here Document
1. Start with a file called a_text_file that contains the following lines:

That is line 1
That is line 2
That is line 3
That is line 4

2. You can edit this file using a combination of a here document and the ed editor:

#!/bin/sh

73

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 73

ed a_text_file <<!FunkyStuff!
3
d
.,\$s/is/was/
w
q
!FunkyStuff!

exit 0

If you run this script, the file now contains the following:

That is line 1
That is line 2
That was line 4

How It Works
The shell script simply invokes the ed editor and passes to it the commands that it needs to move to
the third line, delete the line, and then replace it with what was in the current line (because line 3 was
deleted, the current line is now what was the last line). These ed commands are taken from the lines in
the script that form the here document — the lines between the markers !FunkyStuff!.

Debugging Scripts
Debugging shell scripts is usually quite easy, but there are no specific tools to help. In this section we’ll
quickly summarize the common methods.

When an error occurs, the shell will normally print out the line number of the line containing the error. If
the error isn’t immediately apparent, you can add some extra echo statements to display the contents of
variables and test code fragments by simply typing them into the shell interactively.

Since scripts are interpreted, there’s no compilation overhead in modifying and retrying a script. The
main way to trace more complicated errors is to set various shell options. To do this, you can either use
command-line options after invoking the shell or use the set command. The following table summa-
rizes the options:

Notice the \ inside the here document to protect the $ from shell expansion. The \
escapes the $, so the shell knows not to try to expand $s/is/was/ to its value, which
of course it doesn’t have. Instead, the shell passes the text \$ as $, which can then be
interpreted by the ed editor.

74

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 74

You can set the set option flags on, using -o, and off, using +o, and likewise for the abbreviated ver-
sions. You can achieve a simple execution trace by using the xtrace option. For an initial check, you can
use the command-line option, but for finer debugging, you can put the xtrace flags (setting an execu-
tion trace on and off) inside the script around the problem code. The execution trace causes the shell to
print each line in the script, with variables expanded, before executing the line.

Use the following command to turn xtrace on:

set -o xtrace

Use this command to turn xtrace off again:

set +o xtrace

The level of expansion is denoted (by default) by the number of + signs at the start of each line. You can
change the + to something more meaningful by setting the PS4 shell variable in your shell configuration file.

In the shell, you can also find out the program state wherever it exits by trapping the EXIT signal with a
line something like the following placed at the start of the script:

trap ‘echo Exiting: critical variable = $critical_variable’ EXIT

Going Graphical — The dialog Utility
Before we finish discussing shell scripts, there is one more feature that, although not strictly part of the
shell, is generally useful only from shell programs, so we cover it here.

If you know that your script will only ever need to run on the Linux console, there is a rather neat way
to brighten up your scripts using a utility command called dialog. This command uses text mode
graphics and color, but it still looks pleasantly graphical.

Command Line Option set Option Description

sh -n <script> set -o noexec
set -n

Checks for syntax errors only;
doesn’t execute commands

sh -v <script> set -o verbose
set -v

Echoes commands before
running them

sh -x <script> set -o xtrace
set -x

Echoes commands after pro-
cessing on the command line

sh -u <script> set -o nounset
set -u

Gives an error message when
an undefined variable is used

75

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 75

The whole idea of dialog is beautifully simple — a single program with a variety of parameters and
options that allows you to display various types of graphical boxes, ranging from simple Yes/No boxes
to input boxes and even menu selections. The utility generally returns when the user has made some
sort of input, and the result can be found either from the exit status or if text was entered by retrieving
the standard error stream.

Before we move on to more detail, let’s look at a very simple use of dialog in operation. You can use
dialog directly from the command line, which is great for prototyping, so let’s create a simple message
box to display the traditional first program:

dialog --msgbox “Hello World” 9 18

On the screen appears a graphical information box, complete with OK dialog (see Figure 2-3).

Figure 2-3

Now that you have seen how easy dialog is, let’s look at the possibilities in more detail. The principal
types of dialogs you can create are described in the following table:

On some distributions dialog is not installed by default; for example, on Ubuntu
you may have to add the publicly maintained repositories to find a ready-built ver-
sion. On other distributions you may find already installed an alternative, gdialog.
This is very similar, but relies on the GNOME user interface to display its dialog.
However, in return you get a true graphical interface. In general, you can take any
program that uses dialog and replace all calls to gdialog, and you will get a graph-
ical version of your program. We show an example of a program using gdialog at
the end of this section.

76

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 76

Some additional dialog box types are available (for example, a gauge and a password-entry box). If you
want to know more about the more unusual dialog types, details can be found, as always, in the online
manual pages.

To get the output of any type of box that allows textual input, or selections, you have to capture the stan-
dard error stream, usually by directing it to a temporary file, which you can then process afterward. To
get the result of yes/no type questions, just look at the exit code, which, like all well-behaved programs,
returns 0 for success (i.e., a “yes” selection) or 1 for failure.

All dialog types have various additional parameters to control, such as the size and shape of the dialog
presented. We list the different parameters required for each type in the following table, and then demon-
strate some of them on the command line. Finally, you’ll see a simple program to combine several dialogs
into a single program.

Continued on next page

Dialog Type Parameters

--checklist text height width list-height [tag text status] ...

--infobox text height width

--inputbox text height width [initial string]

Type Option Used to Create Type Meaning

Check boxes --checklist Allows you to display a list of items,
each of which may be individually
selected

Info boxes --infobox A simple display in a box that
returns immediately, without clearing
the screen

Input boxes --inputbox Allows the user to type in text

Menu boxes --menu Allow the user to pick a single item
from a list

Message boxes --msgbox Displays a message to users, with an
OK button when they wish to continue

Radio selection boxes --radiolist Allows the user to select an option
from a list

Text boxes --textbox Allows you to display a file in a scroll-
ing box

Yes/No boxes --yesno Allows you to ask a question, to which
the user can select either yes or no

77

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 77

In addition, all the dialog types take several options. We won’t list them all here, except to mention
two: --title, which allows you to specify a title for the box, and --clear, which is used on its own for
clearing the screen. Check the manual page for the full list of options.

Try It Out Using the dialog Utility
Let’s leap straight in with a nice complex example. Once you understand this example, all the others will
be easy! In this example, you create a checklist-type box, with a title Check me and the instructions Pick
Numbers. The checklist box will be 15 characters high by 25 characters wide, and each option will
occupy 3 characters of height. Last, but not least, you list the options to be displayed, along with a
default on/off selection.

dialog --title “Check me” --checklist “Pick Numbers” 15 25 3 1 “one” “off” 2 “two”
“on” 3 “three” “off”

Figure 2-4 shows the result onscreen.

How It Works
In this example, the --checklist parameter specifies that you are to create a checklist-type dialog. You
use the --title option to set the title to Check me, and the next parameter is the prompt message of
Pick Numbers.

You then move on to set the size of the dialog. It will be 15 lines high by 25 characters wide, and 3 lines
will be used for the menu. It’s not a perfect sizing, but it does enable you to see how things are laid out.

The options look a little tricky, but all you have to remember is that each menu item has three values:

❑ Bullet number

❑ Text

❑ Status

The first item has a number of 1, and text display of “one” and is set to “off”. You then start on the next
menu item, which is 2, ”two” and selected. This continues until you run out of menu items.

Dialog Type Parameters

--menu text height width menu-height [tag item] …

--msgbox text height width

--radiolist text height width list-height [tag text status] ...

--textbox filename height width

--yesno text height width

78

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 78

Figure 2-4

Easy, wasn’t it? Just try some out on the command line and see how easy it is to use. In order to put this
together in a program, you need to be able to access the results of the user input. This is quite easy; simply
redirect the standard error stream for text input, or check the environment variable $?, which you will
recall is the exit status of the previous command.

Try It Out A More Complex Program Using dialog
Let’s look at a simple program called questions, which takes note of user responses:

1. Start off by displaying a simple dialog box to tell the user what is happening. You don’t need to
get the result or obtain any user input, so this is nice and simple:

#!/bin/sh

Ask some questions and collect the answer

dialog --title “Questionnaire” --msgbox “Welcome to my simple survey” 9 18

2. Ask the user if he wants to proceed, using a simple yes/no dialog box. Use the environment
variable $? to check if the user selected yes (result code 0) or not. If he didn’t want to proceed,
use a simple infobox that requires no user input before exiting:

dialog --title “Confirm” --yesno “Are you willing to take part?” 9 18
if [$? != 0]; then
dialog --infobox “Thank you anyway” 5 20
sleep 2
dialog --clear
exit 0

fi

79

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 79

3. Ask the user his name, using an input box. Redirect the standard error stream, 2, into a tempo-
rary file, _1.txt, which you can then process into the variable QNAME:

dialog --title “Questionnaire” --inputbox “Please enter your name” 9 30 2>_1.txt
Q_NAME=$(cat _1.txt)

4. Here you have the menu item with four different options. Again you redirect the standard error
stream and load it into a variable:

dialog --menu “$Q_NAME, what music do you like best?” 15 30 4 1 “Classical” 2
“Jazz” 3 “Country” 4 “Other” 2>_1.txt
Q_MUSIC=$(cat _1.txt)

5. The number the user selects will be stored in the temporary file _1.txt, which is grabbed in to
the variable Q_MUSIC so that you can test the result:

if [“$Q_MUSIC” = “1”]; then
dialog --title “Likes Classical” --msgbox “Good choice!” 12 25

else
dialog --title “Doesn’t like Classical” --msgbox “Shame” 12 25

fi

6. Finally, clear the last dialog box and exit the program:

sleep 2
dialog --clear
exit 0

Figure 2-5 shows the onscreen result.

Figure 2-5

80

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 80

How It Works
In this example you combine the dialog command with some simple shell programming to show how
you can build simple GUI programs using only shell script. You start with a simple welcome screen,
before asking the user if he will take part using the simple --yesno option of dialog. You use the $?
variable to check the reply. If he agreed, you then get his name, store it in a variable Q_NAME, and ask
what sort of music he likes, using the --menu option of dialog. By storing the numerical output in the
variable Q_MUSIC, you can see what he answered, and give an appropriate response.

If you are running a GNOME-based GUI, and are just using a terminal session within in it, you can use
the command gdialog in place of dialog. The two commands have the same parameters, so you can
use exactly the same code apart from changing the name of the command you invoke from dialog to
gdialog. Figure 2-6 shows what this script looks like when modified to use gdialog under Ubuntu.

Figure 2-6

This is a very easy way of generating a usable GUI interface from a script.

Putting It All Together
Now that you’ve seen the main features of the shell as a programming language, it’s time to write an
example program to put some of what you have learned to use.

Throughout this book, you’re going to be building a CD database application to show the techniques you’ve
been learning. You start with a shell script, but pretty soon you’ll do it again in C, add a database, and so on.

81

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 81

Requirements
Suppose you have an extensive CD collection. To make your life easier, you’re going to design and
implement a program for managing CDs. An electronic catalogue seems an ideal project to implement
as you learn about programming Linux.

You want, at least initially, to store some basic information about each CD, such as the label, type of
music, and artist or composer. You would also like to store some simple track information. You want to
be able to search on any of the “per CD” items, but not on any of the track details. To make the mini-
application complete, you would also like to be able to enter, update, and delete any of the information
from within the application.

Design
The three requirements — updating, searching, and displaying the data — suggest that a simple menu
will be adequate. All the data you need to store is textual; and assuming your CD collection isn’t too big,
you have no need for a complex database, so some simple text files will do. Storing information in text
files will keep the application simple, and if your requirements change, then it’s almost always easier to
manipulate a text file than any other sort of file. As a last resort, you could even use an editor to manu-
ally enter and delete data, rather than write a program to do it.

You need to make an important design decision about data storage: Will a single file suffice? If so, what
format should it have? Most of the information you expect to store occurs only once per CD (we’ll skip
lightly over the fact that some CDs contain the work of many composers or artists), except track infor-
mation. Just about all CDs have more than one track.

Should you fix a limit on the number of tracks you can store per CD? That seems rather an arbitrary and
unnecessary restriction, so reject that idea right away!

If you allow a flexible number of tracks, you have three options:

❑ Use a single file, with one line for the “title” type information and then n lines for the track
information for that CD.

❑ Put all the information for each CD on a single line, allowing the line to continue until no more
track information needs to be stored.

❑ Separate the title information from the track information and use a different file for each.

Only the third option enables you to easily fix the format of the files, which you’ll need to do
if you ever wish to convert your database into a relational form (more on this in Chapter 7), so
that’s the option to choose.

The next decision is what to put in the files.

Initially, for each CD title, you choose to store the following:

❑ The CD catalog number

❑ The title

82

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 82

❑ The type (classical, rock, pop, jazz, etc.)

❑ The composer or artist

For the tracks, you’ll store simply two items:

❑ Track number

❑ Track name

In order to join the two files, you must relate the track information to the rest of the CD information. To
do this, you’ll use the CD catalog number. Since this is unique for each CD, it will appear only once in
the titles file and once per track in the tracks file.

Take a look at an example titles file:

Its corresponding tracks file will look like this:

The two files join using the Catalog field. Remember that there are normally multiple rows in the tracks
file for a single entry in the titles file.

The last thing you need to decide is how to separate the entries. Fixed-width fields are normal in a rela-
tional database, but are not always the most convenient. Another common method, used for this example,
is a comma (i.e., a comma-separated variable, or CSV, file).

In the following “Try It Out” section, just so you don’t get totally lost, you’ll be using the following
functions:

get_return()
get_confirm()
set_menu_choice()

Catalog Track No. Title

CD123 1 Some jazz

CD123 2 More jazz

CD234 1 Sonata in D minor

CD345 1 Dizzy

Catalog Title Type Composer

CD123 Cool sax Jazz Bix

CD234 Classic violin Classical Bach

CD345 Hits99 Pop Various

83

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 83

insert_title()
insert_track()
add_record_tracks()
add_records()
find_cd()
update_cd()
count_cds()
remove_records()
list_tracks()

Try It Out A CD Application
1. First in the sample script is, as always, a line ensuring that it’s executed as a shell script, fol-

lowed by some copyright information:

#!/bin/bash

Very simple example shell script for managing a CD collection.
Copyright (C) 1996-2007 Wiley Publishing Inc.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hopes that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA.

2. Now ensure that some global variables that you’ll be using throughout the script are set up. Set
the title and track files and a temporary file, and trap Ctrl+C, so that your temporary file will be
removed if the user interrupts the script:

menu_choice=”“
current_cd=”“
title_file=”title.cdb”
tracks_file=”tracks.cdb”
temp_file=/tmp/cdb.$$
trap ‘rm -f $temp_file’ EXIT

3. Define your functions, so that the script, executing from the top line, can find all the function
definitions before you attempt to call any of them for the first time. To avoid rewriting the same
code in several places, the first two functions are simple utilities:

get_return() {
echo -e “Press return \c”
read x
return 0

}

84

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 84

get_confirm() {
echo -e “Are you sure? \c”
while true
do
read x
case “$x” in
y | yes | Y | Yes | YES)
return 0;;

n | no | N | No | NO)
echo
echo “Cancelled”
return 1;;

*) echo “Please enter yes or no” ;;
esac

done
}

4. Here you come to the main menu function, set_menu_choice. The contents of the menu vary
dynamically, with extra options being added if a CD entry has been selected:

set_menu_choice() {
clear
echo “Options :-“
echo
echo “ a) Add new CD”
echo “ f) Find CD”
echo “ c) Count the CDs and tracks in the catalog”
if [“$cdcatnum” != “”]; then
echo “ l) List tracks on $cdtitle”
echo “ r) Remove $cdtitle”
echo “ u) Update track information for $cdtitle”

fi
echo “ q) Quit”
echo
echo -e “Please enter choice then press return \c”
read menu_choice
return

}

5. Here are two more very short functions, insert_title and insert_track, for adding to
the database files. Though some people hate one-liners like these, they help make other func-
tions clearer.

They are followed by the larger add_record_track function that uses them. This function uses
pattern matching to ensure that no commas are entered (since we’re using commas as a field sep-
arator) and arithmetic operations to increment the current track number as tracks are entered:

insert_title() {
echo $* >> $title_file

Note that echo -e may not be portable to some shells.

85

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 85

return
}

insert_track() {
echo $* >> $tracks_file
return

}

add_record_tracks() {
echo “Enter track information for this CD”
echo “When no more tracks enter q”
cdtrack=1
cdttitle=”“
while [“$cdttitle” != “q”]
do

echo -e “Track $cdtrack, track title? \c”
read tmp
cdttitle=${tmp%%,*}
if [“$tmp” != “$cdttitle”]; then
echo “Sorry, no commas allowed”
continue

fi
if [-n “$cdttitle”] ; then
if [“$cdttitle” != “q”]; then
insert_track $cdcatnum,$cdtrack,$cdttitle

fi
else
cdtrack=$((cdtrack-1))

fi
cdtrack=$((cdtrack+1))

done
}

6. The add_records function allows entry of the main CD information for a new CD:

add_records() {
Prompt for the initial information

echo -e “Enter catalog name \c”
read tmp
cdcatnum=${tmp%%,*}

echo -e “Enter title \c”
read tmp
cdtitle=${tmp%%,*}

echo -e “Enter type \c”
read tmp
cdtype=${tmp%%,*}

echo -e “Enter artist/composer \c”
read tmp
cdac=${tmp%%,*}

86

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 86

Check that they want to enter the information

echo About to add new entry
echo “$cdcatnum $cdtitle $cdtype $cdac”

If confirmed then append it to the titles file

if get_confirm ; then
insert_title $cdcatnum,$cdtitle,$cdtype,$cdac
add_record_tracks

else
remove_records

fi

return
}

7. The find_cd function searches for the catalog name text in the CD title file, using the grep
command. You need to know how many times the string was found, but grep returns a value
indicating only if it matched zero times or many. To get around this, store the output in a file,
which will have one line per match, and then count the lines in the file.

The word count command, wc, has white space in its output, separating the number of lines,
words, and characters in the file. Use the $(wc -l $temp_file) notation to extract the first
parameter from the output in order to set the linesfound variable. If you wanted another, later
parameter, you would use the set command to set the shell’s parameter variables to the com-
mand output.

Change the IFS (Internal Field Separator) to a comma so you can separate the comma-delimited
fields. An alternative command is cut.

find_cd() {
if [“$1” = “n”]; then
asklist=n

else
asklist=y

fi
cdcatnum=”“
echo -e “Enter a string to search for in the CD titles \c”
read searchstr
if [“$searchstr” = “”]; then
return 0

fi

grep “$searchstr” $title_file > $temp_file

set $(wc -l $temp_file)
linesfound=$l

case “$linesfound” in
0) echo “Sorry, nothing found”

get_return
return 0
;;

87

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 87

1) ;;
2) echo “Sorry, not unique.”

echo “Found the following”
cat $temp_file
get_return
return 0

esac

IFS=”,”
read cdcatnum cdtitle cdtype cdac < $temp_file
IFS=” “

if [-z “$cdcatnum”]; then
echo “Sorry, could not extract catalog field from $temp_file”
get_return
return 0

fi

echo
echo Catalog number: $cdcatnum
echo Title: $cdtitle
echo Type: $cdtype
echo Artist/Composer: $cdac
echo
get_return

if [“$asklist” = “y”]; then
echo -e “View tracks for this CD? \c”
read x

if [“$x” = “y”]; then
echo
list_tracks
echo

fi
fi
return 1

}

8. update_cd allows you to re-enter information for a CD. Notice that you search (using grep) for
lines that start (^) with the $cdcatnum followed by a , and that you need to wrap the expansion
of $cdcatnum in {} so you can search for a , with no white space between it and the catalog
number. This function also uses {} to enclose multiple statements to be executed if get_con-
firm returns true.

update_cd() {
if [-z “$cdcatnum”]; then
echo “You must select a CD first”
find_cd n

fi
if [-n “$cdcatnum”]; then
echo “Current tracks are :-“
list_tracks
echo

88

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 88

echo “This will re-enter the tracks for $cdtitle”
get_confirm && {
grep -v “^${cdcatnum},” $tracks_file > $temp_file
mv $temp_file $tracks_file
echo
add_record_tracks

}
fi
return

}

9. count_cds gives a quick count of the contents of the database:

count_cds() {
set $(wc -l $title_file)
num_titles=$l
set $(wc -l $tracks_file)
num_tracks=$l
echo found $num_titles CDs, with a total of $num_tracks tracks
get_return
return

}

10. remove_records strips entries from the database files, using grep -v to remove all matching
strings. Notice you must use a temporary file.

If you tried to use

grep -v “^$cdcatnum” > $title_file

the $title_file would be set to empty by the > output redirection before grep had the chance
to execute, so grep would read from an empty file.

remove_records() {
if [-z “$cdcatnum”]; then
echo You must select a CD first
find_cd n

fi
if [-n “$cdcatnum”]; then
echo “You are about to delete $cdtitle”
get_confirm && {
grep -v “^${cdcatnum},” $title_file > $temp_file
mv $temp_file $title_file
grep -v “^${cdcatnum},” $tracks_file > $temp_file
mv $temp_file $tracks_file
cdcatnum=”“
echo Entry removed

}
get_return

fi
return

}

89

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 89

11. list_tracks again uses grep to extract the lines you want, cut to access the fields you want, and
then more to provide a paginated output. If you consider how many lines of C code it would take
to reimplement these 20-odd lines of code, you’ll appreciate how powerful a tool the shell can be.

list_tracks() {
if [“$cdcatnum” = “”]; then
echo no CD selected yet
return

else
grep “^${cdcatnum},” $tracks_file > $temp_file
num_tracks=$(wc -l $temp_file)
if [“$num_tracks” = “0”]; then
echo no tracks found for $cdtitle

else {
echo
echo “$cdtitle :-“
echo
cut -f 2- -d , $temp_file
echo

} | ${PAGER:-more}
fi

fi
get_return
return

}

12. Now that all the functions have been defined, you can enter the main routine. The first few lines
simply get the files into a known state; then you call the menu function, set_menu_choice, and
act on the output.

When quit is selected, you delete the temporary file, write a message, and exit with a success-
ful completion condition:

rm -f $temp_file
if [! -f $title_file]; then
touch $title_file

fi
if [! -f $tracks_file]; then
touch $tracks_file

fi

Now the application proper

clear
echo
echo
echo “Mini CD manager”
sleep 1

quit=n
while [“$quit” != “y”];
do
set_menu_choice
case “$menu_choice” in
a) add_records;;

90

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 90

r) remove_records;;
f) find_cd y;;
u) update_cd;;
c) count_cds;;
l) list_tracks;;
b)
echo
more $title_file
echo
get_return;;

q | Q) quit=y;;
*) echo “Sorry, choice not recognized”;;

esac
done

#Tidy up and leave

rm -f $temp_file
echo “Finished”
exit 0

Notes on the Application
The trap command at the start of the script is intended to trap the user’s pressing of Ctrl+C. This may
be either the EXIT or the INT signal, depending on the terminal setup.

There are other ways of implementing the menu selection, notably the select construct in bash and
ksh (which isn’t, however, specified in X/Open). This construct is a dedicated menu choice selector.
Check it out if your script can afford to be slightly less portable. Multiline information given to users
could also make use of here documents.

You might have noticed that there’s no validation of the primary key when a new record is started; the
new code just ignores the subsequent titles with the same code, but incorporates their tracks into the first
title’s listing:

1 First CD Track 1
2 First CD Track 2
1 Another CD
2 With the same CD key

We’ll leave this and other improvements to your imagination and creativity, as you can modify the code
under the terms of the GPL.

Summary
In this chapter, you’ve seen that the shell is a powerful programming language in its own right. Its ability
to call other programs easily and then process their output makes the shell an ideal tool for tasks involving
the processing of text and files.

Next time you need a small utility program, consider whether you can solve your problem by combin-
ing some of the many Linux commands with a shell script. You’ll be surprised just how many utility
programs you can write without a compiler.

91

Chapter 2: Shell Programming

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 91

47627c02.qxd:WroxPro 9/29/07 3:46 PM Page 92

3
Working with Files

In this chapter, you look at Linux files and directories and how to manipulate them. You learn how
to create files, open them, read, write, and close them. You also learn how programs can manipulate
directories (to create, scan, and delete them, for example). After the preceding chapter’s diversion
into shells, you now start programming in C.

Before proceeding to the way Linux handles file I/O, we review the concepts associated with files,
directories, and devices. To manipulate files and directories, you need to make system calls (the
UNIX and Linux parallel of the Windows API), but there also exists a whole range of library func-
tions, the standard I/O library (stdio), to make file handling more efficient.

We spend the majority of the chapter detailing the various calls to handle files and directories. So
this chapter covers various file-related topics:

❑ Files and devices

❑ System calls

❑ Library functions

❑ Low-level file access

❑ Managing files

❑ The standard I/O library

❑ Formatted input and output

❑ File and directory maintenance

❑ Scanning directories

❑ Errors

❑ The /proc file system

❑ Advanced topics: fcntl and mmap

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 93

Linux File Structure
“Why,” you may be asking, “are we covering file structure? I know about that already.” Well, as with
UNIX, files in the Linux environment are particularly important, because they provide a simple and con-
sistent interface to the operating system services and devices. In Linux, everything is a file. Well, almost!

This means that, in general, programs can use disk files, serial ports, printers, and other devices in exactly
the same way they would use a file. We cover some exceptions, such as network connections, in Chapter 15,
but mainly you need to use only five basic functions: open, close, read, write, and ioctl.

Directories, too, are special sorts of files. In modern UNIX versions, including Linux, even the superuser
may not write to them directly. All users ordinarily use the high-level opendir/readdir interface to
read directories without needing to know the system-specific details of directory implementation. We’ll
return to special directory functions later in this chapter.

Really, almost everything is represented as a file under Linux, or can be made available via special files.
Even though there are, by necessity, subtle differences from the conventional files you know and love,
the general principle still holds. Let’s look at the special cases we’ve mentioned so far.

Directories
As well as its contents, a file has a name and some properties, or “administrative information”; that is, the
file’s creation/modification date and its permissions. The properties are stored in the file’s inode, a special
block of data in the file system that also contains the length of the file and where on the disk it’s stored. The
system uses the number of the file’s inode; the directory structure just names the file for our benefit.

A directory is a file that holds the inode numbers and names of other files. Each directory entry is a link
to a file’s inode; remove the filename and you remove the link. (You can see the inode number for a file
by using ln –i.) Using the ln command, you can make links to the same file in different directories.

When you delete a file all that happens is that the directory entry for the file is removed and the number
of links to the file goes down by one. The data for the file is possibly still available through other links
to the same file. When the number of links to a file (the number after the permissions in ls -l) reaches
zero, the inode and the data blocks it references are then no longer in use and are marked as free.

Files are arranged in directories, which may also contain subdirectories. These form the familiar file sys-
tem hierarchy. A user, say neil, usually has his files stored in a “home” directory, perhaps /home/neil,
with subdirectories for e-mail, business letters, utility programs, and so on. Note that many command
shells for UNIX and Linux have an excellent notation for getting straight to your home directory: the
tilde (~). For another user, type ~user. As you know, home directories for each user are usually subdi-
rectories of a higher-level directory created specifically for this purpose, in this case /home.

Note that the standard library functions unfortunately do not understand the shell’s tilde shorthand
notation in filename parameters, so you must always use the real name of the file in your programs.

The /home directory is itself a subdirectory of the root directory, /, which sits at the top of the hierarchy
and contains all of the system’s files in subdirectories. The root directory normally includes /bin for
system programs (“binaries”), /etc for system configuration files, and /lib for system libraries. Files
that represent physical devices and provide the interface to those devices are conventionally found in a

94

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 94

directory called /dev. See Figure 3-1 for an example of part of a typical Linux hierarchy. We cover the
Linux file system layout in more detail in Chapter 18, when we look at Linux File System Standard.

Figure 3-1

Files and Devices
Even hardware devices are very often represented (mapped) by files. For example, as the superuser, you
can mount an IDE CD-ROM drive as a file:

mount -t iso9660 /dev/hdc /mnt/cdrom
cd /mnt/cdrom

which takes the CD-ROM device (in this case the secondary master IDE device loaded as /dev/hdc during
boot-up; other types of device will have different /dev entries) and mounts its current contents as the file
structure beneath /mnt/cdrom. You then move around within the CD-ROM’s directories just as normal,
except, of course, that the contents are read-only.

Three important device files found in both UNIX and Linux are /dev/console, /dev/tty, and
/dev/null.

/dev/console
This device represents the system console. Error messages and diagnostics are often sent to this device.
Each UNIX system has a designated terminal or screen to receive console messages. At one time, it might
have been a dedicated printing terminal. On modern workstations, and on Linux, it’s usually the “active”
virtual console, and under X, it will be a special console window on the screen.

/dev/tty
The special file /dev/tty is an alias (logical device) for the controlling terminal (keyboard and screen, or
window) of a process, if it has one. (For instance, processes and scripts run automatically by the system
won’t have a controlling terminal, and therefore won’t be able to open /dev/tty.)

Where it can be used, /dev/tty allows a program to write directly to the user, without regard to which
pseudo-terminal or hardware terminal the user is using. It is useful when the standard output has been
redirected. One example is displaying a long directory listing as a group of pages with the command ls
–R | more, where the program more has to prompt the user for each new page of output. You’ll see
more of /dev/tty in Chapter 5.

programsletters

neil

/

rick

homedevbin

mail

95

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 95

Note that whereas there’s only one /dev/console device, there are effectively many different physical
devices accessed through /dev/tty.

/dev/null
The /dev/null file is the null device. All output written to this device is discarded. An immediate end
of file is returned when the device is read, and it can be used as a source of empty files by using the cp
command. Unwanted output is often redirected to /dev/null.

Another way of creating empty files is to use the touch <filename> command, which changes the
modification time of a file or creates a new file if none exists with the given name. It won’t empty it of
its contents, though.

$ echo do not want to see this >/dev/null
$ cp /dev/null empty_file

Other devices found in /dev include hard and floppy disks, communications ports, tape drives, CD-ROMs,
sound cards, and some devices representing the system’s internal state. There’s even a /dev/zero, which
acts as a source of null bytes to create files full of zeros. You need superuser permissions to access some of
these devices; normal users can’t write programs to directly access low-level devices like hard disks. The
names of the device files may vary from system to system. Linux distributions usually have applications
that run as superuser to manage the devices that would otherwise be inaccessible, for example, mount for
user-mountable file systems.

Devices are classified as either character devices or block devices. The difference refers to the fact that some
devices need to be accessed a block at a time. Typically, the only block devices are those that support
some type of file system, like hard disks.

In this chapter, we concentrate on disk files and directories. We cover another device, the user’s terminal,
in Chapter 5.

System Calls and Device Drivers
You can access and control files and devices using a small number of functions. These functions, known as
system calls, are provided by UNIX (and Linux) directly, and are the interface to the operating system itself.

At the heart of the operating system, the kernel, are a number of device drivers. These are a collection of
low-level interfaces for controlling system hardware. For example, there will be a device driver for a tape
drive, which knows how to start the tape, wind it forward and backward, read and write to it, and so on.
It will also know that tapes have to be written to in blocks of a certain size. Because tapes are sequential in
nature, the driver can’t access tape blocks directly, but must wind the tape to the right place. Similarly, a
low-level hard disk device driver will only write whole numbers of disk sectors at a time, but will be able
to access any desired disk block directly, because the disk is a random access device.

To provide a similar interface, device drivers encapsulate all of the hardware-dependent features.
Idiosyncratic features of the hardware are usually available through the ioctl (for I/O control) sys-
tem call.

Device files in /dev are used in the same way; they can be opened, read, written, and closed. For example,
the same open call used to access a regular file is used to access a user terminal, a printer, or a tape drive.

96

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 96

The low-level functions used to access the device drivers, the system calls, include:

❑ open: Open a file or device

❑ read: Read from an open file or device

❑ write: Write to a file or device

❑ close: Close the file or device

❑ ioctl: Pass control information to a device driver

The ioctl system call is used to provide some necessary hardware-specific control (as opposed to regular
input and output), so its use varies from device to device. For example, a call to ioctl can be used to rewind
a tape drive or set the flow control characteristics of a serial port. For this reason, ioctl isn’t necessarily
portable from machine to machine. In addition, each driver defines its own set of ioctl commands.

These and other system calls are usually documented in section 2 of the manual pages. Prototypes pro-
viding the parameter lists and function return types for system calls, and associated #defines of con-
stants, are provided in include files. The particular ones required for each system call will be included
with the descriptions of individual calls.

Librar y Functions
One problem with using low-level system calls directly for input and output is that they can be very
inefficient. Why? Well:

❑ There’s a performance penalty in making a system call. System calls are therefore expensive
compared to function calls because Linux has to switch from running your program code to exe-
cuting its own kernel code and back again. It’s a good idea to keep the number of system calls
used in a program to a minimum and get each call to do as much work as possible, for example,
by reading and writing large amounts of data rather than a single character at a time.

❑ The hardware has limitations that can impose restrictions on the size of data blocks that can be
read or written by the low-level system call at any one time. For example, tape drives often have
a block size, say 10k, to which they can write. So, if you attempt to write an amount that is not
an exact multiple of 10k, the drive will still advance the tape to the next 10k block, leaving gaps
on the tape.

To provide a higher-level interface to devices and disk files, a Linux distribution (and UNIX) provides
a number of standard libraries. These are collections of functions that you can include in your own pro-
grams to handle these problems. A good example is the standard I/O library that provides buffered
output. You can effectively write data blocks of varying sizes, and the library functions arrange for the
low-level system calls to be provided with full blocks as the data is made available. This dramatically
reduces the system call overhead.

Library functions are usually documented in section 3 of the manual pages and often have a standard
include file associated with them, such as stdio.h for the standard I/O library.

To summarize the discussion of the last few sections, Figure 3-2 illustrates the Linux system, showing
where the various file functions exist relative to the user, the device drivers, the kernel, and the hardware.

97

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 97

Figure 3-2

Low-Level F ile Access
Each running program, called a process, has a number of file descriptors associated with it. These are
small integers that you can use to access open files or devices. How many of these are available will vary
depending on how the system has been configured. When a program starts, it usually has three of these
descriptors already opened. These are:

❑ 0: Standard input

❑ 1: Standard output

❑ 2: Standard error

You can associate other file descriptors with files and devices by using the open system call, which we
discuss shortly. The file descriptors that are automatically opened, however, already allow you to create
some simple programs using write.

write
The write system call arranges for the first nbytes bytes from buf to be written to the file associated
with the file descriptor fildes. It returns the number of bytes actually written. This may be less than
nbytes if there has been an error in the file descriptor or if the underlying device driver is sensitive to
block size. If the function returns 0, it means no data was written; if it returns –1, there has been an error
in the write call, and the error will be specified in the errno global variable.

Here’s the syntax:

#include <unistd.h>

size_t write(int fildes, const void *buf, size_t nbytes);

User program
User Space

Calls

Library

System calls

Kernel
Kernel Space

Device Drivers

Hardware
Devices

98

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 98

With this knowledge, you can write your first program, simple_write.c:

#include <unistd.h>
#include <stdlib.h>

int main()
{

if ((write(1, “Here is some data\n”, 18)) != 18)
write(2, “A write error has occurred on file descriptor 1\n”,46);

exit(0);
}

This program simply prints a message to the standard output. When a program exits, all open file
descriptors are automatically closed, so you don’t need to close them explicitly. This won’t be the case,
however, when you’re dealing with buffered output.

$./simple_write
Here is some data
$

A point worth noting again is that write might report that it wrote fewer bytes than you asked it to.
This is not necessarily an error. In your programs, you will need to check errno to detect errors and call
write to write any remaining data.

read
The read system call reads up to nbytes bytes of data from the file associated with the file descriptor
fildes and places them in the data area buf. It returns the number of data bytes actually read, which
may be less than the number requested. If a read call returns 0, it had nothing to read; it reached the end
of the file. Again, an error on the call will cause it to return –1.

#include <unistd.h>

size_t read(int fildes, void *buf, size_t nbytes);

This program, simple_read.c, copies the first 128 bytes of the standard input to the standard output. It
copies all of the input if there are fewer than 128 bytes.

#include <unistd.h>
#include <stdlib.h>

int main()
{

char buffer[128];
int nread;

nread = read(0, buffer, 128);
if (nread == -1)

write(2, “A read error has occurred\n”, 26);

if ((write(1,buffer,nread)) != nread)
write(2, “A write error has occurred\n”,27);

99

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 99

exit(0);
}

If you run the program, you should see the following:

$ echo hello there | ./simple_read
hello there
$./simple_read < draft1.txt
Files
In this chapter we will be looking at files and directories and how to manipulate
them. We will learn how to create files,$

In the first execution, you create some input for the program using echo, which is piped to your pro-
gram. In the second execution, you redirect input from a file. In this case, you see the first part of the file
draft1.txt appearing on the standard output.

Note how the next shell prompt appears at the end of the last line of output because, in this example, the
128 bytes don’t form a whole number of lines.

open
To create a new file descriptor, you need to use the open system call.

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

int open(const char *path, int oflags);
int open(const char *path, int oflags, mode_t mode);

Strictly speaking, you don’t need to include sys/types.h and sys/stat.h to use open on systems
that comply with POSIX standards, but they may be necessary on some UNIX systems.

In simple terms, open establishes an access path to a file or device. If successful, it returns a file descriptor
that can be used in read, write, and other system calls. The file descriptor is unique and isn’t shared by
any other processes that may be running. If two programs have a file open at the same time, they maintain
distinct file descriptors. If they both write to the file, they will continue to write where they left off. Their
data isn’t interleaved, but one will overwrite the other. Each keeps its own idea of how far into the file (the
offset) it has read or written. You can prevent unwanted clashes of this sort by using file locking, which
you’ll see in Chapter 7.

The name of the file or device to be opened is passed as a parameter, path; the oflags parameter is
used to specify actions to be taken on opening the file.

The oflags are specified as a combination of a mandatory file access mode and other optional modes. The
open call must specify one of the file access modes shown in the following table:

100

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 100

The call may also include a combination (using a bitwise OR) of the following optional modes in the
oflags parameter:

❑ O_APPEND: Place written data at the end of the file.

❑ O_TRUNC: Set the length of the file to zero, discarding existing contents.

❑ O_CREAT: Creates the file, if necessary, with permissions given in mode.

❑ O_EXCL: Used with O_CREAT, ensures that the caller creates the file. The open is atomic; that is,
it’s performed with just one function call. This protects against two programs creating the file at
the same time. If the file already exists, open will fail.

Other possible values for oflags are documented in the open manual page, which you can find in sec-
tion 2 of the manual pages (use man 2 open).

open returns the new file descriptor (always a nonnegative integer) if successful, or –1 if it fails, at which
time open also sets the global variable errno to indicate the reason for the failure. We look at errno
more closely in a later section. The new file descriptor is always the lowest-numbered unused descriptor,
a feature that can be quite useful in some circumstances. For example, if a program closes its standard
output and then calls open again, the file descriptor 1 will be reused and the standard output will have
been effectively redirected to a different file or device.

There is also a creat call standardized by POSIX, but it is not often used. creat doesn’t only create
the file, as one might expect, but also opens it. It is the equivalent of calling open with oflags equal to
O_CREAT|O_WRONLY|O_TRUNC.

The number of files that any one running program may have open at once is limited. The limit, usually
defined by the constant OPEN_MAX in limits.h, varies from system to system, but POSIX requires that
it be at least 16. This limit may itself be subject to local system-wide limits so that a program may not
always be able to open this many files. On Linux, the limit may be changed at runtime so OPEN_MAX is
not a constant. It typically starts out at 256.

Initial Permissions
When you create a file using the O_CREAT flag with open, you must use the three-parameter form. mode, the
third parameter, is made from a bitwise OR of the flags defined in the header file sys/stat.h. These are:

❑ S_IRUSR: Read permission, owner

❑ S_IWUSR: Write permission, owner

Mode Description

O_RDONLY Open for read-only

O_WRONLY Open for write-only

O_RDWR Open for reading and writing

101

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 101

❑ S_IXUSR: Execute permission, owner

❑ S_IRGRP: Read permission, group

❑ S_IWGRP: Write permission, group

❑ S_IXGRP: Execute permission, group

❑ S_IROTH: Read permission, others

❑ S_IWOTH: Write permission, others

❑ S_IXOTH: Execute permission, others

For example,

open (“myfile”, O_CREAT, S_IRUSR|S_IXOTH);

has the effect of creating a file called myfile, with read permission for the owner and execute permission
for others, and only those permissions.

$ ls -ls myfile
0 -r-------x 1 neil software 0 Sep 22 08:11 myfile*

There are a couple of factors that may affect the file permissions. First, the permissions specified are used
only if the file is being created. Second, the user mask (specified by the shell’s umask command) affects
the created file’s permissions. The mode value given in the open call is ANDed with the inverse of the
user mask value at runtime. For example, if the user mask is set to 001 and the S_IXOTH mode flag is
specified, the file won’t be created with “other” execute permission because the user mask specifies that
“other” execute permission isn’t to be provided. The flags in the open and creat calls are, in fact,
requests to set permissions. Whether or not the requested permissions are set depends on the runtime
value of umask.

umask
The umask is a system variable that encodes a mask for file permissions to be used when a file is created.
You can change the variable by executing the umask command to supply a new value. The value is a
three-digit octal value. Each digit is the result of ORing values from 1, 2, or 4; the meanings are shown in
the following table. The separate digits refer to “user,” “group,” and “other” permissions, respectively.

Digit Value Meaning

1 0 No user permissions are to be disallowed.

4 User read permission is disallowed.

2 User write permission is disallowed.

1 User execute permission is disallowed.

2 0 No group permissions are to be disallowed.

4 Group read permission is disallowed.

102

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 102

For example, to block “group” write and execute, and “other” write, the umask would be

Values for each digit are ORed together; so the second digit will need to be 2 | 1, giving 3. The resulting
umask is 032.

When you create a file via an open or creat call, the mode parameter is compared with the current
umask. Any bit setting in the mode parameter that is also set in the umask is removed. The end result is
that users can set up their environment to say things like “Don’t create any files with write permission
for others, even if the program creating the file requests that permission.” This doesn’t prevent a pro-
gram or user from subsequently using the chmod command (or chmod system call in a program) to add
other write permissions, but it does help protect users by saving them from having to check and set per-
missions on all new files.

close
You use close to terminate the association between a file descriptor, fildes, and its file. The file
descriptor becomes available for reuse. It returns 0 if successful and –1 on error.

#include <unistd.h>

int close(int fildes);

Note that it can be important to check the return result from close. Some file systems, particularly
networked ones, may not report an error writing to a file until the file is closed, because data may not
have been confirmed as written when writes are performed.

Digit Value Meaning

2 Group write permission is disallowed.

1 Group execute permission is disallowed.

3 0 No other permissions are to be disallowed.

4 Other read permission is disallowed.

2 Other write permission is disallowed.

1 Other execute permission is disallowed.

Digit Value

1 0

2 2

1

3 2

103

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 103

ioctl
ioctl is a bit of a ragbag of things. It provides an interface for controlling the behavior of devices and
their descriptors and configuring underlying services. Terminals, file descriptors, sockets, and even tape
drives may have ioctl calls defined for them and you need to refer to the specific device’s man page for
details. POSIX defines only ioctl for streams, which are beyond the scope of this book. Here’s the syntax:

#include <unistd.h>

int ioctl(int fildes, int cmd, ...);

ioctl performs the function indicated by cmd on the object referenced by the descriptor fildes. It may
take an optional third argument, depending on the functions supported by a particular device.

For example, the following call to ioctl on Linux turns on the keyboard LEDs:

ioctl(tty_fd, KDSETLED, LED_NUM|LED_CAP|LED_SCR);

Try It Out A File Copy Program
You now know enough about the open, read, and write system calls to write a low-level program,
copy_system.c, to copy one file to another, character by character.

We’ll do this in a number of ways during this chapter to compare the efficiency of each method. For
brevity, we’ll assume that the input file exists and the output file does not, and that all reads and writes
succeed. Of course, in real-life programs, we would check that these assumptions are valid!

1. First you will need to make a test input file, say 1Mb in size, and name it file.in.

2. Then compile copy_system.c:

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main()
{

char c;
int in, out;

in = open(“file.in”, O_RDONLY);
out = open(“file.out”, O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
while(read(in,&c,1) == 1)

write(out,&c,1);

exit(0);
}

Note that the #include <unistd.h> line must come first, because it defines flags regarding POSIX
compliance that may affect other include files.

104

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 104

3. Running the program will give something like the following:

$ TIMEFORMAT=”“ time ./copy_system
4.67user 146.90system 2:32.57elapsed 99%CPU
...
$ ls -ls file.in file.out
1029 -rw-r---r- 1 neil users 1048576 Sep 17 10:46 file.in
1029 -rw------- 1 neil users 1048576 Sep 17 10:51 file.out

How It Works
Here you use the time facility to measure how long the program takes to run. The TIMEFORMAT variable
is used on Linux to override the default POSIX output format of time, which does not include the CPU
usage. You can see that for this fairly old system, the 1Mb input file, file.in, was successfully copied to
file.out, which was created with read/write permissions for owner only. However, the copy took two-
and-a-half minutes and consumed virtually all the CPU time. It was this slow because it had to make more
than two million system calls.

In recent years, Linux has seen great strides in its system call and file system performance. By compari-
son, a similar test using a 2.6 kernel completed in a little under 14 seconds.

$ TIMEFORMAT=”“ time ./copy_system
2.08user 10.59system 0:13.74elapsed 92%CPU
...

Try It Out A Second File Copy Program
You can improve matters by copying in larger blocks. Take a look at this modified program,
copy_block.c, which copies the files in 1K blocks, again using system calls:

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main()
{

char block[1024];
int in, out;
int nread;

in = open(“file.in”, O_RDONLY);
out = open(“file.out”, O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
while((nread = read(in,block,sizeof(block))) > 0)

write(out,block,nread);

exit(0);
}

105

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 105

Now try the program, first removing the old output file:

$ rm file.out
$ TIMEFORMAT=”“ time ./copy_block
0.00user 0.02system 0:00.04elapsed 78%CPU
...

How It Works
Now the program takes just hundredths of a second, because it requires only around 2,000 system calls.
Of course, these times are very system-dependent, but they do show that system calls have a measurable
overhead, so it’s worth optimizing their use.

Other System Calls for Managing Files
There are a number of other system calls that operate on these low-level file descriptors. These allow a
program to control how a file is used and to return status information.

lseek
The lseek system call sets the read/write pointer of a file descriptor, fildes; that is, you can use it to
set where in the file the next read or write will occur. You can set the pointer to an absolute location in
the file or to a position relative to the current position or the end of file.

#include <unistd.h>
#include <sys/types.h>

off_t lseek(int fildes, off_t offset, int whence);

The offset parameter is used to specify the position, and the whence parameter specifies how the offset
is used. whence can be one of the following:

❑ SEEK_SET: offset is an absolute position

❑ SEEK_CUR: offset is relative to the current position

❑ SEEK_END: offset is relative to the end of the file

lseek returns the offset measured in bytes from the beginning of the file that the file pointer is set to,
or –1 on failure. The type off_t, used for the offset in seek operations, is an implementation-depend-
ent integer type defined in sys/types.h.

fstat, stat, and lstat
The fstat system call returns status information about the file associated with an open file descriptor.
The information is written to a structure, buf, the address of which is passed as a parameter.

106

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 106

Here’s the syntax:

#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>

int fstat(int fildes, struct stat *buf);
int stat(const char *path, struct stat *buf);
int lstat(const char *path, struct stat *buf);

Note that the inclusion of sys/types.h is optional, but we recommend it when using system calls,
because some of their definitions use aliases for standard types that may change one day.

The related functions stat and lstat return status information for a named file. They produce the
same results, except when the file is a symbolic link. lstat returns information about the link itself, and
stat returns information about the file to which the link refers.

The members of the structure, stat, may vary between UNIX-like systems, but will include those in the
following table:

The st_mode flags returned in the stat structure also have a number of associated macros defined in
the header file sys/stat.h. These macros include names for permission and file-type flags and some
masks to help with testing for specific types and permissions.

The permissions flags are the same as for the open system call described earlier. File-type flags include

❑ S_IFBLK: Entry is a block special device

❑ S_IFDIR: Entry is a directory

❑ S_IFCHR: Entry is a character special device

❑ S_IFIFO: Entry is a FIFO (named pipe)

stat Member Description

st_mode File permissions and file-type information

st_ino The inode associated with the file

st_dev The device the file resides on

st_uid The user identity of the file owner

st_gid The group identity of the file owner

st_atime The time of last access

st_ctime The time of last change to permissions, owner, group, or content

st_mtime The time of last modification to contents

st_nlink The number of hard links to the file

107

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 107

❑ S_IFREG: Entry is a regular file

❑ S_IFLNK: Entry is a symbolic link

Other mode flags include

❑ S_ISUID: Entry has setUID on execution

❑ S_ISGID: Entry has setGID on execution

Masks to interpret the st_mode flags include

❑ S_IFMT: File type

❑ S_IRWXU: User read/write/execute permissions

❑ S_IRWXG: Group read/write/execute permissions

❑ S_IRWXO: Others’ read/write/execute permissions

There are some macros defined to help with determining file types. These just compare suitably masked
mode flags with a suitable device-type flag. These include

❑ S_ISBLK: Test for block special file

❑ S_ISCHR: Test for character special file

❑ S_ISDIR: Test for directory

❑ S_ISFIFO: Test for FIFO

❑ S_ISREG: Test for regular file

❑ S_ISLNK: Test for symbolic link

For example, to test that a file doesn’t represent a directory and has execute permission set for the owner
but no other permissions, you can use the following test:

struct stat statbuf;
mode_t modes;

stat(“filename”,&statbuf);
modes = statbuf.st_mode;

if(!S_ISDIR(modes) && (modes & S_IRWXU) == S_IXUSR)
...

dup and dup2
The dup system calls provide a way of duplicating a file descriptor, giving two or more different descrip-
tors that access the same file. These might be used for reading and writing to different locations in the
file. The dup system call duplicates a file descriptor, fildes, returning a new descriptor. The dup2 sys-
tem call effectively copies one file descriptor to another by specifying the descriptor to use for the copy.

108

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 108

Here’s the syntax:

#include <unistd.h>

int dup(int fildes);
int dup2(int fildes, int fildes2);

These calls can also be useful when you’re using multiple processes communicating via pipes. We dis-
cuss the dup system in more depth in Chapter 13.

The Standard I/O Librar y
The standard I/O library (stdio) and its header file, stdio.h, provide a versatile interface to low-level
I/O system calls. The library, now part of ANSI standard C, whereas the system calls you met earlier are
not, provides many sophisticated functions for formatting output and scanning input. It also takes care
of the buffering requirements for devices.

In many ways, you use this library in the same way that you use low-level file descriptors. You need to
open a file to establish an access path. This returns a value that is used as a parameter to other I/O library
functions. The equivalent of the low-level file descriptor is called a stream and is implemented as a pointer
to a structure, a FILE *.

Don’t confuse these file streams with either C++ iostreams or with the STREAMS paradigm of inter-
process communication introduced in AT&T UNIX System V Release 3, which is beyond the scope of this
book. For more information on STREAMS, check out the X/Open spec (at http://www.opengroup
.org) and the AT&T STREAMS Programming Guide that accompanies System V.

Three file streams are automatically opened when a program is started. They are stdin, stdout, and
stderr. These are declared in stdio.h and represent the standard input, output, and error output,
respectively, which correspond to the low-level file descriptors 0, 1, and 2.

In this section, we look at the following functions:

❑ fopen, fclose

❑ fread, fwrite

❑ fflush

❑ fseek

❑ fgetc, getc, getchar

❑ fputc, putc, putchar

❑ fgets, gets

❑ printf, fprintf, and sprintf

❑ scanf, fscanf, and sscanf

109

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 109

fopen
The fopen library function is the analog of the low-level open system call. You use it mainly for files and
terminal input and output. Where you need explicit control over devices, you’re better off with the low-
level system calls, because they eliminate potentially undesirable side effects from libraries, like input/
output buffering.

Here’s the syntax:

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

fopen opens the file named by the filename parameter and associates a stream with it. The mode
parameter specifies how the file is to be opened. It’s one of the following strings:

❑ “r” or “rb”: Open for reading only

❑ “w” or “wb”: Open for writing, truncate to zero length

❑ “a” or “ab”: Open for writing, append to end of file

❑ “r+” or “rb+” or “r+b”: Open for update (reading and writing)

❑ “w+” or “wb+” or “w+b”: Open for update, truncate to zero length

❑ “a+” or “ab+” or “a+b”: Open for update, append to end of file

The b indicates that the file is a binary file rather than a text file.

Note that, unlike MS-DOS, UNIX and Linux do not make a distinction between text and binary files.
UNIX and Linux treat all files exactly the same, effectively as binary files. It’s also important to note that
the mode parameter must be a string, and not a character. Always use double quotes and not single quotes.

If successful, fopen returns a non-null FILE * pointer. If it fails, it returns the value NULL, defined in
stdio.h.

The number of available streams is limited, in the same way that file descriptors are limited. The actual limit
is FOPEN_MAX, which is defined through stdio.h, and is always at least eight and typically 16 on Linux.

fread
The fread library function is used to read data from a file stream. Data is read into a data buffer given
by ptr from the stream, stream. Both fread and fwrite deal with data records. These are specified by
a record size, size, and a count, nitems, of records to transfer. The function returns the number of items
(rather than the number of bytes) successfully read into the data buffer. At the end of a file, fewer than
nitems may be returned, including zero.

Here’s the syntax:

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);

110

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 110

As with all of the standard I/O functions that write to a buffer, it’s the programmer’s responsibility to
allocate the space for the data and check for errors. See also ferror and feof later in this chapter.

fwrite
The fwrite library call has a similar interface to fread. It takes data records from the specified data
buffer and writes them to the output stream. It returns the number of records successfully written.

Here’s the syntax:

#include <stdio.h>

size_t fwrite (const void *ptr, size_t size, size_t nitems, FILE *stream);

Note that fread and fwrite are not recommended for use with structured data. Part of the problem is
that files written with fwrite are potentially not portable between different machine architectures.

fclose
The fclose library function closes the specified stream, causing any unwritten data to be written. It’s
important to use fclose because the stdio library will buffer data. If the program needs to be sure that
data has been completely written, it should call fclose. Note, however, that fclose is called automati-
cally on all file streams that are still open when a program ends normally, but then, of course, you do not
get a chance to check for errors reported by fclose.

Here’s the syntax:

#include <stdio.h>

int fclose(FILE *stream);

fflush
The fflush library function causes all outstanding data on a file stream to be written immediately. You
can use this to ensure that, for example, an interactive prompt has been sent to a terminal before any
attempt to read a response. It’s also useful for ensuring that important data has been committed to disk
before continuing. You can sometimes use it when you’re debugging a program to make sure that the
program is writing data and not hanging. Note that an implicit flush operation is carried out when
fclose is called, so you don’t need to call fflush before fclose.

Here’s the syntax:

#include <stdio.h>

int fflush(FILE *stream);

111

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 111

fseek
The fseek function is the file stream equivalent of the lseek system call. It sets the position in the
stream for the next read or write on that stream. The meaning and values of the offset and whence
parameters are the same as those we gave previously for lseek. However, where lseek returns an
off_t, fseek returns an integer: 0 if it succeeds, –1 if it fails, with errno set to indicate the error. So
much for standardization!

Here’s the syntax:

#include <stdio.h>

int fseek(FILE *stream, long int offset, int whence);

fgetc, getc, and getchar
The fgetc function returns the next byte, as a character, from a file stream. When it reaches the end of
the file or there is an error, it returns EOF. You must use ferror or feof to distinguish the two cases.

Here’s the syntax:

#include <stdio.h>

int fgetc(FILE *stream);
int getc(FILE *stream);
int getchar();

The getc function is equivalent to fgetc, except that it may be implemented as a macro. In that case
the stream argument may be evaluated more than once so it does not have side effects (for example,
it shouldn’t affect variables). Also, you can’t guarantee to be able use the address of getc as a func-
tion pointer.

The getchar function is equivalent to getc(stdin) and reads the next character from the standard input.

fputc, putc, and putchar
The fputc function writes a character to an output file stream. It returns the value it has written, or EOF
on failure.

#include <stdio.h>

int fputc(int c, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);

As with fgetc/getc, the function putc is equivalent to fputc, but it may be implemented as a macro.

The putchar function is equivalent to putc(c,stdout), writing a single character to the standard out-
put. Note that putchar takes and getchar returns characters as ints, not char. This allows the end-of-
file (EOF) indicator to take the value –1, outside the range of character codes.

112

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 112

fgets and gets
The fgets function reads a string from an input file stream.

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);
char *gets(char *s);

fgets writes characters to the string pointed to by s until a newline is encountered, n-1 characters have
been transferred, or the end of file is reached, whichever occurs first. Any newline encountered is transferred
to the receiving string and a terminating null byte, \0, is added. Only a maximum of n-1 characters are
transferred in any one call because the null byte must be added to mark the end of the string and bring the
total up to n bytes.

When it successfully completes, fgets returns a pointer to the string s. If the stream is at the end of a
file, it sets the EOF indicator for the stream and fgets returns a null pointer. If a read error occurs, fgets
returns a null pointer and sets errno to indicate the type of error.

The gets function is similar to fgets, except that it reads from the standard input and discards any
newline encountered. It adds a trailing null byte to the receiving string.

Note that gets doesn’t limit the number of characters that can be transferred so it could overrun its
transfer buffer. Consequently, you should avoid using it and use fgets instead. Many security issues
can be traced back to functions in programs that are made to overflow a buffer of some sort or another.
This is one such function, so be careful!

Formatted Input and Output
There are a number of library functions for producing output in a controlled fashion that you may
be familiar with if you’ve programmed in C. These functions include printf and friends for printing
values to a file stream, and scanf and others for reading values from a file stream.

printf, fprintf, and sprintf
The printf family of functions format and output a variable number of arguments of different types. The
way each is represented in the output stream is controlled by the format parameter, which is a string that
contains ordinary characters to be printed and codes called conversion specifiers, which indicate how and
where the remaining arguments are to be printed.

#include <stdio.h>

int printf(const char *format, ...);
int sprintf(char *s, const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);

The printf function produces its output on the standard output. The fprintf function produces its
output on a specified stream. The sprintf function writes its output and a terminating null character
into the string s passed as a parameter. This string must be large enough to contain all of the output.

113

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 113

There are other members of the printf family that deal with their arguments in different ways. See the
printf manual page for more details.

Ordinary characters are passed unchanged into the output. Conversion specifiers cause printf to fetch
and format additional arguments passed as parameters. They always start with a % character. Here’s a
simple example:

printf(“Some numbers: %d, %d, and %d\n”, 1, 2, 3);

This produces, on the standard output:

Some numbers: 1, 2, and 3

To print a % character, you need to use %%, so that it doesn’t get confused with a conversion specifier.

Here are some of the most commonly used conversion specifiers:

❑ %d, %i: Print an integer in decimal

❑ %o, %x: Print an integer in octal, hexadecimal

❑ %c: Print a character

❑ %s: Print a string

❑ %f: Print a floating-point (single precision) number

❑ %e: Print a double precision number, in fixed format

❑ %g: Print a double in a general format

It’s very important that the number and type of the arguments passed to printf match the conversion
specifiers in the format string. An optional size specifier is used to indicate the type of integer arguments.
This is either h, for example %hd, to indicate a short int, or l, for example %ld, to indicate a long int.
Some compilers can check these printf statements, but they aren’t infallible. If you are using the GNU
compiler gcc, you can add the –Wformat option to your compilation command to do this.

Here’s another example:

char initial = ‘A’;
char *surname = “Matthew”;
double age = 13.5;

printf(“Hello Mr %c %s, aged %g\n”, initial, surname, age);

This produces

Hello Mr A Matthew, aged 13.5

You can gain greater control over the way items are printed by using field specifiers. These extend the
conversion specifiers to include control over the spacing of the output. A common use is to set the num-
ber of decimal places for a floating-point number or to set the amount of space around a string.

114

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 114

Field specifiers are given as numbers immediately after the % character in a conversion specifier. The fol-
lowing table contains some more examples of conversion specifiers and resulting output. To make things
a little clearer, we’ll use vertical bars to show the limits of the output.

All of these examples have been printed in a field width of 10 characters. Note that a negative field width
means that the item is written left-justified within the field. A variable field width is indicated by using an
asterisk (*). In this case, the next argument is used for the width. A leading zero indicates the item is writ-
ten with leading zeros. According to the POSIX specification, printf doesn’t truncate fields; rather, it
expands the field to fit. So, for example, if you try to print a string longer than the field, the field grows:

The printf functions return an integer, the number of characters written. This doesn’t include the ter-
minating null in the case of sprintf. On error, these functions return a negative value and set errno.

scanf, fscanf, and sscanf
The scanf family of functions works in a way similar to the printf group, except that these functions read
items from a stream and place values into variables at the addresses they’re passed as pointer parameters.
They use a format string to control the input conversion in the same way, and many of the conversion speci-
fiers are the same.

#include <stdio.h>

int scanf(const char *format, ...);
int fscanf(FILE *stream, const char *format, ...);
int sscanf(const char *s, const char *format, ...);

It’s very important that the variables used to hold the values scanned in by the scanf functions are of
the correct type and that they match the format string precisely. If they don’t, your memory could be
corrupted and your program could crash. There won’t be any compiler errors, but if you’re lucky, you
might get a warning!

Format Argument |Output|

%10s “HelloTherePeeps” |HelloTherePeeps|

Format Argument |Output|

%10s “Hello” | Hello|

%-10s “Hello” |Hello |

%10d 1234 | 1234|

%-10d 1234 |1234 |

%010d 1234 |0000001234 |

%10.4f 12.34 | 12.3400|

%*s 10,”Hello” | Hello|

115

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 115

The format string for scanf and friends contains both ordinary characters and conversion specifiers, as for
printf. However, the ordinary characters are used to specify characters that must be present in the input.

Here is a simple example:

int num;
scanf(“Hello %d”, &num);

This call to scanf will succeed only if the next five characters on the standard input are Hello. Then, if the
next characters form a recognizable decimal number, the number will be read and the value assigned to
the variable num. A space in the format string is used to ignore all whitespace (spaces, tabs, form feeds, and
newlines) in the input between conversion specifiers. This means that the call to scanf will succeed
and place 1234 into the variable num given either of the following inputs:

Hello 1234
Hello1234

Whitespace is also usually ignored in the input when a conversion begins. This means that a format
string of %d will keep reading the input, skipping over spaces and newlines until a sequence of digits is
found. If the expected characters are not present, the conversion fails and scanf returns.

This can lead to problems if you are not careful. An infinite loop can occur in your program if you leave
a non-digit character in the input while scanning for integers.

Other conversion specifiers are

❑ %d: Scan a decimal integer

❑ %o, %x: Scan an octal, hexadecimal integer

❑ %f, %e, %g: Scan a floating-point number

❑ %c: Scan a character (whitespace not skipped)

❑ %s: Scan a string

❑ %[]: Scan a set of characters (see the following discussion)

❑ %%: Scan a % character

Like printf, scanf conversion specifiers may also have a field width to limit the amount of input con-
sumed. A size specifier (either h for short or l for long) indicates whether the receiving argument is
shorter or longer than the default. This means that %hd indicates a short int, %ld a long int, and
%lg a double precision floating-point number.

A specifier beginning with an asterisk indicates that the item is to be ignored. This means that the infor-
mation is not stored and therefore does not need a variable to receive it.

Use the %c specifier to read a single character in the input. This doesn’t skip initial whitespace characters.

Use the %s specifier to scan strings, but take care. It skips leading whitespace, but stops at the first white-
space character in the string; so, you’re better off using it for reading words rather than general strings.
Also, without a field-width specifier, there’s no limit to the length of string it might read, so the receiving

116

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 116

string must be sufficient to hold the longest string in the input stream. It’s better to use a field specifier,
or a combination of fgets and sscanf, to read in a line of input and then scan it. This will prevent pos-
sible buffer overflows that could be exploited by a malicious user.

Use the %[] specifier to read a string composed of characters from a set. The format %[A-Z] will read
a string of capital letters. If the first character in the set is a caret, ^, the specifier reads a string that con-
sists of characters not in the set. So, to read a string with spaces in it, but stopping at the first comma,
you can use %[^,].

Given the input line,

Hello, 1234, 5.678, X, string to the end of the line

this call to scanf will correctly scan four items:

char s[256];
int n;
float f;
char c;

scanf(“Hello,%d,%g, %c, %[^\n]“, &n,&f,&c,s);

The scanf functions return the number of items successfully read, which will be zero if the first item
fails. If the end of the input is reached before the first item is matched, EOF is returned. If a read error
occurs on the file stream, the stream error flag will be set and the error variable, errno, will be set to
indicate the type of error. See the “Stream Errors” section later in this chapter for more details.

In general, scanf and friends are not highly regarded; this is for three reasons:

❑ Traditionally, the implementations have been buggy.

❑ They’re inflexible to use.

❑ They can lead to code where it’s difficult to work out what is being parsed.

As an alternative, try using other functions, like fread or fgets, to read input lines and then use the
string functions to break the input into the items you need.

Other Stream Functions
There are a number of other stdio library functions that use either stream parameters or the standard
streams stdin, stdout, stderr:

❑ fgetpos: Get the current position in a file stream.

❑ fsetpos: Set the current position in a file stream.

❑ ftell: Return the current file offset in a stream.

❑ rewind: Reset the file position in a stream.

❑ freopen: Reuse a file stream.

117

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 117

❑ setvbuf: Set the buffering scheme for a stream.

❑ remove: Equivalent to unlink unless the path parameter is a directory, in which case it’s equiv-
alent to rmdir.

These are all library functions documented in section 3 of the manual pages.

You can use the file stream functions to re-implement the file copy program, using library functions
instead. Take a look at copy_stdio.c in the following Try It Out exercise.

Try It Out A Third File Copy Program
This program is very similar to earlier versions, but the character-by-character copy is accomplished
using calls to the functions referenced in stdio.h:

#include <stdio.h>
#include <stdlib.h>

int main()
{

int c;
FILE *in, *out;

in = fopen(“file.in”,”r”);
out = fopen(“file.out”,”w”);

while((c = fgetc(in)) != EOF)
fputc(c,out);

exit(0);
}

Running this program as before, you get

$ TIMEFORMAT=”“ time ./copy_stdio
0.06user 0.02system 0:00.11elapsed 81%CPU
...

How It Works
This time, the program runs in 0.11 seconds, not as fast as the low-level block version, but a great deal
better than the other single-character-at-a-time version. This is because the stdio library maintains an
internal buffer within the FILE structure and the low-level system calls are made only when the buffer
fills. Feel free to experiment with testing line-by-line and block stdio copying code to see how they per-
form relative to the three examples we’ve tested.

118

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 118

Stream Errors
To indicate an error, many stdio library functions return out-of-range values, such as null pointers or the
constant EOF. In these cases, the error is indicated in the external variable errno:

#include <errno.h>

extern int errno;

Note that many functions may change the value of errno. Its value is valid only when a function has
failed. You should inspect it immediately after a function has indicated failure. You should always copy
it into another variable before using it, because printing functions, such as fprintf, might alter
errno themselves.

You can also interrogate the state of a file stream to determine whether an error has occurred, or the end
of file has been reached.

#include <stdio.h>

int ferror(FILE *stream);
int feof(FILE *stream);
void clearerr(FILE *stream);

The ferror function tests the error indicator for a stream and returns nonzero if it’s set, but zero otherwise.

The feof function tests the end-of-file indicator within a stream and returns nonzero if it is set, zero
otherwise. Use it like this:

if(feof(some_stream))
/* We’re at the end */

The clearerr function clears the end-of-file and error indicators for the stream to which stream points. It
has no return value and no errors are defined. You can use it to recover from error conditions on streams.
One example might be to resume writing to a stream after a “disk full” error has been resolved.

Streams and File Descriptors
Each file stream is associated with a low-level file descriptor. You can mix low-level input and output
operations with higher-level stream operations, but this is generally unwise, because the effects of
buffering can be difficult to predict.

#include <stdio.h>

int fileno(FILE *stream);
FILE *fdopen(int fildes, const char *mode);

You can determine which low-level file descriptor is being used for a file stream by calling the fileno
function. It returns the file descriptor for a given stream, or –1 on failure. This function can be useful if
you need low-level access to an open stream, for example, to call fstat on it.

119

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 119

You can create a new file stream based on an already-opened file descriptor by calling the fdopen func-
tion. Essentially, this function provides stdio buffers around an already-open file descriptor, which might
be an easier way to explain it.

The fdopen function operates in the same way as the fopen function, but instead of a filename it takes a
low-level file descriptor. This can be useful if you have used open to create a file, perhaps to get fine con-
trol over the permissions, but want to use a stream for writing to it. The mode parameter is the same as
for the fopen function and must be compatible with the file access modes established when the file was
originally opened. fdopen returns the new file stream or NULL on failure.

File and Directory Maintenance
The standard libraries and system calls provide complete control over the creation and maintenance of
files and directories.

chmod
You can change the permissions on a file or directory using the chmod system call. This forms the basis
of the chmod shell program.

Here’s the syntax:

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

The file specified by path is changed to have the permissions given by mode. The modes are specified as
in the open system call, a bitwise OR of required permissions. Unless the program has been given appro-
priate privileges, only the owner of the file or a superuser can change its permissions.

chown
A superuser can change the owner of a file using the chown system call.

#include <sys/types.h>
#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

The call uses the numeric values of the desired new user and group IDs (culled from getuid and get-
gid calls) and a system value that is used to restrict who can change file ownership. The owner and
group of a file are changed if the appropriate privileges are set.

POSIX actually allows systems where non-superusers can change file ownerships. All “proper” POSIX
systems won’t allow this, but, strictly speaking, it’s an extension (for FIPS 151-2). The kinds of systems
we deal with in this book conform to the XSI (X/Open System Interface) specification and do enforce
ownership rules.

120

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 120

unlink, link, and symlink
You can remove a file using unlink.

The unlink system call removes the directory entry for a file and decrements the link count for it. It
returns 0 if the unlinking was successful, –1 on an error. You must have write and execute permissions in
the directory where the file has its directory entry for this call to function.

#include <unistd.h>

int unlink(const char *path);
int link(const char *path1, const char *path2);
int symlink(const char *path1, const char *path2);

If the count reaches zero and no process has the file open, the file is deleted. In fact, the directory entry is
always removed immediately, but the file’s space will not be recovered until the last process (if any) closes
it. The rm program uses this call. Additional links represent alternative names for a file, normally created
by the ln program. You can create new links to a file programmatically by using the link system call.

Creating a file with open and then calling unlink on it is a trick some programmers use to create
transient files. These files are available to the program only while they are open; they will effectively be
automatically deleted when the program exits and the file is closed.

The link system call creates a new link to an existing file, path1. The new directory entry is specified
by path2. You can create symbolic links using the symlink system call in a similar fashion. Note that
symbolic links to a file do not increment a file’s reference count and so do not prevent the file from being
effectively deleted as normal (hard) links do.

mkdir and rmdir
You can create and remove directories using the mkdir and rmdir system calls.

#include <sys/types.h>
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

The mkdir system call is used for creating directories and is the equivalent of the mkdir program. mkdir
makes a new directory with path as its name. The directory permissions are passed in the parameter
mode and are given as in the O_CREAT option of the open system call and, again, subject to umask.

#include <unistd.h>

int rmdir(const char *path);

The rmdir system call removes directories, but only if they are empty. The rmdir program uses this
system call to do its job.

121

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 121

chdir and getcwd
A program can navigate directories in much the same way as a user moves around the file system. As
you use the cd command in the shell to change directory, so a program can use the chdir system call.

#include <unistd.h>

int chdir(const char *path);

A program can determine its current working directory by calling the getcwd function.

#include <unistd.h>

char *getcwd(char *buf, size_t size);

The getcwd function writes the name of the current directory into the given buffer, buf. It returns NULL
if the directory name would exceed the size of the buffer (an ERANGE error), given as the parameter
size. It returns buf on success.

getcwd may also return NULL if the directory is removed (EINVAL) or permissions changed (EACCESS)
while the program is running.

Scanning Directories
A common problem on Linux systems is scanning directories, that is, determining the files that reside in
a particular directory. In shell programs, it’s easy — just let the shell expand a wildcard expression. In
the past, different UNIX variants have allowed programmatic access to the low-level file system struc-
ture. You can still open a directory as a regular file and directly read the directory entries, but different
file system structures and implementations have made this approach nonportable. A standard suite of
library functions has now been developed that makes directory scanning much simpler.

The directory functions are declared in a header file dirent.h. They use a structure, DIR, as a basis for
directory manipulation. A pointer to this structure, called a directory stream (a DIR *), acts in much the
same way as a file steam (FILE *) does for regular file manipulation. Directory entries themselves are
returned in dirent structures, also declared in dirent.h, because one should never alter the fields in
the DIR structure directly.

We’ll review these functions:

❑ opendir, closedir

❑ readdir

❑ telldir

❑ seekdir

❑ closedir

122

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 122

opendir
The opendir function opens a directory and establishes a directory stream. If successful, it returns a
pointer to a DIR structure to be used for reading directory entries.

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);

opendir returns a null pointer on failure. Note that a directory stream uses a low-level file descriptor to
access the directory itself, so opendir could fail with too many open files.

readdir
The readdir function returns a pointer to a structure detailing the next directory entry in the directory
stream dirp. Successive calls to readdir return further directory entries. On error, and at the end of the
directory, readdir returns NULL. POSIX-compliant systems leave errno unchanged when returning
NULL at end of directory and set it when an error occurs.

#include <sys/types.h>
#include <dirent.h>

struct dirent *readdir(DIR *dirp);

Note that readdir scanning isn’t guaranteed to list all the files (and subdirectories) in a directory if
there are other processes creating and deleting files in the directory at the same time.

The dirent structure containing directory entry details includes the following entries:

❑ ino_t d_ino: The inode of the file

❑ char d_name[]: The name of the file

To determine further details of a file in a directory, you need to make a call to stat, which we covered
earlier in this chapter.

telldir
The telldir function returns a value that records the current position in a directory stream. You can use
this in subsequent calls to seekdir to reset a directory scan to the current position.

#include <sys/types.h>
#include <dirent.h>

long int telldir(DIR *dirp);

123

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 123

seekdir
The seekdir function sets the directory entry pointer in the directory stream given by dirp. The value
of loc, used to set the position, should have been obtained from a prior call to telldir.

#include <sys/types.h>
#include <dirent.h>

void seekdir(DIR *dirp, long int loc);

closedir
The closedir function closes a directory stream and frees up the resources associated with it. It returns
0 on success and –1 if there is an error.

#include <sys/types.h>
#include <dirent.h>

int closedir(DIR *dirp);

In the next program, printdir.c, you will put together a lot of the file manipulation functions to create
a simple directory listing. Each file in a directory is listed on a line by itself. Each subdirectory has its
name followed by a slash and the files listed in it are indented by four spaces.

The program changes a directory into the subdirectories so that the files it finds have usable names, that
is, they can be passed directly to opendir. The program will fail on very deeply nested directory struc-
tures because there’s a limit on the allowed number of open directory streams.

We could, of course, make it more general by taking a command-line argument to specify the start
point. Check out the Linux source code of such utilities as ls and find for ideas on a more general
implementation.

Try It Out A Directory-Scanning Program
1. Start with the appropriate headers and then a function, printdir, which prints out the current

directory. It will recurse for subdirectories using the depth parameter for indentation.

#include <unistd.h>
#include <stdio.h>
#include <dirent.h>
#include <string.h>
#include <sys/stat.h>
#include <stdlib.h>

void printdir(char *dir, int depth)
{

DIR *dp;
struct dirent *entry;
struct stat statbuf;

if((dp = opendir(dir)) == NULL) {
fprintf(stderr,”cannot open directory: %s\n”, dir);

124

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 124

return;
}
chdir(dir);
while((entry = readdir(dp)) != NULL) {

lstat(entry->d_name,&statbuf);
if(S_ISDIR(statbuf.st_mode)) {

/* Found a directory, but ignore . and .. */
if(strcmp(“.”,entry->d_name) == 0 ||

strcmp(“..”,entry->d_name) == 0)
continue;

printf(“%*s%s/\n”,depth,”“,entry->d_name);
/* Recurse at a new indent level */
printdir(entry->d_name,depth+4);

}
else printf(“%*s%s\n”,depth,”“,entry->d_name);

}
chdir(“..”);
closedir(dp);

}

2. Now move onto the main function:

int main()
{

printf(“Directory scan of /home:\n”);
printdir(“/home”,0);
printf(“done.\n”);

exit(0);
}

The program scans the home directories and produces output like that following (edited for brevity). To
see into other users’ directories you may need superuser permissions.

$./printdir
Directory scan of /home:
neil/

.Xdefaults

.Xmodmap

.Xresources

.bash_history

.bashrc

.kde/
share/

apps/
konqueror/

dirtree/
public_html.desktop

toolbar/
bookmarks.xml
konq_history

kdisplay/
color-schemes/

125

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 125

BLP4e/
Gnu_Public_License
chapter04/

argopt.c
args.c

chapter03/
file.out
mmap.c
printdir

done.

How It Works
Most of the action is within the printdir function. After some initial error checking using opendir to
see that the directory exists, printdir makes a call to chdir to the directory specified. While the entries
returned by readdir aren’t null, the program checks to see whether the entry is a directory. If it isn’t, it
prints the file entry with indentation depth.

If the entry is a directory, you meet a little bit of recursion. After the . and .. entries (the current and parent
directories) have been ignored, the printdir function calls itself and goes through the same process again.
How does it get out of these loops? Once the while loop has finished, the call chdir(“..”) takes it back
up the directory tree and the previous listing can continue. Calling closedir(dp) makes sure that the
number of open directory streams isn’t higher than it needs to be.

For a brief taste of the discussion of the Linux environment in Chapter 4, let’s look at one way you can
make the program more general. The program is limited because it’s specific to the directory /home.
With the following changes to main, you could turn it into a more useful directory browser:

int main(int argc, char* argv[])
{

char *topdir = “.”;
if (argc >= 2)
topdir=argv[1];

printf(“Directory scan of %s\n”,topdir);
printdir(topdir,0);
printf(“done.\n”);

exit(0);
}

Three lines were changed and five added, but now it’s a general-purpose utility with an optional parameter
of the directory name, which defaults to the current directory. You can run it using the following command:

$./printdir2 /usr/local | more

The output will be paged so that the user can page through the output. Hence, the user has quite a con-
venient little general-purpose directory tree browser. With very little effort, you could add space usage
statistics, limit depth of display, and so on.

126

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 126

Errors
As you’ve seen, many of the system calls and functions described in this chapter can fail for a number of
reasons. When they do, they indicate the reason for their failure by setting the value of the external variable
errno. Many different libraries use this variable as a standard way to report problems. It bears repeating
that the program must inspect the errno variable immediately after the function giving problems because
it may be overwritten by the next function called, even if that function itself doesn’t fail.

The values and meanings of the errors are listed in the header file errno.h. They include

❑ EPERM: Operation not permitted

❑ ENOENT: No such file or directory

❑ EINTR: Interrupted system call

❑ EIO: I/O Error

❑ EBUSY: Device or resource busy

❑ EEXIST: File exists

❑ EINVAL: Invalid argument

❑ EMFILE: Too many open files

❑ ENODEV: No such device

❑ EISDIR: Is a directory

❑ ENOTDIR: Isn’t a directory

There are a couple of useful functions for reporting errors when they occur: strerror and perror.

strerror
The strerror function maps an error number into a string describing the type of error that has
occurred. This can be useful for logging error conditions.

Here’s the syntax:

#include <string.h>

char *strerror(int errnum);

perror
The perror function also maps the current error, as reported in errno, into a string and prints it on
the standard error stream. It’s preceded by the message given in the string s (if not NULL), followed by
a colon and a space.

Here’s the syntax:

#include <stdio.h>

void perror(const char *s);

127

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 127

For example,

perror(“program”);

might give the following on the standard error output:

program: Too many open files

The /proc File System
Earlier in the chapter we mentioned that Linux treats most things as files and that there are entries in the
file system for hardware devices. These /dev files are used to access hardware in a specific way using
low-level system calls.

The software drivers that control hardware can often be configured in certain ways, or are capable of
reporting information. For example, a hard disk controller may be configured to use a particular DMA
mode. A network card might be able to report whether it has negotiated a high-speed, duplex connection.

Utilities for communicating with device drivers have been common in the past. For example, hdparm
is used to configure some disk parameters and ifconfig can report network statistics. In recent years,
there has been a trend toward providing a more consistent way of accessing driver information, and, in
fact, to extend this to include communication with various elements of the Linux kernel.

Linux provides a special file system, procfs, that is usually made available as the directory /proc. It
contains many special files that allow higher-level access to driver and kernel information. Applications
can read and write these files to get information and set parameters as long as they are running with the
correct access permissions.

The files that appear in /proc will vary from system to system, and more are included with each Linux
release as more drivers and facilities support the procfs file system. Here, we look at some of the more
common files and briefly consider their use.

A directory listing of /proc on the computer being used to write this chapter shows the following entries:

1/ 10514/ 20254/ 6/ 9057/ 9623/ ide/ mtrr
10359/ 10524/ 29/ 698/ 9089/ 9638/ interrupts net/
10360/ 10530/ 2983/ 699/ 9118/ acpi/ iomem partitions
10381/ 10539/ 3/ 710/ 9119/ asound/ ioports scsi/
10438/ 10541/ 30/ 711/ 9120/ buddyinfo irq/ self@
10441/ 10555/ 3069/ 742/ 9138/ bus/ kallsyms slabinfo
10442/ 10688/ 3098/ 7808/ 9151/ cmdline kcore splash
10478/ 10689/ 3099/ 7813/ 92/ config.gz keys stat
10479/ 10784/ 31/ 8357/ 9288/ cpuinfo key-users swaps
10482/ 113/ 3170/ 8371/ 93/ crypto kmsg sys/
10484/ 115/ 3171/ 840/ 9355/ devices loadavg sysrq-trigger
10486/ 116/ 3177/ 8505/ 9407/ diskstats locks sysvipc/
10495/ 1167/ 32288/ 8543/ 9457/ dma mdstat tty/
10497/ 1168/ 3241/ 8547/ 9479/ driver/ meminfo uptime

128

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 128

10498/ 1791/ 352/ 8561/ 9618/ execdomains misc version
10500/ 19557/ 4/ 8677/ 9619/ fb modules vmstat
10502/ 19564/ 4010/ 888/ 9621/ filesystems mounts@ zoneinfo
10510/ 2/ 5/ 8910/ 9622/ fs/ mpt/

In many cases, the files can just be read and will give status information. For example, /proc/cpuinfo
gives details of the processors available:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Pentium(R) 4 CPU 2.66GHz
stepping : 8
cpu MHz : 2665.923
cache size : 512 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss up
bogomips : 5413.47
clflush size : 64

Similarly, /proc/meminfo and /proc/version give information about memory usage and kernel ver-
sion, respectively:

$ cat /proc/meminfo
MemTotal: 776156 kB
MemFree: 28528 kB
Buffers: 191764 kB
Cached: 369520 kB
SwapCached: 20 kB
Active: 406912 kB
Inactive: 274320 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 776156 kB
LowFree: 28528 kB
SwapTotal: 1164672 kB
SwapFree: 1164652 kB
Dirty: 68 kB
Writeback: 0 kB
AnonPages: 95348 kB
Mapped: 49044 kB
Slab: 57848 kB
SReclaimable: 48008 kB
SUnreclaim: 9840 kB
PageTables: 1500 kB

129

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 129

NFS_Unstable: 0 kB
Bounce: 0 kB
CommitLimit: 1552748 kB
Committed_AS: 189680 kB
VmallocTotal: 245752 kB
VmallocUsed: 10572 kB
VmallocChunk: 234556 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
Hugepagesize: 4096 kB
$ cat /proc/version
Linux version 2.6.20.2-2-default (geeko@buildhost) (gcc version 4.1.3 20070218
(prerelease) (SUSE Linux)) #1 SMP Fri Mar 9 21:54:10 UTC 2007

The information given by these files is generated each time the file is read. So rereading the meminfo file
at a later time will give up-to-the-second results.

You can find more information from specific kernel functions in subdirectories of /proc. For example,
you can get network socket usage statistics from /proc/net/sockstat:

$ cat /proc/net/sockstat
sockets: used 285
TCP: inuse 4 orphan 0 tw 0 alloc 7 mem 1
UDP: inuse 3
UDPLITE: inuse 0
RAW: inuse 0
FRAG: inuse 0 memory 0

Some of the /proc entries can be written to as well as read. For example, the total number of files that all
running programs can open at the same time is a Linux kernel parameter. The current value can be read
at /proc/sys/fs/file-max:

$ cat /proc/sys/fs/file-max
76593

Here the value is set to 76,593. If you need to increase this value, you can do so by writing to the same file.
You may need to do this if you are running a specialist application suite — such as a database system that
uses many tables — that needs to open many files at once.

Writing /proc files requires superuser access. You must take great care when writing /proc files; it’s pos-
sible to cause severe problems including system crashes and loss of data by writing inappropriate values.

To increase the system-wide file handle limit to 80,000, you can simply write the new limit to the file-
max file:

echo 80000 >/proc/sys/fs/file-max

Now, when you reread the file, you see the new value:

$ cat /proc/sys/fs/file-max
80000

130

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 130

The subdirectories of /proc that have numeric names are used to provide access to information about
running programs. You learn more about how programs are executed as processes in Chapter 11.

For now, just notice that each process has a unique identifier: a number between 1 and about 32,000. The
ps command provides a list of currently running processes. For example, as this chapter is being written:

neil@suse103:~/BLP4e/chapter03> ps -a
PID TTY TIME CMD
9118 pts/1 00:00:00 ftp
9230 pts/1 00:00:00 ps
10689 pts/1 00:00:01 bash
neil@suse103:~/BLP4e/chapter03>

Here, you can see several terminal sessions running the bash shell and a file transfer session running the
ftp program. You can get more details about the ftp session by looking in /proc.

The process identifier for ftp here is given as 9118, so you need to look in /proc/9118 for details about it:

$ ls -l /proc/9118
total 0
0 dr-xr-xr-x 2 neil users 0 2007-05-20 07:43 attr
0 -r-------- 1 neil users 0 2007-05-20 07:43 auxv
0 -r--r--r-- 1 neil users 0 2007-05-20 07:35 cmdline
0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 cpuset
0 lrwxrwxrwx 1 neil users 0 2007-05-20 07:43 cwd -> /home/neil/BLP4e/chapter03
0 -r-------- 1 neil users 0 2007-05-20 07:43 environ
0 lrwxrwxrwx 1 neil users 0 2007-05-20 07:43 exe -> /usr/bin/pftp
0 dr-x------ 2 neil users 0 2007-05-20 07:19 fd
0 -rw-r--r-- 1 neil users 0 2007-05-20 07:43 loginuid
0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 maps
0 -rw------- 1 neil users 0 2007-05-20 07:43 mem
0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 mounts
0 -r-------- 1 neil users 0 2007-05-20 07:43 mountstats
0 -rw-r--r-- 1 neil users 0 2007-05-20 07:43 oom_adj
0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 oom_score
0 lrwxrwxrwx 1 neil users 0 2007-05-20 07:43 root -> /
0 -rw------- 1 neil users 0 2007-05-20 07:43 seccomp
0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 smaps
0 -r--r--r-- 1 neil users 0 2007-05-20 07:33 stat
0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 statm
0 -r--r--r-- 1 neil users 0 2007-05-20 07:33 status
0 dr-xr-xr-x 3 neil users 0 2007-05-20 07:43 task
0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 wchan

Here, you can see various special files that can tell us what is happening with this process.

You can tell that the program /usr/bin/pftp is running and that its current working directory is
/home/neil/BLP4e/chapter03. It is possible to read the other files in this directory to see the com-
mand line used to start it as well as the shell environment it has. The cmdline and environ files pro-
vide this information as a series of null-terminated strings, so you need to take care when viewing them.
We discuss the Linux environment in depth in Chapter 4.

$ od -c /proc/9118/cmdline
0000000 f t p \0 1 9 2 . 1 6 8 . 0 . 1 2

131

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 131

0000020 \0
0000021

Here, you can see that ftp was started with the command line ftp 192.168.0.12.

The fd subdirectory provides information about the open file descriptors in use by the process. This
information can be useful in determining how many files a program has open at one time. There is one
entry per open descriptor; the name matches the number of the descriptor. In this case, you can see that
ftp has open descriptors 0, 1, 2, and 3, as we might expect. These are the standard input, output, and
error descriptors plus a connection to the remote server.

$ ls /proc/9118/fd
0 1 2 3

Advanced Topics: fcntl and mmap
Here, we cover a couple of topics that you might like to skip because they’re seldom used. Having said that,
we’ve put them here for your reference because they can provide simple solutions to some tricky problems.

fcntl
The fcntl system call provides further ways to manipulate low-level file descriptors.

#include <fcntl.h>

int fcntl(int fildes, int cmd);
int fcntl(int fildes, int cmd, long arg);

You can perform several miscellaneous operations on open file descriptors with the fcntl system call,
including duplicating them, getting and setting file descriptor flags, getting and setting file status flags,
and managing advisory file locking.

The various operations are selected by different values of the command parameter cmd, as defined in
fcntl.h. Depending on the command chosen, the system call will require a third parameter, arg:

❑ fcntl(fildes, F_DUPFD, newfd): This call returns a new file descriptor with a numerical
value equal to or greater than the integer newfd. The new descriptor is a copy of the descriptor
fildes. Depending on the number of open files and the value of newfd, this can be effectively
the same as dup(fildes).

❑ fcntl(fildes, F_GETFD): This call returns the file descriptor flags as defined in fcntl.h.
These include FD_CLOEXEC, which determines whether the file descriptor is closed after a suc-
cessful call to one of the exec family of system calls.

❑ fcntl(fildes, F_SETFD, flags): This call is used to set the file descriptor flags, usually just
FD_CLOEXEC.

❑ fcntl(fildes, F_GETFL) and fcntl(fildes, F_SETFL, flags): These calls are used,
respectively, to get and set the file status flags and access modes. You can extract the file access
modes by using the mask O_ACCMODE defined in fcntl.h. Other flags include those passed in a
third argument to open when used with O_CREAT. Note that you can’t set all flags. In particular,
you can’t set file permissions using fcntl.

132

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 132

You can also implement advisory file locking via fcntl. Refer to section 2 of the manual pages for more
information, or see Chapter 7, where we discuss file locking.

mmap
UNIX provides a useful facility that allows programs to share memory, and the good news is that it’s
been included in versions 2.0 and later of the Linux kernel. The mmap (for memory map) function sets up
a segment of memory that can be read or written by two or more programs. Changes made by one pro-
gram are seen by the others.

You can use the same facility to manipulate files. You can make the entire contents of a disk file look like
an array in memory. If the file consists of records that can be described by C structures, you can update
the file using structure array accesses.

This is made possible by the use of virtual memory segments that have special permissions set. Reading
from and writing to the segment causes the operating system to read and write the appropriate part of
the disk file.

The mmap function creates a pointer to a region of memory associated with the contents of the file
accessed through an open file descriptor.

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off);

You can alter the start of the file data that is accessed by the shared segment by passing the off parameter.
The open file descriptor is passed as fildes. The amount of data that can be accessed (that is, the length
of the memory segment) is set via the len parameter.

You can use the addr parameter to request a particular memory address. If it’s zero, the resulting pointer
is allocated automatically. This is the recommended usage, because it is difficult to be portable other-
wise; systems vary as to the available address ranges.

The prot parameter is used to set access permissions for the memory segment. This is a bitwise OR of
the following constant values:

❑ PROT_READ: The segment can be read

❑ PROT_WRITE: The segment can be written

❑ PROT_EXEC: The segment can be executed

❑ PROT_NONE: The segment can’t be accessed

The flags parameter controls how changes made to the segment by the program are reflected else-
where; these options are displayed in the following table.

MAP_PRIVATE The segment is private, changes are local

MAP_SHARED The segment changes are made in the file

MAP_FIXED The segment must be at the given address, addr

133

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 133

The msync function causes the changes in part or all of the memory segment to be written back to (or
read from) the mapped file.

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

The part of the segment to be updated is given by the passed start address, addr, and length, len. The
flags parameter controls how the update should be performed using the options shown in the follow-
ing table.

The munmap function releases the memory segment.

#include <sys/mman.h>

int munmap(void *addr, size_t len);

The following program, mmap.c, shows a file of structures being updated using mmap and array-style
accesses. Linux kernels before 2.0 don’t fully support this use of mmap. The program does work correctly
on Sun Solaris and other systems.

Try It Out Using mmap
1. Start by defining a RECORD structure and then creating NRECORDS versions, each recording their

number. These are appended to the file records.dat.

#include <unistd.h>
#include <stdio.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <stdlib.h>

typedef struct {
int integer;
char string[24];

} RECORD;

#define NRECORDS (100)

int main()
{

RECORD record, *mapped;
int i, f;
FILE *fp;

fp = fopen(“records.dat”,”w+”);

MS_ASYNC Perform asynchronous writes

MS_SYNC Perform synchronous writes

MS_INVALIDATE Read data back in from the file

134

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 134

for(i=0; i<NRECORDS; i++) {
record.integer = i;
sprintf(record.string,”RECORD-%d”,i);
fwrite(&record,sizeof(record),1,fp);

}
fclose(fp);

2. Next, change the integer value of record 43 to 143 and write this to the 43rd record’s string:

fp = fopen(“records.dat”,”r+”);
fseek(fp,43*sizeof(record),SEEK_SET);
fread(&record,sizeof(record),1,fp);

record.integer = 143;
sprintf(record.string,”RECORD-%d”,record.integer);

fseek(fp,43*sizeof(record),SEEK_SET);
fwrite(&record,sizeof(record),1,fp);
fclose(fp);

3. Now map the records into memory and access the 43rd record in order to change the integer to
243 (and update the record string), again using memory mapping:

f = open(“records.dat”,O_RDWR);
mapped = (RECORD *)mmap(0, NRECORDS*sizeof(record),

PROT_READ|PROT_WRITE, MAP_SHARED, f, 0);

mapped[43].integer = 243;
sprintf(mapped[43].string,”RECORD-%d”,mapped[43].integer);

msync((void *)mapped, NRECORDS*sizeof(record), MS_ASYNC);
munmap((void *)mapped, NRECORDS*sizeof(record));
close(f);

exit(0);
}

In Chapter 13, you meet another shared memory facility: System V shared memory.

Summary
In this chapter, you’ve seen how Linux provides direct access to files and devices. You’ve seen how library
functions build upon these low-level functions to provide flexible solutions to programming problems. As
a result, you can write a fairly powerful directory-scanning routine in just a few lines of code.

You’ve also learned enough about file and directory handling to convert the fledgling CD application
created at the end of Chapter 2 to a C program using a more structured file-based solution. At this stage,
however, you can add no new functionality to the program, so we’ll postpone the next rewrite until
you’ve learned how to handle the screen and keyboard, which are the subjects of the next two chapters.

135

Chapter 3: Working with Files

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 135

47627c03.qxd:WroxPro 9/29/07 12:29 PM Page 136

4
The Linux Environment

When you write a program for Linux (or UNIX and UNIX-like systems), you have to take into
account that the program will run in a multitasking environment. This means that there will be
multi ple programs running at the same time and sharing machine resources such as memory, disk
space, and CPU cycles. There may even be several instances of the same program running at the
same time. It’s important that these programs don’t interfere with one another, are aware of their
surroundings, and can act appropriately to avoid conflicts such as trying to write the same file at
the same time as another program.

This chapter considers the environment in which programs operate, how they can use that envi-
ronment to gain information about operating conditions, and how users of the programs can alter
their behavior. In particular, this chapter looks at

❑ Passing arguments to programs

❑ Environment variables

❑ Finding out what the time is

❑ Temporary files

❑ Getting information about the user and the host computer

❑ Causing and configuring log messages

❑ Discovering the limits imposed by the system

Program Arguments
When a Linux or UNIX program written in C runs, it starts at the function main. For these programs,
main is declared as

int main(int argc, char *argv[])

where argc is a count of the program arguments and argv is an array of character strings repre-
senting the arguments themselves.

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 137

You might also see C programs for Linux simply declaring main as

main()

This will still work, because the return type will default to int and formal parameters that are not used
in a function need not be declared. argc and argv are still there, but if you don’t declare them, you can’t
use them.

Whenever the operating system starts a new program, the parameters argc and argv are set up and passed
to main. These parameters are usually supplied by another program, very often the shell that has requested
that the operating system start the new program. The shell takes the command line that it’s given, breaks it
up into individual words, and uses these for the argv array. Remember that a Linux shell normally performs
wild card expansion of filename arguments before argc and argv are set, whereas the MS-DOS shell
expects programs to accept arguments with wild cards and perform their own wild card expansion.

For example, if we give the shell the following command,

$ myprog left right ‘and center’

the program myprog will start at main with parameters:

argc: 4
argv: {“myprog”, “left”, “right”, “and center”}

Note that the argument count includes the name of the program itself and the argv array contains the
program name as its first element, argv[0]. Because we used quotes in the shell command, the fourth
argument consists of a string containing spaces.

You’ll be familiar with all of this if you’ve programmed in ISO/ANSI C. The arguments to main corre-
spond to the positional parameters in shell scripts, $0, $1, and so on. Whereas ISO/ANSI C states that
main must return int, the X/Open specification contains the explicit declaration given earlier.

Command-line arguments are useful for passing information to programs. For example, you could use
them in a database application to pass the name of the database you want to use, which would allow you
to use the same program on more than one database. Many utility programs also use command-line argu-
ments to change their behavior or to set options. You would usually set these so-called flags, or switches,
using command-line arguments that begin with a dash. For example, the sort program takes a switch to
reverse the normal sort order:

$ sort -r file

Command-line options are very common and using them consistently will be a real help to those who
use your program. In the past, each utility program adopted its own approach to command-line options,
which led to some confusion. For example, take a look at the way these commands take parameters:

$ tar cvfB /tmp/file.tar 1024
$ dd if=/dev/fd0 of=/tmp/file.dd bs=18k
$ ps ax
$ gcc --help
$ ls -lstr
$ ls -l -s -t -r

138

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 138

We recommend that in your applications all command-line switches start with a dash and consist of a
single letter or number. If required, options that take no further arguments can be grouped together
behind one dash. So, the two ls examples shown here do follow our guidelines. Each option should be
followed by any value it requires as a separate argument. The dd example breaks our rule by using
multi-character options that do not start with dashes (if=/dev/fd0); and the tar example separates
options and their values completely! It is advisable to add longer, more meaningful switch names as
alternatives to the single character versions and to use a double dash to distinguish them. So we might
have –h and –-help as options to get help.

Another little foible of some programs is to make the option +x (for example) perform the opposite func-
tion to -x. For example, in Chapter 2 we used set –o xtrace to set shell execution tracing on, and set
+o xtrace to turn it off again.

As you can probably tell, remembering the order and meaning of all these program options is difficult
enough without having to cope with idiosyncratic formats. Often, the only recourse is to use an -h (help)
option or a man page if the programmer has provided one. As we show you a bit later in this chapter,
getopt provides a neat solution to these problems. For the moment, though, let’s just look at dealing
with program arguments as they are passed.

Try It Out Program Arguments
Here’s a program, args.c, that examines its own arguments:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int arg;

for(arg = 0; arg < argc; arg++) {
if(argv[arg][0] == ‘-‘)

printf(“option: %s\n”, argv[arg]+1);
else

printf(“argument %d: %s\n”, arg, argv[arg]);
}
exit(0);

}

When you run this program, it just prints out its arguments and detects options. The intention is that the
program takes a string argument and an optional filename argument introduced by an -f option. Other
options might also be defined.

$./args -i -lr ‘hi there’ -f fred.c
argument 0: ./args
option: i
option: lr
argument 3: hi there
option: f
argument 5: fred.c

139

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 139

How It Works
The program simply uses the argument count, argc, to set up a loop to examine all of the program argu-
ments. It detects options by looking for an initial dash.

In this example, if we intended the options -l and -r to be available, we’ve missed the fact that the -lr
perhaps ought to be treated the same as -l -r.

The X/Open specification (available at http://opengroup.org/) defines a standard usage for com-
mand-line options (the Utility Syntax Guidelines) as well as a standard programming interface for pro-
viding command-line switches in C programs: the getopt function.

getopt
To help us adhere to these guidelines, Linux provides the getopt facility, which supports the use of
options with and without values and is simple to use.

#include <unistd.h>

int getopt(int argc, char *const argv[], const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;

The getopt function takes the argc and argv parameters as passed to the program’s main function and
an options specifier string that tells getopt what options are defined for the program and whether they
have associated values. The optstring is simply a list of characters, each representing a single character
option. If a character is followed by a colon, it indicates that the option has an associated value that will
be taken as the next argument. The getopts command in bash performs a very similar function.

For example, the following call would be used to handle the preceding example:

getopt(argc, argv, “if:lr”);

It allows for simple options -i, -l, -r, and -f, followed by a filename argument. Calling the command
with the same parameters but in a different order will alter the behavior. You can try this out when you
get to the sample code in the next Try It Out section.

The return result for getopt is the next option character found in the argv array (if there is one). Call
getopt repeatedly to get each option in turn. It has the following behavior:

❑ If the option takes a value, that value is pointed to by the external variable optarg.

❑ getopt returns -1 when there are no more options to process. A special argument, --, will
cause getopt to stop scanning for options.

❑ getopt returns ? if there is an unrecognized option, which it stores in the external variable optopt.

❑ If an option requires a value (such as -f in our example) and no value is given, getopt nor-
mally returns ?. By placing a colon as the first character of the options string, getopt returns :
instead of ? when no value is given.

140

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 140

The external variable, optind, is set to the index of the next argument to process. getopt uses it to remem-
ber how far it’s got. Programs would rarely need to set this variable. When all the option arguments have
been processed, optind indicates where the remaining arguments can be found at the end of the argv array.

Some versions of getopt will stop at the first non-option argument, returning -1 and setting optind.
Others, such as those provided with Linux, can process options wherever they occur in the program
arguments. Note that, in this case, getopt effectively rewrites the argv array so that all of the non-
option arguments are presented together, starting at argv[optind]. For the GNU version of getopt,
this behavior is controlled by the POSIXLY_CORRECT environment variable. If set, getopt will stop at
the first non-option argument. Additionally, some getopt implementations print error messages for
unknown options. Note that the POSIX specification says that if the opterr variable is non-zero, getopt
will print an error message to stderr.

Try It Out getopt
In this Try It Out, you use getopt for your example; call the new program argopt.c:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int opt;

while((opt = getopt(argc, argv, “:if:lr”)) != -1) {
switch(opt) {
case ‘i’:
case ‘l’:
case ‘r’:

printf(“option: %c\n”, opt);
break;

case ‘f’:
printf(“filename: %s\n”, optarg);
break;

case ‘:’:
printf(“option needs a value\n”);
break;

case ‘?’:
printf(“unknown option: %c\n”, optopt);
break;

}
}
for(; optind < argc; optind++)

printf(“argument: %s\n”, argv[optind]);
exit(0);

}

Now when you run the program, you see that all the command-line arguments are handled automatically:

$./argopt -i -lr ‘hi there’ -f fred.c -q
option: i
option: l
option: r

141

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 141

filename: fred.c
unknown option: q
argument: hi there

How It Works
The program repeatedly calls getopt to process option arguments until none remain, at which point
getopt returns -1. The appropriate action is taken for each option, including dealing with unknown
options and missing values. Depending on your version of getopt, you might see slightly different out-
put from that shown here — especially error messages — but the meaning will be clear.

Once all options have been processed, the program simply prints out the remaining arguments as before,
but starting from optind.

getopt_long
Many Linux applications also accept arguments that are more meaningful than the single character
options used in the previous example. The GNU C library contains a version of getopt called
getopt_long that accepts so-called long arguments that are introduced with a double dash.

Try It Out getopt_long
You can use getopt_long to create a new version of the example program that can be invoked using
long equivalents of options like this:

$./longopt --initialize --list ‘hi there’ --file fred.c -q
option: i
option: l
filename: fred.c
./longopt: invalid option -- q
unknown option: q
argument: hi there

In fact, both the new long options and the original single character options can be mixed. As long as they
remain distinguishable, long options also can be abbreviated. Long options that take an argument can be
given as a single argument in the form –-option=value, as follows

$./longopt --init –l --file=fred.c ‘hi there’
option: i
option: l
filename: fred.c
argument: hi there

The new program, longopt.c, is shown here with changes required from argopt.c to support the long
options highlighted:

#include <stdio.h>
#include <unistd.h>

142

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 142

#include <stdlib.h>

#define _GNU_SOURCE
#include <getopt.h>

int main(int argc, char *argv[])
{

int opt;
struct option longopts[] = {

{“initialize”, 0, NULL, ‘i’},
{“file”, 1, NULL, ‘f’},
{“list”, 0, NULL, ‘l’},
{“restart”, 0, NULL, ‘r’},
{0,0,0,0}};

while((opt = getopt_long(argc, argv, “:if:lr”, longopts, NULL)) != -1) {
switch(opt) {
case ‘i’:
case ‘l’:
case ‘r’:

printf(“option: %c\n”, opt);
break;

case ‘f’:
printf(“filename: %s\n”, optarg);
break;

case ‘:’:
printf(“option needs a value\n”);
break;

case ‘?’:
printf(“unknown option: %c\n”, optopt);
break;

}
}
for(; optind < argc; optind++)

printf(“argument: %s\n”, argv[optind]);
exit(0);

}

How It Works
The getopt_long function takes two additional parameters over getopt. The first of these is an array
of structures that describes the long options and tells getopt_long how to handle them. The second
additional parameter is the address of a variable that can be used like a long option version of optind;
for each long option recognized, its index in the long options array can be written into this variable. In
this example, you do not need this information, so you use NULL as the second additional parameter.

The long options array consists of a number of structures of type struct option, each of which describes
the desired behavior of a long option. The array must end with a structure containing all zeros.

The long option structure is defined in getopt.h and must be included with the constant _GNU_SOURCE,
defined to enable the getopt_long functionality.

struct option {
const char *name;

143

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 143

int has_arg;
int *flag;
int val;

};

The members of the structure are shown in the following table.

For other options associated with the GNU extensions to getopt and related functions, refer to the
getopt manual page.

Environment Variables
We discussed environment variables in Chapter 2. These are variables that can be used to control the
behavior of shell scripts and other programs. You can also use them to configure the user’s environment.
For example, each user has an environment variable, HOME, that defines his home directory, the default
starting place for his or her session. As you’ve seen, you can examine environment variables from the
shell prompt:

$ echo $HOME
/home/neil

You can also use the shell’s set command to list all of the environment variables.

The UNIX specification defines many standard environment variables used for a variety of purposes,
including terminal type, default editors, time zones, and so on. A C program may gain access to environ-
ment variables using the putenv and getenv functions.

#include <stdlib.h>

char *getenv(const char *name);
int putenv(const char *string);

Option Member Description

name The name of the long option. Abbreviations will be accepted as long
as they cannot be confused with other options.

has_arg Whether this option takes an argument. Set to 0 for options that do
not take an argument, 1 for options that must have a value, and 2 for
those that have an optional argument.

flag Set to NULL to have getopt_long return the value given in val when
this option is found. Otherwise, getopt_long returns 0 and writes
the value of val into the variable pointed to by flag.

val The value getopt_long is to return for this option.

144

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 144

The environment consists of strings of the form name=value. The getenv function searches the environ-
ment for a string with the given name and returns the value associated with that name. It will return null
if the requested variable doesn’t exist. If the variable exists but has no value, getenv succeeds and returns
an empty string, one in which the first byte is null. The string returned by getenv is held in static storage
owned by getenv, so to use it further you must copy it to another string because it will be overwritten by
subsequent calls to getenv.

The putenv function takes a string of the form name=value and adds it to the current environment. It will
fail and return -1 if it can’t extend the environment due to lack of available memory. When this happens,
the error variable errno will be set to ENOMEM.

In the following example, you write a program to print out the value of any environment variable you
choose. You also arrange to set the value if you give the program a second argument.

Try It Out getenv and putenv
1. The first few lines after the declaration of main ensure that the program, environ.c, has been

called correctly with just one or two arguments:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{

char *var, *value;

if(argc == 1 || argc > 3) {
fprintf(stderr,”usage: environ var [value]\n”);
exit(1);

}

2. That done, you fetch the value of the variable from the environment, using getenv:

var = argv[1];
value = getenv(var);
if(value)

printf(“Variable %s has value %s\n”, var, value);
else

printf(“Variable %s has no value\n”, var);

3. Next, check whether the program was called with a second argument. If it was, you set the vari-
able to the value of that argument by constructing a string of the form name=value and then
calling putenv:

if(argc == 3) {
char *string;
value = argv[2];
string = malloc(strlen(var)+strlen(value)+2);
if(!string) {

fprintf(stderr,”out of memory\n”);
exit(1);

}

145

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 145

strcpy(string,var);
strcat(string,”=”);
strcat(string,value);
printf(“Calling putenv with: %s\n”,string);
if(putenv(string) != 0) {

fprintf(stderr,”putenv failed\n”);
free(string);
exit(1);

}

4. Finally, you discover the new value of the variable by calling getenv once again:

value = getenv(var);
if(value)

printf(“New value of %s is %s\n”, var, value);
else

printf(“New value of %s is null??\n”, var);
}
exit(0);

}

When you run this program, you can see and set environment variables:

$./environ HOME
Variable HOME has value /home/neil
$./environ FRED
Variable FRED has no value
$./environ FRED hello
Variable FRED has no value
Calling putenv with: FRED=hello
New value of FRED is hello
$./environ FRED
Variable FRED has no value

Notice that the environment is local only to the program. Changes that you make within the program are
not reflected outside it because variable values are not propagated from the child process (your pro-
gram) to the parent (the shell).

Use of Environment Variables
Programs often use environment variables to alter the way they work. Users can set the values of these
environment variables either in their default environment, via a .profile file read by their login shell,
using a shell-specific startup (rc) file, or by specifying variables on the shell command line. For example:

$./environ FRED
Variable FRED has no value
$ FRED=hello ./environ FRED
Variable FRED has value hello

The shell takes initial variable assignments as temporary changes to environment variables. In the sec-
ond part of the preceding example, the program environ runs in an environment where the variable
FRED has a value.

146

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 146

For instance, in a future version of the CD database application, you could change an environment vari-
able, say CDDB, to indicate the database to use. Each user could then specify his or her own default value
or use a shell command to set it on a run-by-run basis:

$ CDDB=mycds; export CDDB
$ cdapp

or

$ CDDB=mycds cdapp

Environment variables are a mixed blessing and you should use them with care. They are more “hid-
den” to the user than command-line options and, as such, this can make debugging harder. In a sense,
environment variables are like global variables in that they may alter the behavior of a program, giving
unexpected results.

The environ Variable
As you’ve seen, the program environment is made up of strings of the form name=value. This array of
strings is made available to programs directly via the environ variable, which is declared as

#include <stdlib.h>

extern char **environ;

Try It Out environ
Here’s a program, showenv.c, that uses the environ variable to print out the environment variables:

#include <stdlib.h>
#include <stdio.h>

extern char **environ;

int main()
{

char **env = environ;

while(*env) {
printf(“%s\n”,*env);
env++;

}
exit(0);

}

When you run this program on a Linux system, you get something like the following output, which
has been abbreviated somewhat. The number, order of appearance, and values of these variables
depend on the operating system version, the command shell being used, and the user settings in force
at the time the program is run.

$./showenv
HOSTNAME=tilde.provider.com

147

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 147

LOGNAME=neil
MAIL=/var/spool/mail/neil
TERM=xterm
HOSTTYPE=i386
PATH=/usr/local/bin:/bin:/usr/bin:
HOME=/usr/neil
LS_OPTIONS=-N --color=tty -T 0
SHELL=/bin/bash
OSTYPE=Linux
...

How It Works
This program iterates through the environ variable, a null-terminated array of strings, to print out the
whole environment.

Time and Date
Often it can be useful for a program to be able to determine the time and date. It may want to log the
length of time it is run, or it may need to change the way it behaves at certain times. For example, a
game might refuse to run during working hours, or a backup scheduling program might want to wait
until the early hours before starting an automatic backup.

UNIX systems all use the same starting point for times and dates: midnight GMT on January 1, 1970.
This is the “start of the UNIX epoch” and Linux is no exception. All times in a Linux system are meas-
ured as seconds since then. This is similar to the way MS-DOS handles times, except that the MS-DOS
epoch started in 1980. Other systems use other epoch start times.

Times are handled using a defined type, a time_t. This is an integer type intended to be large enough to
contain dates and times in seconds. On Linux systems, it’s a long integer and is defined, together with
functions for manipulating time values, in the header file time.h.

Never assume that times are 32 bits. On UNIX and Linux systems using a 32-bit time_t type, the time
will “roll over” in the year 2038. By that time, we expect systems will have moved to using a time_t type
that is larger than 32 bits. With the recent introduction of 64-bit processors into the mainstream, this is
pretty much inevitable.

#include <time.h>

time_t time(time_t *tloc);

You can find the low-level time value by calling the time function, which returns the number of seconds
since the start of the epoch. It will also write the returned value to a location pointed to by tloc, if this
isn’t a null pointer.

148

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 148

Try It Out time
Here’s a simple program, envtime.c, to demonstrate the time function:

#include <time.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{

int i;
time_t the_time;

for(i = 1; i <= 10; i++) {
the_time = time((time_t *)0);
printf(“The time is %ld\n”, the_time);
sleep(2);

}
exit(0);

}

When you run this program, it prints the low-level time value every two seconds for 20 seconds.

$./envtime
The time is 1179643852
The time is 1179643854
The time is 1179643856
The time is 1179643858
The time is 1179643860
The time is 1179643862
The time is 1179643864
The time is 1179643866
The time is 1179643868
The time is 1179643870

How It Works
The program calls time with a null pointer argument, which returns the time and date as a number of
seconds. The program sleeps for two seconds and repeats the call to time for a total of ten times.

Using the time and date as a number of seconds since the start of 1970 can be useful for measuring how
long something takes to happen. You could consider simply subtracting the values you get from two calls
to time. However, in its deliberations, the ISO/ANSI C standard committee didn’t specify that the time_t
type be used to measure arbitrary time intervals in seconds, so they invented a function, difftime, which
will calculate the difference in seconds between two time_t values and return it as a double:

#include <time.h>

double difftime(time_t time1, time_t time2);

149

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 149

The difftime function calculates the difference between two time values and returns a value equivalent
to time1-time2 as a floating-point number. For Linux, the return value from time is a number of sec-
onds and can be manipulated, but for the ultimate in portability you should use difftime.

To present the time and date in a more meaningful way (to humans), you need to convert the time value
into a recognizable time and date. There are standard functions to help with this.

The function gmtime breaks down a low-level time value into a structure containing more usual fields:

#include <time.h>

struct tm *gmtime(const time_t timeval);

The structure tm is defined to contain at least the following members:

The range for tm_sec allows for the occasional leap second or double leap second.

Try It Out gmtime
Here’s a program, gmtime.c, which prints out the current time and date using the tm structure and
gmtime:

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

struct tm *tm_ptr;
time_t the_time;

tm Member Description

int tm_sec Seconds, 0-61

int tm_min Minutes, 0-59

int tm_hour Hours, 0-23

int tm_mday Day in the month, 1-31

int tm_mon Month in the year, 0-11 (January = 0)

int tm_year Years since 1900

int tm_wday Day in the week, 0-6 (Sunday = 0)

int tm_yday Day in the year, 0-365

int tm_isdst Daylight savings in effect

150

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 150

(void) time(&the_time);
tm_ptr = gmtime(&the_time);

printf(“Raw time is %ld\n”, the_time);
printf(“gmtime gives:\n”);
printf(“date: %02d/%02d/%02d\n”,

tm_ptr->tm_year, tm_ptr->tm_mon+1, tm_ptr->tm_mday);
printf(“time: %02d:%02d:%02d\n”,

tm_ptr->tm_hour, tm_ptr->tm_min, tm_ptr->tm_sec);
exit(0);

}

When you run this program, you get a good approximation of the time and date:

$./gmtime; date
Raw time is 1179644196
gmtime gives:
date: 107/05/20
time: 06:56:36
Sun May 20 07:56:37 BST 2007

How It Works
The program calls time to get the low-level time value and then calls gmtime to convert this into a struc-
ture with useful time and date values. It prints these out using printf. Strictly speaking, you shouldn’t
print the raw time value in this way because it isn’t guaranteed to be a long type on all systems. Running
the date command immediately after gmtime allows you to compare its output.

However, you have a little problem here. If you’re running this program in a time zone other than
Greenwich Mean Time, or if your local daylight savings time is in effect as here, you’ll notice that the
time (and possibly date) is incorrect. This is because gmtime returns the time as GMT (now known as
Coordinated Universal Time, or UTC). Linux and UNIX do this so that all programs and systems across
the world are synchronized. Files created at the same moment in different time zones will appear to have
the same creation time. To see the local time, you need to use the function localtime instead:

#include <time.h>

struct tm *localtime(const time_t *timeval);

The localtime function is identical to gmtime, except that it returns a structure containing values adjusted
for local time zone and daylight savings. If you try the gmtime program again, but use localtime in place
of gmtime, you should see a correct time and date reported.

To convert a broken-down tm structure into a raw time_t value, you can use the function mktime:

#include <time.h>

time_t mktime(struct tm *timeptr);

mktime will return -1 if the structure can’t be represented as a time_t value.

151

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 151

For “friendly” (as opposed to machine) time, and date output provided by the date program, you can
use the functions asctime and ctime:

#include <time.h>

char *asctime(const struct tm *timeptr);
char *ctime(const time_t *timeval);

The asctime function returns a string that represents the time and date given by the tm structure
timeptr. The string returned has a format similar to the following:

Sun Jun 9 12:34:56 2007\n\0

It’s always a fixed format, 26 characters long. The function ctime is equivalent to calling

asctime(localtime(timeval))

It takes a raw time value and converts it to a more readable local time.

Try It Out ctime
In this example, you see ctime in action, using the following code:

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

time_t timeval;

(void)time(&timeval);
printf(“The date is: %s”, ctime(&timeval));
exit(0);

}

Compile and then run ctime.c and you should see something like this:

$./ctime
The date is: Sat Jun 9 08:02:08 2007

How It Works
The ctime.c program calls time to get the low-level time value and lets ctime do all the hard work,
converting it to a readable string, which it then prints.

152

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 152

To gain more control of the exact formatting of time and date strings, Linux and modern UNIX-like
systems provide the strftime function. This is rather like a sprintf for dates and times and works
in a similar way:

#include <time.h>

size_t strftime(char *s, size_t maxsize, const char *format, struct tm *timeptr);

The strftime function formats the time and date represented by the tm structure pointed to by
timeptr and places the result in the string s. This string is specified as (at least) maxsize characters
long. The format string is used to control the characters written to the string. Like printf, it contains
ordinary characters that will be transferred to the string and conversion specifiers for formatting time
and date elements. The conversion specifiers include the following:

Continued on next page

Conversion Specifier Description

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time

%d Day of the month, 01-31

%H Hour, 00-23

%I Hour in 12-hour clock, 01-12

%j Day of the year, 001-366

%m Month of the year, 01-12

%M Minutes, 00-59

%p a.m. or p.m.

%S Seconds, 00-61

%u Day in the week, 1-7 (1 = Monday)

%U Week in the year, 01-53 (Sunday is the first day of the week.)

%V Week in the year, 01-53 (Monday is the first day of the week.)

%w Day in the week, 0-6 (0 = Sunday)

%x Date in local format

153

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 153

So, the usual date as given by the date program corresponds to a strftime format string of

“%a %b %d %H:%M:%S %Y”

To help with reading dates, you can use the strptime function, which takes a string representing a date
and time and creates a tm structure representing the same date and time:

#include <time.h>

char *strptime(const char *buf, const char *format, struct tm *timeptr);

The format string is constructed in exactly the same way as the format string for strftime. strptime
acts in a similar way to sscanf in that it scans a string, looking for identifiable fields, and writes them
into variables. Here it’s the members of a tm structure that are filled in according to the format string.
However, the conversion specifiers for strptime are a little more relaxed than those for strftime
because strptime will allow both abbreviated and full names for days and months. Either representa-
tion will match a %a specifier in strptime. Also, where strftime always uses leading zeros on num-
bers less than 10, strptime regards them as optional.

strptime returns a pointer to the character following the last one consumed in the conversion process.
If it encounters characters that can’t be converted, the conversion simply stops at that point. The calling
program needs to check that enough of the passed string has been consumed to ensure that meaningful
values have been written to the tm structure.

Try It Out strftime and strptime
Have a look at the selection of conversion specifiers used in the following program:

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

struct tm *tm_ptr, timestruct;
time_t the_time;
char buf[256];

Conversion Specifier Description

%X Time in local format

%y Year number less 1900

%Y Year

%Z Time zone name

%% A % character

154

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 154

char *result;

(void) time(&the_time);
tm_ptr = localtime(&the_time);
strftime(buf, 256, “%A %d %B, %I:%S %p”, tm_ptr);

printf(“strftime gives: %s\n”, buf);

strcpy(buf,”Thu 26 July 2007, 17:53 will do fine”);

printf(“calling strptime with: %s\n”, buf);
tm_ptr = ×truct;

result = strptime(buf,”%a %d %b %Y, %R”, tm_ptr);
printf(“strptime consumed up to: %s\n”, result);

printf(“strptime gives:\n”);
printf(“date: %02d/%02d/%02d\n”,

tm_ptr->tm_year % 100, tm_ptr->tm_mon+1, tm_ptr->tm_mday);
printf(“time: %02d:%02d\n”,

tm_ptr->tm_hour, tm_ptr->tm_min);
exit(0);

}

When you compile and run this program, strftime.c, you get

$./strftime
strftime gives: Saturday 09 June, 08:16 AM
calling strptime with: Thu 26 July 2007, 17:53 will do fine
strptime consumed up to: will do fine
strptime gives:
date: 07/07/26
time: 17:53

How It Works
The strftime program obtains the current local time by calling time and localtime. It then converts it to
a readable form by calling strftime with an appropriate formatting argument. To demonstrate the use of
strptime, the program sets up a string containing a date and time, then calls strptime to extract the raw
time and date values, and prints them. The conversion specifier %R is a shortcut for %H:%M in strptime.

It’s important to note that strptime needs an accurate format string to successfully scan a date. Typically,
it won’t accurately scan dates read from strings entered by users unless the format is very much restricted.

It is possible that you will find the compiler issuing a warning when you compile strftime.c. This is
because the GNU library does not by default declare strptime. The fix for this is to explicitly request
X/Open standard features by adding the following line before including time.h:

#define _XOPEN_SOURCE

155

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 155

Temporary F iles
Often, programs will need to make use of temporary storage in the form of files. These might hold inter-
mediate results of a computation or represent backup copies of files made before critical operations. For
example, a database application could use a temporary file when deleting records. The file collects the
database entries that need to be retained, and then, at the end of the process, the temporary file becomes
the new database and the original is deleted.

This popular use of temporary files has a hidden disadvantage. You must take care to ensure that the
applications choose a unique filename to use for the temporary file. If they don’t there may be a problem.
Because Linux is a multitasking system, another program could choose the same name and the two will
interfere with each other.

A unique filename can be generated by the tmpnam function:

#include <stdio.h>

char *tmpnam(char *s);

The tmpnam function returns a valid filename that isn’t the same as any existing file. If the string s isn’t
null, the filename will also be written to it. Further calls to tmpnam will overwrite the static storage
used for return values, so it’s essential to use a string parameter if tmpnam is to be called many times.
The string is assumed to be at least L_tmpnam (usually around 20) characters long. tmpnam can be called
up to TMP_MAX times (several thousand at least) in a single program, and it will generate a different file-
name each time.

If the temporary file is to be used immediately, you can name it and open it at the same time using the
tmpfile function. This is important because another program could create a file with the same name as
that returned by tmpnam. The tmpfile function avoids this problem altogether:

#include <stdio.h>

FILE *tmpfile(void);

The tmpfile function returns a stream pointer that refers to a unique temporary file. The file is opened
for reading and writing (via fopen with w+), and it will be automatically deleted when all references to
the file are closed.

tmpfile returns a null pointer and sets errno on error.

Try It Out tmpnam and tmpfile
Let’s see these two functions in action:

#include <stdio.h>
#include <stdlib.h>

int main()
{

char tmpname[L_tmpnam];
char *filename;

156

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 156

FILE *tmpfp;

filename = tmpnam(tmpname);

printf(“Temporary file name is: %s\n”, filename);
tmpfp = tmpfile();
if(tmpfp)

printf(“Opened a temporary file OK\n”);
else

perror(“tmpfile”);
exit(0);

}

When you compile and run this program, tmpnam.c, you can see the unique filename generated by
tmpnam:

$./tmpnam
Temporary file name is: /tmp/file2S64zc
Opened a temporary file OK

How It Works
The program calls tmpnam to generate a unique filename for a temporary file. If you wanted to use it,
you would have to open it quickly to minimize the risk that another program would open a file with the
same name. The tmpfile call creates and opens a temporary file at the same time, thus avoiding this
risk. In fact, the GNU C compiler may give a warning about the use of tmpnam when compiling a pro-
gram that uses it.

Versions of UNIX introduced another way to generate temporary filenames using the functions mktemp
and mkstemp. These are supported by Linux and are similar to tmpnam, except that you can specify a
template for the temporary filename, which gives you a little more control over their location and name:

#include <stdlib.h>

char *mktemp(char *template);
int mkstemp(char *template);

The mktemp function creates a unique filename from the given template. The template argument must
be a string with six trailing X characters. The mktemp function replaces these X characters with a unique
combination of valid filename characters. It returns a pointer to the generated string or a null pointer if it
couldn’t generate a unique name.

The mkstemp function is similar to tmpfile in that it creates and opens a temporary file. The filename is
generated in the same way as mktemp, but the returned result is an open, low-level file descriptor.

You should always use the “create and open” functions tmpfile and mkstemp in your own programs
rather than tmpnam and mktemp.

157

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 157

User Information
All Linux programs, with the notable exception of init, are started by other programs or users. You
learn more about how running programs, or processes, interact in Chapter 11. Users most often start pro-
grams from a shell that responds to their commands. You’ve seen that a program can determine a great
deal about its environment by examining environment variables and reading the system clock. A pro-
gram can also find out information about the person using it.

When a user logs in to a Linux system, he or she has a username and password. Once these have been
validated, the user is presented with a shell. Internally, the user also has a unique user identifier known
as a UID. Each program that Linux runs is run on behalf of a user and has an associated UID.

You can set up programs to run as if a different user had started them. When a program has its UID permis-
sion set, it will run as if started by the owner of the executable file. When the su command is executed, the
program runs as if it had been started by the superuser. It then validates the user’s access, changes the UID
to that of the target account, and executes that account’s login shell. This also allows a program to be run as
if a different user had started it and is often used by system administrators to perform maintenance tasks.

Because the UID is key to the user’s identity, let’s start with that.

The UID has its own type — uid_t — defined in sys/types.h. It’s normally a small integer. Some are
predefined by the system; others are created by the system administrator when new users are made
known to the system. Normally, users usually have UID values larger than 100.

#include <sys/types.h>
#include <unistd.h>

uid_t getuid(void);
char *getlogin(void);

The getuid function returns the UID with which the program is associated. This is usually the UID of
the user who started the program.

The getlogin function returns the login name associated with the current user.

The system file /etc/passwd contains a database dealing with user accounts. It consists of lines, one per
user, that contain the username, encrypted password, user identifier (UID), group identifier (GID), full
name, home directory, and default shell. Here’s an example line:

neil:zBqxfqedfpk:500:100:Neil Matthew:/home/neil:/bin/bash

If you write a program that determines the UID of the user who started it, you could extend it to look in
the password file to find out the user’s login name and full name. We don’t recommend this because
modern UNIX-like systems have moved away from using simple password files to improve system
security. Many systems, including Linux, have the option to use shadow password files that don’t contain
any useful encrypted password information at all (this is often held in /etc/shadow, a file that ordi-
nary users cannot read). For this reason, a number of functions have been defined to provide a standard
and effective programming interface to this user information:

#include <sys/types.h>
#include <pwd.h>

158

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 158

struct passwd *getpwuid(uid_t uid);
struct passwd *getpwnam(const char *name);

The password database structure, passwd, defined in pwd.h includes the following members:

Some UNIX systems may use a different name for the field for the user’s full name: on some systems, it’s
pw_gecos, as on Linux, and on others, it’s pw_comment. This means that we can’t recommend its use.

The getpwuid and getpwnam functions both return a pointer to a passwd structure corresponding to
a user. The user is identified by UID for getpwuid and by login name for getpwnam. They both return a
null pointer and set errno on error.

Try It Out User Information
Here’s a program, user.c, which extracts some user information from the password database:

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{

uid_t uid;
gid_t gid;

struct passwd *pw;
uid = getuid();
gid = getgid();

printf(“User is %s\n”, getlogin());

printf(“User IDs: uid=%d, gid=%d\n”, uid, gid);

passwd Member Description

char *pw_name The user’s login name

uid_t pw_uid The UID number

gid_t pw_gid The GID number

char *pw_dir The user’s home directory

char *pw_gecos The user’s full name

char *pw_shell The user’s default shell

159

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 159

pw = getpwuid(uid);
printf(“UID passwd entry:\n name=%s, uid=%d, gid=%d, home=%s, shell=%s\n”,

pw->pw_name, pw->pw_uid, pw->pw_gid, pw->pw_dir, pw->pw_shell);

pw = getpwnam(“root”);
printf(“root passwd entry:\n”);
printf(“name=%s, uid=%d, gid=%d, home=%s, shell=%s\n”,

pw->pw_name, pw->pw_uid, pw->pw_gid, pw->pw_dir, pw->pw_shell);
exit(0);

}

It gives the following output, which may differ in minor respects between versions of Linux and UNIX:

$./user
User is neil
User IDs: uid=1000, gid=100
UID passwd entry:
name=neil, uid=1000, gid=100, home=/home/neil, shell=/bin/bash
root passwd entry:
name=root, uid=0, gid=0, home=/root, shell=/bin/bash

How It Works
This program calls getuid to obtain the UID of the current user. This UID is used in getpwuid to obtain
detailed password file information. As an alternative, we show how the username root can be given to
getpwnam to obtain user information.

If you take a look at the Linux source code, you can see another example of using getuid in the
id command.

To scan all the password file information, you can use the getpwent function. This fetches successive
file entries:

#include <pwd.h>
#include <sys/types.h>

void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

The getpwent function returns each user information entry in turn. When none remain, it returns a null
pointer. You can use the endpwent function to terminate processing once sufficient entries have been
scanned. The setpwent function resets the position in the password file to the start so that a new scan
can be started with the next call to getpwent. These functions operate in a similar way to the directory
scanning functions opendir, readdir, and closedir that were discussed in Chapter 3.

User and group identifiers (effective and actual) can be obtained by other, less commonly used functions:

#include <sys/types.h>
#include <unistd.h>

uid_t geteuid(void);

160

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 160

gid_t getgid(void);
gid_t getegid(void);
int setuid(uid_t uid);
int setgid(gid_t gid);

You should refer to the system manual pages for details on group identifiers and effective user identi-
fiers, although you’ll probably find that you won’t need to manipulate these at all.

Only the superuser can call setuid and setgid.

Host Information
Just as it can determine information about the user, a program can also establish some details about the
computer on which it’s running. The uname command provides such information. uname also exists as a
system call to provide the same information within a C program — check it out in the system calls sec-
tion of the manual pages (section 2) using man 2 uname.

Host information can be useful in a number of situations. You might want to customize a program’s behav-
ior, depending on the name of the machine it’s running on in a network, say, a student’s machine or an
administrator’s. For licensing purposes, you might want to restrict a program to running on one machine
only. All this means that you need a way to establish which machine the program is running on.

If the system has networking components installed, you can obtain its network name very easily with
the gethostname function:

#include <unistd.h>

int gethostname(char *name, size_t namelen);

The gethostname function writes the machine’s network name into the string name. This string is
assumed to be at least namelen characters long. gethostname returns 0 if successful and –1 otherwise.

You can obtain more detailed information about the host computer from the uname system call:

#include <sys/utsname.h>

int uname(struct utsname *name);

The uname function writes host information into the structure pointed to by the name parameter. The
utsname structure, defined in sys/utsname.h, must contain at least these members:

Continued on next page

utsname Member Description

char sysname[] The operating system name

char nodename[] The host name

161

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 161

uname returns a nonnegative integer on success, –1 otherwise, with errno set to indicate any error.

Try It Out Host Information
Here’s a program, hostget.c, which extracts some host computer information:

#include <sys/utsname.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

char computer[256];
struct utsname uts;

if(gethostname(computer, 255) != 0 || uname(&uts) < 0) {
fprintf(stderr, “Could not get host information\n”);
exit(1);

}

printf(“Computer host name is %s\n”, computer);
printf(“System is %s on %s hardware\n”, uts.sysname, uts.machine);
printf(“Nodename is %s\n”, uts.nodename);
printf(“Version is %s, %s\n”, uts.release, uts.version);
exit(0);

}

It gives the following Linux-specific output. If your machine is networked, you may see an extended
host name that includes the network:

$./hostget
Computer host name is suse103
System is Linux on i686 hardware
Nodename is suse103
Version is 2.6.20.2-2-default, #1 SMP Fri Mar 9 21:54:10 UTC 2007

How It Works
This program calls gethostname to obtain the network name of the host computer. In the preceding
example, it gets the name suse103. More detailed information about this Intel Pentium-4-based Linux

utsname Member Description

char release[] The release level of the system

char version[] The version number of the system

char machine[] The hardware type

162

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 162

computer is returned by the call to uname. Note that the format of the strings returned by uname is imple-
mentation-dependent; in the example, the version string contains the date that the kernel was compiled.

For another example of the use of the uname function, have a look at the Linux source code for the
uname command, which uses it.

A unique identifier for each host computer may be available from the gethostid function:

#include <unistd.h>

long gethostid(void);

The gethostid function is intended to return a unique value for the host computer. License managers
use this to ensure that software programs can run only on machines that hold valid licenses. On Sun
workstations, it returns a number that is set in non-volatile memory when the computer is built, and so
is unique to the system hardware. Other systems, such as Linux, return a value based on the Internet
address of the machine, which isn’t usually secure enough to be used for licensing.

Logging
Many applications need to record their activities. System programs very often will write messages to the
console, or a log file. These messages might indicate errors, warnings, or more general information about
the state of the system. For example, the su program might record the fact that a user has tried and failed
to gain superuser privileges.

Very often, these log messages are recorded in system files in a directory made available for that purpose.
This might be /usr/adm or /var/log. On a typical Linux installation, the file /var/log/messages
contains all system messages, /var/log/mail contains other log messages from the mail system, and
/var/log/debug may contain debug messages. You can check your system’s configuration in the
/etc/syslog.conf or /etc/syslog-ng/syslog-ng.conf files, depending on your Linux version.

Here are some sample log messages:

Mar 26 18:25:51 suse103 ifstatus: eth0 device: Advanced Micro Devices
[AMD] 79c970 [PCnet32 LANCE] (rev 10)
Mar 26 18:25:51 suse103 ifstatus: eth0 configuration: eth-id-
00:0c:29:0e:91:72
...
May 20 06:56:56 suse103 SuSEfirewall2: Setting up rules from
/etc/sysconfig/SuSEfirewall2 ...
May 20 06:56:57 suse103 SuSEfirewall2: batch committing...
May 20 06:56:57 suse103 SuSEfirewall2: Firewall rules successfully set
...
Jun 9 09:11:14 suse103 su: (to root) neil on /dev/pts/18 09:50:35

163

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 163

Here, you can see the sort of messages that are logged. The first few are reported by the Linux kernel
itself as it boots and detects installed hardware. The firewall reports that it’s reconfiguring. Finally, the
su program reports a superuser account access by user neil.

You may require superuser privilege to view log messages.

Some UNIX systems don’t provide a readable messages file in this way, but do provide the administra-
tor with tools to read a database of system events. Refer to your system documentation for details.

Even though the format and storage of system messages may vary, the method of producing the mes-
sages is standard. The UNIX specification provides an interface for all programs to produce logging
messages using the syslog function:

#include <syslog.h>

void syslog(int priority, const char *message, arguments...);

The syslog function sends a logging message to the logging facility. Each message has a priority
argument that is a bitwise OR of a severity level and a facility value. The severity level controls how the
log message is acted upon and the facility value records the originator of the message.

Facility values (from syslog.h) include LOG_USER, used to indicate that the message has come from a
user application (the default), and LOG_LOCAL0, LOG_LOCAL1, up to LOG_LOCAL7, which can be assigned
meanings by the local administrator.

The severity levels in descending order of priority are shown in the following table.

Depending on system configuration, LOG_EMERG messages might be broadcast to all users, LOG_ALERT
messages might be mailed to the administrator, LOG_DEBUG messages might be ignored, and the others
written to a messages file. You can write a program that uses the logging facility simply by calling sys-
log when you want to create a log message.

Priority Level Description

LOG_EMERG An emergency situation

LOG_ALERT High-priority problem, such as database corruption

LOG_CRIT Critical error, such as hardware failure

LOG_ERR Errors

LOG_WARNING Warning

LOG_NOTICE Special conditions requiring attention

LOG_INFO Informational messages

LOG_DEBUG Debug messages

164

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 164

The log message created by syslog consists of a message header and a message body. The header is created
from the facility indicator and the date and time. The message body is created from the message parameter
to syslog, which acts like a printf format string. Further arguments to syslog are used according to
printf style conversion specifiers in the message string. Additionally, the specifier %m may be used to insert
the error message string associated with the current value of the error variable, errno. This can be useful for
logging error messages.

Try It Out syslog
In this program, you try to open a nonexistent file:

#include <syslog.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

FILE *f;

f = fopen(“not_here”,”r”);
if(!f)

syslog(LOG_ERR|LOG_USER,”oops - %m\n”);
exit(0);

}

When you compile and run this program, syslog.c, you see no output, but the file /var/log/mes-
sages now contains the following line at the end:

Jun 9 09:24:50 suse103 syslog: oops - No such file or directory

How It Works
In this program, you try to open a file that doesn’t exist. When this fails, you call syslog to record the
fact in the system logs.

Notice that the log message doesn’t indicate which program called the log facility; it just records the fact
that syslog was called with a message. The %m conversion specifier has been replaced by a description
of the error, in this case, that the file couldn’t be found. This is more useful than just reporting the raw
error number.

Other functions used to alter the behavior of logging facilities are also defined in syslog.h. These are:

#include <syslog.h>

void closelog(void);
void openlog(const char *ident, int logopt, int facility);
int setlogmask(int maskpri);

165

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 165

You can alter the way that your log messages are presented by calling the openlog function. This allows
you to set up a string, ident, which will be pre-pended to your log messages. You can use this to indicate
which program is creating the message. The facility parameter records a default facility value to be used
for future calls to syslog. The default is LOG_USER. The logopt parameter configures the behavior of
future calls to syslog. It’s a bitwise OR of zero or more of the parameters in the following table.

The openlog function will allocate and open a file descriptor that will be used for writing to the logging
facility. You can close this by calling the closelog function. Note that you don’t need to call openlog
before calling syslog because syslog will open the logging facility itself if required.

You can control the priority level of your log messages by setting a log mask using setlogmask. All
future calls to syslog with priority levels not set in the log mask will be rejected, so you could, for
example, use this to turn off LOG_DEBUG messages without having to alter the body of the program.

You can create the mask for log messages using LOG_MASK(priority), which creates a mask consisting
of just one priority level, or LOG_UPTO(priority), which creates a mask consisting of all priorities up
to and including the specified priority.

Try It Out logmask
In this example, you see logmask in action:

#include <syslog.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{

int logmask;

openlog(“logmask”, LOG_PID|LOG_CONS, LOG_USER);
syslog(LOG_INFO,”informative message, pid = %d”, getpid());
syslog(LOG_DEBUG,”debug message, should appear”);
logmask = setlogmask(LOG_UPTO(LOG_NOTICE));

logopt Parameter Description

LOG_PID Includes the process identifier, a unique number allocated to
each process by the system, in the messages.

LOG_CONS Sends messages to the console if they can’t be logged.

LOG_ODELAY Opens the log facility at first call to syslog.

LOG_NDELAY Opens the log facility immediately, rather than at first log.

166

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 166

syslog(LOG_DEBUG,”debug message, should not appear”);
exit(0);

}

This logmask.c program produces no output, but on a typical Linux system, toward the end of
/var/log/messages, you should see the following line:

Jun 9 09:28:52 suse103 logmask[19339]: informative message, pid = 19339

The file that is configured to receive debug log entries (depending on logging configuration, this is often
the file /var/log/debug or sometimes /var/log/messages) should contain the following line:

Jun 9 09:28:52 suse103 logmask[19339]: debug message, should appear

How It Works
The program initializes the logging facility with its name, logmask, and requests that log messages contain
the process identifier. The informative message is logged to /var/log/messages, and the debug message
to /var/log/debug. The second debug message doesn’t appear because you call setlogmask to ignore all
messages with a priority below LOG_NOTICE. (Note that this may not work on early Linux kernels.)

If your installation does not have debug message logging enabled, or it is configured differently, you
may not see the debug messages appear. To enable all debug messages, check your system documenta-
tion for syslog or syslog-ng for the exact configuration details.

logmask.c also uses the getpid function, which is defined along with the closely related getppid
as follows:

#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

The functions return the process and parent process identifiers of the calling process. For more informa-
tion on PIDs, see Chapter 11.

Resources and Limits
Programs running on a Linux system are subject to resource limitations. These might be physical limits
imposed by hardware (such as memory), limits imposed by system policies (for example, allowed CPU
time), or implementation limits (such as the size of an integer or the maximum number of characters
allowed in a filename). The UNIX specification defines some of these limits that can be determined by
an application. See Chapter 7 for a further discussion of limits and the consequences of breaking them.

167

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 167

The header file limits.h defines many manifest constants that represent the constraints imposed by the
operating system. These include the constraints shown in the following table.

There will be many other limits that may be of use to an application, so you should refer to your installa-
tion’s header files.

Note that NAME_MAX is file-system specific. For more portable code, you should use the pathconf
function. Refer to the manual page on pathconf for more information.

The header file sys/resource.h provides definitions for resource operations. These include functions
for determining and setting limits on a program’s allowed size, execution priority, and file resources:

#include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int priority);
int getrlimit(int resource, struct rlimit *r_limit);
int setrlimit(int resource, const struct rlimit *r_limit);
int getrusage(int who, struct rusage *r_usage);

id_t is an integral type used for user and group identifiers. The rusage structure, defined in
sys/resource.h, is used to determine how much CPU time has been used by the current program.
It must contain at least the following two members:

The timeval structure is defined in sys/time.h and contains fields tv_sec and tv_usec, representing
seconds and microseconds, respectively.

CPU time consumed by a program is separated into user time (the time that the program itself has con-
sumed executing its own instructions) and system time (the CPU time consumed by the operating system

rusage Member Description

struct timeval ru_utime The user time used

struct timeval ru_stime The system time used

Limit Constant Purpose

NAME_MAX The maximum number of characters in a filename

CHAR_BIT The number of bits in a char value

CHAR_MAX The maximum char value

INT_MAX The maximum int value

168

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 168

on the program’s behalf; that is, the time spent in system calls performing input and output or other sys-
tem functions).

The getrusage function writes CPU time information to the rusage structure pointed to by the param-
eter r_usage. The who parameter can be one of the following constants:

We discuss child processes and task priorities in Chapter 11, but for completeness, we cover their impli-
cations for system resources here. For now, it’s enough to say that each program that’s running has a pri-
ority associated with it, and that higher priority programs are allocated more of the available CPU time.

Ordinary users are only able to reduce the priorities of their programs, not increase them.

Applications can determine and alter their (and others’) priority with the getpriority and setpriority
functions. The process to be examined or changed by the priority functions can be identified either by
process identifier, group identifier, or user. The which parameter specifies how the who parameter is to
be treated.

So, to determine the priority of the current process, you might call

priority = getpriority(PRIO_PROCESS, getpid());

The setpriority function allows a new priority to be set, if possible.

The default priority is 0. Positive priorities are used for background tasks that run when no other higher
priority task is ready to run. Negative priorities cause a program to run more frequently, taking a larger
share of the available CPU time. The range of valid priorities is -20 to +20. This is often confusing
because the higher the numerical value, the lower the execution precedence.

getpriority returns a valid priority if successful or a –1 with errno set on error. Because –1 is itself a
valid priority, errno should be set to zero before calling getpriority and checked that it’s still zero on
return. setpriority returns 0 if successful, –1 otherwise.

which Parameter Description

PRIO_PROCESS who is a process identifier.

PRIO_PGRP who is a process group.

PRIO_USER who is a user identifier.

who Constant Description

RUSAGE_SELF Returns usage information about current program only.

RUSAGE_CHILDREN Includes usage information of child processes as well.

169

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 169

Limits on system resources can be read and set by getrlimit and setrlimit. Both of these functions make
use of a general-purpose structure, rlimit, to describe resource limits. It’s defined in sys/resource.h and
has the following members:

The defined type rlim_t is an integral type used to describe resource levels. Typically, the soft limit is
an advisory limit that shouldn’t be exceeded; doing so may cause library functions to return errors. The
hard limit, if exceeded, may cause the system to attempt to terminate the program by sending a signal to
it. Examples would be the signal SIGXCPU on exceeding the CPU time limit and the signal SIGSEGV on
exceeding a data size limit. A program may set its own soft limits to any value less than the hard limit. It
may reduce its hard limit. Only a program running with superuser privileges may increase a hard limit.

A number of system resources can be limited. These are specified by the resource parameter of the
rlimit functions and are defined in sys/resource.h as indicated in the following table.

The following Try It Out shows a program, limits.c, that simulates a typical application. It also sets
and breaks a resource limit.

Try It Out Resource Limits
1. Include the header files for all the functions you’re going to be using in this program:

#include <sys/types.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

resource Parameter Description

RLIMIT_CORE The core dump file size limit, in bytes

RLIMIT_CPU The CPU time limit, in seconds

RLIMIT_DATA The data () segment limit, in bytes

RLIMIT_FSIZE The file size limit, in bytes

RLIMIT_NOFILE The limit on the number of open files

RLIMIT_STACK The limit on stack size, in bytes

RLIMIT_AS The limit on address space (stack and data), in bytes

rlimit Member Description

rlim_t rlim_cur The current, soft limit

rlim_t rlim_max The hard limit

170

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 170

2. The void function writes a string to a temporary file 10,000 times and then performs some arith-
metic to generate load on the CPU:

void work()
{

FILE *f;
int i;
double x = 4.5;

f = tmpfile();
for(i = 0; i < 10000; i++) {

fprintf(f,”Do some output\n”);
if(ferror(f)) {

fprintf(stderr,”Error writing to temporary file\n”);
exit(1);

}
}
for(i = 0; i < 1000000; i++)

x = log(x*x + 3.21);
}

3. The main function calls work and then uses the getrusage function to discover how much
CPU time it has used. It displays this information onscreen:

int main()
{

struct rusage r_usage;
struct rlimit r_limit;
int priority;

work();
getrusage(RUSAGE_SELF, &r_usage);

printf(“CPU usage: User = %ld.%06ld, System = %ld.%06ld\n”,
r_usage.ru_utime.tv_sec, r_usage.ru_utime.tv_usec,
r_usage.ru_stime.tv_sec, r_usage.ru_stime.tv_usec);

4. Next, it calls getpriority and getrlimit to find out its current priority and file size limits,
respectively:

priority = getpriority(PRIO_PROCESS, getpid());
printf(“Current priority = %d\n”, priority);

getrlimit(RLIMIT_FSIZE, &r_limit);
printf(“Current FSIZE limit: soft = %ld, hard = %ld\n”,

r_limit.rlim_cur, r_limit.rlim_max);

5. Finally, set a file size limit using setrlimit and call work again, which fails because it attempts
to create too large a file:

r_limit.rlim_cur = 2048;
r_limit.rlim_max = 4096;
printf(“Setting a 2K file size limit\n”);

171

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 171

setrlimit(RLIMIT_FSIZE, &r_limit);

work();
exit(0);

}

When you run this program, you can see how much CPU resource is being consumed and the default
priority at which the program is running. Once a file size limit has been set, the program can’t write
more than 2,048 bytes to a temporary file.

$ cc -o limits limits.c -lm
$./limits
CPU usage: User = 0.140008, System = 0.020001
Current priority = 0
Current FSIZE limit: soft = -1, hard = -1
Setting a 2K file size limit
File size limit exceeded

You can change the program priority by starting it with the nice command. Here, you see the priority
changes to +10 and, as a result, it takes slightly longer to execute the program:

$ nice ./limits
CPU usage: User = 0.152009, System = 0.020001
Current priority = 10
Current FSIZE limit: soft = -1, hard = -1
Setting a 2K file size limit
File size limit exceeded

How It Works
The limits program calls the work function to simulate the actions of a typical program. It performs
some calculations and produces some output, in this case, about 150K to a temporary file. It calls the
resource functions to discover its priority and file size limits. In this case, the file size limits are unset,
allowing you to create as large a file as you like (disk space permitting). The program then sets its file
size limit to just 2K and again tries to perform some work. This time, the work function fails because it
can’t create such a large temporary file.

Limits may also be placed on a program running under a particular shell with the bash ulimit command.

In this example, the error message ‘Error writing to temporary file’ is not printed as you might
expect. This is because some systems (such as Linux 2.2 and later) terminate the program when the resource
limit is exceeded. It does this by sending a signal, SIGXFSZ. You learn more about signals and how to use
them in Chapter 11. Other POSIX-compliant systems may simply cause the function that exceeds the limit to
return an error.

172

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 172

Summary
In this chapter, you’ve looked at the Linux environment and examined the conditions under which pro-
grams run. You learned about command-line arguments and environment variables, both of which can
be used to alter a program’s default behavior and provide useful program options.

You’ve seen how a program can make use of library functions to manipulate date and time values and
obtain information about itself and the user and the computer on which it’s running.

Linux programs typically have to share precious resources, so the chapter also looked at how those
resources can be determined and managed.

173

Chapter 4: The Linux Environment

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 173

47627c04.qxd:WroxPro 9/29/07 12:32 PM Page 174

5
Terminals

In this chapter, you take a look at some improvements you might like to make to your basic appli-
cation from Chapter 2. Perhaps the most obvious failing is the user interface; it’s functional, but
not very elegant. Here, you look at how to take more control of the user’s terminal; that is, both
keyboard input and screen output. More than this though, you learn how to “guarantee” that the
programs you write can get input from the user, even in the presence of input redirection, and
ensure that the output goes to the right place on the screen.

Though the reimplemented CD database application won’t see the light of day until the end of
Chapter 7, you’ll do much of the groundwork for that chapter here. Chapter 6 is on curses, which
is not some ancient malediction, but rather a library of functions that provide a higher level of code
to control the terminal screen display. Along the way, you’ll examine a little more of the thinking of
the early UNIX meisters by introducing you to some philosophy of Linux and UNIX and the concept
of terminal input and output. The low-level access presented here might be just what you’re looking
for. Most of what we cover applies equally well to programs running in a console window, such as
KDE’s Konsole, GNOME’s gnome-terminal, or the standard X11 xterm.

Specifically, in this chapter, you learn about

❑ Reading and writing to the terminal

❑ Terminal drivers and the General Terminal Interface

❑ termios

❑ Terminal output and terminfo

❑ Detecting keystrokes

Reading from and Writing to the Terminal
In Chapter 3, you learned that when a program is invoked from the command prompt, the shell
arranges for the standard input and output streams to be connected to your program. You should be
able to interact with the user simply by using the getchar and printf routines to read and write
these default streams.

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 175

In the following Try It Out, you try to rewrite the menu routines in C, using just those two routines, in a
program called menu1.c.

Try It Out Menu Routines in C
1. Start with the following lines, which define the array to be used as a menu, and prototype the

getchoice function:

#include <stdio.h>
#include <stdlib.h>

char *menu[] = {
“a - add new record”,
“d - delete record”,
“q - quit”,
NULL,

};

int getchoice(char *greet, char *choices[]);

2. The main function calls getchoice with the sample menu, menu:

int main()
{

int choice = 0;

do
{

choice = getchoice(“Please select an action”, menu);
printf(“You have chosen: %c\n”, choice);

} while(choice != ‘q’);
exit(0);

}

3. Now for the important code — the function that both prints the menu and reads the user’s
input:

int getchoice(char *greet, char *choices[])
{

int chosen = 0;
int selected;
char **option;

do {
printf(“Choice: %s\n”,greet);
option = choices;
while(*option) {

printf(“%s\n”,*option);
option++;

}
selected = getchar();
option = choices;

176

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 176

while(*option) {
if(selected == *option[0]) {

chosen = 1;
break;

}
option++;

}
if(!chosen) {

printf(“Incorrect choice, select again\n”);
}

} while(!chosen);
return selected;

}

How It Works
getchoice prints the program introduction greet and the sample menu choices and asks the user to
choose the initial character. The program then loops until getchar returns a character that matches the
first letter of one of the option array’s entries.

When you compile and run this program, you discover that it doesn’t behave as you expected. Here’s
some terminal dialogue to demonstrate the problem:

$./menu1
Choice: Please select an action
a - add new record
d - delete record
q - quit
a
You have chosen: a
Choice: Please select an action
a - add new record
d - delete record
q - quit
Incorrect choice, select again
Choice: Please select an action
a - add new record
d - delete record
q - quit
q
You have chosen: q
$

Here, the user has to press A/Enter/Q/Enter and so on to make selections. There seem to be at least two
problems: The most serious problem is that you are getting Incorrect choice after every correct choice.
Plus, you still have to press Enter (or the Return key) before your program reads the input.

177

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 177

Canonical versus Non-Canonical Modes
The two problems are closely related. By default, terminal input is not made available to a program until
the user presses Enter or Return. In most cases, this is a benefit because it allows the user to correct typing
mistakes using Backspace or Delete. Only when they’re happy with what they see on the screen do they
press Enter to make the input available to the program.

This behavior is called canonical, or standard, mode. All the input is processed in terms of lines. Until a
line of input is complete (usually when the user presses Enter), the terminal interface manages all the
key presses, including Backspace, and no characters may be read by the application.

The opposite of this is non-canonical mode, where the application has much greater control over the pro-
cessing of input characters. We’ll come back to these two modes again a little later.

Among other things, the Linux terminal handler helps by translating interrupt characters to signals (for
example, stopping your program when you press Ctrl+C) and it can automatically perform Backspace
and Delete processing for you, so you don’t have to reimplement it in each program you write. You find
out more about signals in Chapter 11.

So, what’s happening in this program? Well, Linux is saving the input until the user presses Enter, and
then passing both the choice character and the subsequent Enter to the program. So, each time you enter
a menu choice, the program calls getchar, processes the character, then calls getchar again, which
immediately returns with the Enter character.

The character the program actually sees isn’t an ASCII carriage return, CR (decimal 13, hex 0D), but a line
feed, LF (decimal 10, hex 0A). This is because, internally, Linux (like UNIX) always uses a line feed to end
lines of text; that is, UNIX uses a line feed alone to mean a newline, where other systems, such as MS-DOS,
use a carriage return and a line feed together as a pair. If the input or output device also sends or requires a
carriage return, the Linux terminal processing takes care of it. This might seem a little strange if you’re used
to MS-DOS or other environments, but one of the very considerable benefits is that there is no real differ-
ence between text and binary files on Linux. Only when you input or output to a terminal or some printers
and plotters are carriage returns processed.

You can correct the major deficiency in your menu routine simply by ignoring the additional line feed
character with some code such as this:

do {
selected = getchar();

} while(selected == ‘\n’);

This solves the immediate problem and you would then see output like this

$./menu1
Choice: Please select an action
a - add new record
d - delete record
q - quit
a
You have chosen: a
Choice: Please select an action
a - add new record

178

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 178

d - delete record
q - quit
q
You have chosen: q
$

We return to the second problem of needing to press Enter, and a more elegant solution to the line feed
handling later.

Handling Redirected Output
It’s very common for Linux programs, even interactive ones, to have their input or output redirected, either
to files or other programs. Let’s see how your program behaves when you redirect its output to a file:

$./menu1 > file
a
q
$

You could regard this as successful because the output has been redirected to a file rather than the terminal.
However, there are cases where you want to prevent this from happening, or where you want to separate
prompts that you want the user to see from other output that can be redirected safely.

You can tell whether the standard output has been redirected by finding out if the low-level file
descriptor is associated with a terminal. The isatty system call does this. You simply pass it a valid
file descriptor and it tests to see if that is currently connected to a terminal.

#include <unistd.h>

int isatty(int fd);

The isatty system call returns 1 if the open file descriptor, fd, is connected to a terminal and 0 otherwise.

In this program, you are using file streams, but isatty operates only on file descriptors. To provide the nec-
essary conversion, you need to combine the isatty call with the fileno routine discussed in Chapter 3.

What are you going to do if stdout has been redirected? Just quitting isn’t good enough because the user
has no way of knowing why the program failed to run. Printing a message on stdout won’t help either
because it must have been redirected away from the terminal. One solution is to write to the standard
error stream, stderr, which isn’t redirected by the shell > file command.

Try It Out Checking for Output Redirection
Using the program menu1.c you created in the previous Try It Out, make the following changes to the
header file inclusions and the main function. Call the new file menu2.c.

#include <unistd.h>
...
int main()
{

int choice = 0;

179

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 179

if(!isatty(fileno(stdout))) {
fprintf(stderr,”You are not a terminal!\n”);
exit(1);

}
do {

choice = getchoice(“Please select an action”, menu);
printf(“You have chosen: %c\n”, choice);

} while(choice != ‘q’);
exit(0);

}

Now look at the following sample output:

$./menu2
Choice: Please select an action
a - add new record
d - delete record
q - quit
q
You have chosen: q
$ menu2 > file
You are not a terminal!
$

How It Works
The new section of code uses the isatty function to test whether the standard output is connected to
a terminal and halts execution if it isn’t. This is the same test the shell uses to decide whether to offer
prompts. It’s possible, and quite common, to redirect both stdout and stderr away from the termi-
nal. You can direct the error stream to a different file like this:

$./menu2 >file 2>file.error
$

Or combine the two output streams into a single file like this:

$./menu2 >file 2>&1
$

(If you’re not familiar with output redirection, take another look at Chapter 2, where we explain this
syntax in more detail.) In this case, you’ll need to send a message directly to the user’s terminal.

Talking to the Terminal
If you need to prevent the parts of your program that interact with the user from being redirected, but
still allow it to happen to other input or output, you need to separate the interaction from stdout and
stderr. You can do this by reading and writing directly to the terminal. Because Linux is inherently a
multiuser system, usually with many terminals either directly connected or connected across a network,
how can you discover the correct terminal to use?

180

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 180

Fortunately, Linux and UNIX make things easy by providing a special device, /dev/tty, which is always
the current terminal, or login session. Because Linux treats everything as a file, you can use normal file
operations to read and write to /dev/tty.

In this Try It Out, you modify the choice program so that you can pass parameters to the getchoice
routine, to provide better control over the output. This is menu3.c.

Try It Out Using /dev/tty
Load up menu2.c and change the code to the following, so that input and output come from and are
directed to /dev/tty:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

char *menu[] = {
“a - add new record”,
“d - delete record”,
“q - quit”,
NULL,

};

int getchoice(char *greet, char *choices[], FILE *in, FILE *out);

int main()
{

int choice = 0;
FILE *input;
FILE *output;

if(!isatty(fileno(stdout))) {
fprintf(stderr,”You are not a terminal, OK.\n”);

}

input = fopen(“/dev/tty”, “r”);
output = fopen(“/dev/tty”, “w”);
if(!input || !output) {

fprintf(stderr,”Unable to open /dev/tty\n”);
exit(1);

}
do {

choice = getchoice(“Please select an action”, menu, input, output);
printf(“You have chosen: %c\n”, choice);

} while(choice != ‘q’);
exit(0);

}

int getchoice(char *greet, char *choices[], FILE *in, FILE *out)
{

int chosen = 0;
int selected;
char **option;

do {

181

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 181

fprintf(out,”Choice: %s\n”,greet);
option = choices;
while(*option) {

fprintf(out,”%s\n”,*option);
option++;

}
do {

selected = fgetc(in);
} while(selected == ‘\n’);
option = choices;
while(*option) {

if(selected == *option[0]) {
chosen = 1;
break;

}
option++;

}
if(!chosen) {

fprintf(out,”Incorrect choice, select again\n”);
}

} while(!chosen);
return selected;

}

Now, when you run the program with the output redirected, you can still see the prompts and the nor-
mal program output (indicating the options that have been chosen) is redirected to a file that you can
look at later.

$./menu3 > file
You are not a terminal, OK.
Choice: Please select an action
a - add new record
d - delete record
q - quit
d
Choice: Please select an action
a - add new record
d - delete record
q - quit
q
$ cat file
You have chosen: d
You have chosen: q

The Terminal Driver and the General
Terminal Interface

Sometimes a program needs much finer control over the terminal than can be achieved using simple file
operations. Linux provides a set of interfaces that allow you to control the behavior of the terminal driver,
giving you much greater control of the processing of terminal input and output.

182

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 182

Overview
As Figure 5-1 shows, you can control the terminal through a set of function calls (the General Terminal
Interface, or GTI) separate from those used for reading and writing. This keeps the data (read/write)
interface very clean while still allowing detailed control over the terminal behavior. That’s not to say that
the terminal I/O interface is clean — it has to deal with a wide variety of different hardware.

Figure 5-1

In UNIX terminology, the control interface sets a “line discipline” that allows a program considerable
flexibility in specifying the behavior of the terminal driver.

The main features that you can control are

❑ Line editing: Choose whether to allow Backspace for editing.

❑ Buffering: Choose whether to read characters immediately, or read them after a configurable
delay.

❑ Echo: Allows you to control echoing, such as when reading passwords.

❑ CR/LF: Determine mapping for input and output: what happens when you print a line feed
character (\n).

❑ Line speeds: Rarely used on a PC console, these speeds are very important for modems and ter-
minals on serial lines.

Hardware Model
Before you look at the General Terminal Interface in detail, it’s very important that you understand the
hardware model that it’s intended to drive.

The conceptual arrangement shown in Figure 5-2 (for some ancient UNIX sites, it was physically like
this) is to have a UNIX machine connected via a serial port to a modem and then via a telephone line and
another modem to a remote terminal. In fact, this is just the kind of setup used by some small Internet
service providers when the Internet was young. It’s a distant relative of the client/server paradigm, used
when the program ran on a mainframe and users worked at dumb terminals.

User program

Control
interface

read/write
interface

Terminal Driver
in the Kernel

183

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 183

Figure 5-2

If you’re working on a PC running Linux, this may seem like an overly complex model. However, because
both of the authors have modems, we can, if we choose, use a terminal emulation program like minicom to
run a remote logon session on each other’s machines just like this, using a pair of modems and a telephone
line. Of course, today fast broadband access has rendered this kind of working obsolete, but this hardware
model still has its benefits.

The advantage of using such a hardware model is that most real-world situations will form a subset
of this, the most complex case. Supporting them will be much easier than if the model had omitted
such functionality.

The termios Structure
termios is the standard interface specified by POSIX and is similar to the System V interface termio.
The terminal interface is controlled by setting values in a structure of type termios and using a small
set of function calls. Both are defined in the header file termios.h.

Programs that use the function calls defined in termios.h will need to be linked with an appropriate
function library. This may be simply the standard C library or it may be the curses library, depending
on your installation. If necessary, when compiling the examples in this chapter, add -lcurses to the
end of the compiler command line. On some older Linux systems, the curses library is provided by a
version known as “new curses.” In these cases, the library name and link argument become ncurses
and -lncurses, respectively.

UNIX Kernel

Serial Hardware

Application

read/write
interface

control
interface

Data and control lines Data and control lines

'telephone' lines

184

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 184

The values that can be manipulated to affect the terminal are grouped into various modes:

❑ Input

❑ Output

❑ Control

❑ Local

❑ Special control characters

A minimum termios structure is typically declared as follows (although the X/Open specification
allows additional fields to be included):

#include <termios.h>
struct termios {

tcflag_t c_iflag;
tcflag_t c_oflag;
tcflag_t c_cflag;
tcflag_t c_lflag;
cc_t c_cc[NCCS];

};

The member names correspond with the five parameter types in the previous list.

You can initialize a termios structure for the terminal by calling the function tcgetattr, which has the
following prototype:

#include <termios.h>

int tcgetattr(int fd, struct termios *termios_p);

This call writes the current values of the terminal interface variables into the structure pointed to
by termios_p. If these values are then altered, you can reconfigure the terminal interface with the
tcsetattr function as follows:

#include <termios.h>

int tcsetattr(int fd, int actions, const struct termios *termios_p);

The actions field for tcsetattr controls how any changes are applied. The three possibilities are

❑ TCSANOW: Changes values immediately.

❑ TCSADRAIN: Changes values when current output is complete.

❑ TCSAFLUSH: Changes values when current output is complete, but discards any input currently
available and not yet returned in a read call.

Note that it’s very important for programs to restore terminal settings to the values they had before the
program started. It’s always the responsibility of a program to initially save and then restore these set-
tings when it finishes.

185

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 185

We’ll now look more closely at the modes and related function calls. Some of the detail of the modes is
rather specialized and rarely used, so we cover only the main features here. If you need to know more,
you should consult your local man pages or a copy of the POSIX or X/Open specification.

The most important mode to take in on your first read is the local mode. The canonical and non-canonical
modes are the solution to the second of the problems in the first application — the user must press Enter
or Return for the program to read the input. You can instruct the program to wait for a line of input or
pounce on input as soon as it is typed.

Input Modes
The input modes control how input (characters received by the terminal driver at a serial port or key-
board) is processed before being passed on to the program. You control them by setting flags in the
c_iflag member of the termios structure. All the flags are defined as macros and can be combined
with a bitwise OR. This is the case for all the terminal modes.

The macros that can be used for c_iflag are

❑ BRKINT: Generate an interrupt when a break condition (loss of connection) is detected on the line

❑ IGNBRK: Ignore break conditions on the line

❑ ICRNL: Convert a received carriage return to a newline

❑ IGNCR: Ignore received carriage returns

❑ INLCR: Convert received newlines to carriage returns

❑ IGNPAR: Ignore characters with parity errors

❑ INPCK: Perform parity checking on received characters

❑ PARMRK: Mark parity errors

❑ ISTRIP: Strip (set to seven bits) all incoming characters

❑ IXOFF: Enable software flow control on input

❑ IXON: Enable software flow control on output

If neither BRKINT nor IGNBRK is set, a break condition on the line is read as a NULL (0x00) character.

You won’t need to change the input modes very often, because the default values are usually the most
suitable, so we won’t discuss them further here.

Output Modes
These modes control how output characters are processed; that is, how characters sent from a program
are processed before being transmitted to the serial port or screen. As you might expect, many of these are
counterparts of the input modes. Several additional flags exist, which are mainly concerned with allowing
for slow terminals that require time to process characters such as carriage returns. Almost all of these are
either redundant (as terminals get faster) or better handled using the terminfo database of terminal capa-
bilities, which you use later in this chapter.

186

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 186

You control output modes by setting flags in the c_oflag member of the termios structure. The macros
that you can use in c_oflag are

❑ OPOST: Turn on output processing

❑ ONLCR: Convert any output newline to a carriage return/line feed pair

❑ OCRNL: Convert any output carriage return to a newline

❑ ONOCR: No carriage return output in column 0

❑ ONLRET: A newline also does a carriage return

❑ OFILL: Send fill characters to provide delays

❑ OFDEL: Use DEL as a fill character, rather than NULL

❑ NLDLY: Newline delay selection

❑ CRDLY: Carriage return delay selection

❑ TABDLY: Tab delay selection

❑ BSDLY: Backspace delay selection

❑ VTDLY: Vertical tab delay selection

❑ FFDLY: Form feed delay selection

If OPOST is not set, all the other flags are ignored.

The output modes are also not commonly used, so we won’t consider them further here.

Control Modes
These modes control the hardware characteristics of the terminal. You specify control modes by setting
flags in the c_cflag member of the termios structure, which has the following macros:

❑ CLOCAL: Ignore any modem status lines.

❑ CREAD: Enable the receipt of characters.

❑ CS5: Use five bits in sent or received characters.

❑ CS6: Use six bits in sent or received characters.

❑ CS7: Use seven bits in sent or received characters.

❑ CS8: Use eight bits in sent or received characters.

❑ CSTOPB: Use two stop bits per character, rather than one.

❑ HUPCL: Hang up modem on close.

❑ PARENB: Enable parity generation and detection.

❑ PARODD: Use odd parity rather than even parity.

If HUPCL is set, when the terminal driver detects that the last file descriptor referring to the terminal
has been closed, it will set the modem control lines to “hang-up” the line.

187

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 187

The control modes are used mainly when the serial line is connected to a modem, although they may be
used when talking to a terminal. Normally, it’s easier to change your terminal’s configuration than to
change the default line behavior by using the control modes of termios.

Local Modes
These modes control various characteristics of the terminal. You specify local modes by setting flags in
the c_lflag member of the termios structure, with the following macros:

❑ ECHO: Enable local echoing of input characters

❑ ECHOE: Perform a Backspace, Space, Backspace combination on receiving ERASE

❑ ECHOK: Perform erase line on the KILL character

❑ ECHONL: Echo newline characters

❑ ICANON: Enable canonical input processing (see the text following this list)

❑ IEXTEN: Enable implementation-specific functions

❑ ISIG: Enable signals

❑ NOFLSH: Disable flush on queue

❑ TOSTOP: Send background processes a signal on write attempts

The two most important flags here are ECHO, which allows you to suppress the echoing of typed charac-
ters, and ICANON, which switches the terminal between two very distinct modes of processing received
characters. If the ICANON flag is set, the line is said to be in canonical mode; if not, the line is in non-
canonical mode.

Special Control Characters
Special control characters are a collection of characters, like Ctrl+C, acted upon in particular ways when
the user types them. The c_cc array member of the termios structure contains the characters mapped
to each of the supported functions. The position of each character (its index into the array) is defined by
a macro, but there’s no limitation that they must be control characters.

The c_cc array is used in two very different ways, depending on whether the terminal is set to canonical
mode (that is, the setting of the ICANON flag in the c_lflag member of termios).

It’s important to realize that there is some overlap in the way the array index values are used for the two
different modes. Because of this, you should never mix values from these two modes.

For canonical mode, the array indices are

❑ VEOF: EOF character

❑ VEOL: EOL character

❑ VERASE: ERASE character

❑ VINTR: INTR character

❑ VKILL: KILL character

188

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 188

❑ VQUIT: QUIT character

❑ VSUSP: SUSP character

❑ VSTART: START character

❑ VSTOP: STOP character

For non-canonical mode, the array indices are

❑ VINTR: INTR character

❑ VMIN: MIN value

❑ VQUIT: QUIT character

❑ VSUSP: SUSP character

❑ VTIME: TIME value

❑ VSTART: START character

❑ VSTOP: STOP character

Characters
Because the special characters and non-canonical values are so important for more advanced input char-
acter processing, we explain them in some detail in the following table.

Character Description

INTR Causes the terminal driver to send a SIGINT signal to processes connected
to the terminal. We discuss signals in more detail in Chapter 11.

QUIT Causes the terminal driver to send a SIGQUIT signal to processes con-
nected to the terminal.

ERASE Causes the terminal driver to delete the last character on the line.

KILL Causes the terminal driver to delete the entire line.

EOF Causes the terminal driver to pass all characters on the line to the applica-
tion reading input. If the line is empty, a read call will return zero charac-
ters as though a read had been attempted at the end of a file.

EOL Acts as a line terminator in addition to the more usual newline character.

SUSP Causes the terminal driver to send a SIGSUSP signal to processes con-
nected to the terminal. If your UNIX supports job control, the current
application will be suspended.

STOP Acts to “flow off”; that is, prevent further output to the terminal. It’s used
to support XON/XOFF flow control and is usually set to the ASCII XOFF
character, Ctrl+S.

START Restarts output after a STOP character, often the ASCII XON character.

189

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 189

The TIME and MIN Values
The values of TIME and MIN are used only in non-canonical mode and act together to control the reading
of input. Together, they control what happens when a program attempts to read a file descriptor associ-
ated with a terminal.

There are four cases:

❑ MIN = 0 and TIME = 0: In this case, a read will always return immediately. If some characters
are available, they will be returned; if none are available, read will return zero and no charac-
ters will have been read.

❑ MIN = 0 and TIME > 0: In this case, the read will return when any character is available to be
read or when TIME tenths of a second have elapsed. If no character was read because the timer
expired, read will return zero. Otherwise, it will return the number of characters read.

❑ MIN > 0 and TIME = 0: In this case, the read will wait until MIN characters can be read and
then return that number of characters. Zero is returned on end of file.

❑ MIN > 0 and TIME > 0: This is the most complex case. When read is called, it waits for a char-
acter to be received. When the first character is received, and every subsequent time a character
is received, an inter-character timer is started (or restarted if it was already running). The read
will return when either MIN characters can be read or the inter-character time of TIME tenths of a
second expires. This can be useful for telling the difference between a single press of the Escape
key and the start of a function key escape sequence. Be aware, though, that network communi-
cations or high processor loads neatly erase such fine timing information.

By setting non-canonical mode and using the MIN and TIME values, programs can perform character-by-
character processing of input.

Accessing Terminal Modes from the Shell
If you want to see the termios settings that are being used while you’re using the shell, you can get a
list using the command:

$ stty -a

On the authors’ Linux systems, which have some extensions to the standard termios, the output is

speed 38400 baud; rows 24; columns 80; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
werase = ^W; lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl -ixon -ixoff
-iuclc -ixany -imaxbel iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke

190

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 190

Among other things, you can see that the EOF character is Ctrl+D and that echoing is enabled. When
you’re experimenting with terminal control, it’s very easy to get the terminal left in a non-standard state,
which makes using it very difficult. There are several ways out of this difficulty:

❑ The first method, if your version of stty supports it, is to use the command

$ stty sane

❑ If you have lost the mapping of the carriage return key to the newline character (which termi-
nates the line), you may need to enter stty sane, but rather than press Enter, press Ctrl+J
(which is the newline character).

❑ The second method is to use the stty -g command to write the current stty setting in a form
ready to reread. On the command line, you can use

$ stty -g > save_stty
..
<experiment with settings>
..
$ stty $(cat save_stty)

❑ You still may need to use Ctrl+J rather than Enter for the final stty command. You can use the
same technique in a shell script:

save_stty=”$(stty -g)“
<alter stty settings>
stty $save_stty

❑ If you’re really stuck, the third method is to go to a different terminal, use the ps command to
find the shell you have made unusable, and then use kill HUP <process id> to force the
shell to terminate. Because stty parameters are always reset before a logon prompt is issued,
you should be able to log in again normally.

Setting Terminal Modes from the Command Prompt
You can also use the stty command to set the terminal modes directly from the command prompt.

To set a mode in which your shell script could perform single character reads, you need to turn off
canonical mode and set it to 1 and to 0. The command is as follows:

$ stty -icanon min 1 time 0

Now that the terminal is set to read characters immediately, you can try to run the first program, menu1,
again. You should find it works as originally intended.

You also could improve your attempt to check for a password (Chapter 2) by turning echoing off before
you prompt for the password. The command to do this is

$ stty -echo

Remember to use stty echo to turn echoing back on after you try this!

191

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 191

Terminal Speed
The final function served by the termios structure is manipulating the line speed. No members are defined
for terminal speed; instead, it’s set by function calls. Input and output speeds are handled separately.

The four call prototypes are

#include <termios.h>

speed_t cfgetispeed(const struct termios *);
speed_t cfgetospeed(const struct termios *);
int cfsetispeed(struct termios *, speed_t speed);
int cfsetospeed(struct termios *, speed_t speed);

Notice that these act on a termios structure, not directly on a port. This means that to set a new speed,
you must read the current settings with tcgetattr, set the speed using one of the preceding calls, and
then write the termios structure back using tcsetattr. Only after the call to tcsetattr will the line
speed be changed.

Various values are allowed for speed in the preceding function calls, but the most important are

❑ B0: Hang up the terminal

❑ B1200: 1200 baud

❑ B2400: 2400 baud

❑ B9600: 9600 baud

❑ B19200: 19200 baud

❑ B38400: 38400 baud

There are no speeds greater than 38400 defined by the standard and no standard method of supporting
serial ports at speeds greater than this.

Some systems, including Linux, define B57600, B115200, and B230400 for selecting faster speeds. If
you’re using an earlier version of Linux and these constants are unavailable, you can use the command
setserial to obtain nonstandard speeds of 57600 and 115200. In this case, these speeds will be used
when B38400 is selected. Both of these methods are nonportable, so be careful when you’re using them.

Additional Functions
There are a small number of additional functions for the control of terminals. These work directly on file
descriptors, without needing to get and set termios structures. Their definitions are

#include <termios.h>

int tcdrain(int fd);
int tcflow(int fd, int flowtype);
int tcflush(int fd, int in_out_selector);

192

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 192

The functions have the following purposes:

❑ tcdrain causes the calling program to wait until all queued output has been sent.

❑ tcflow is used to suspend or restart output.

❑ tcflush can be used to flush input, output, or both.

Now that we’ve covered the rather large subject of the termios structure, let’s look at a few practical
examples. Possibly the simplest is the disabling of echo to read a password. Do this by turning off the
ECHO flag.

Try It Out A Password Program with termios
1. Begin your password program, password.c, with the following definitions:

#include <termios.h>
#include <stdio.h>
#include <stdlib.h>

#define PASSWORD_LEN 8

int main()
{

struct termios initialrsettings, newrsettings;
char password[PASSWORD_LEN + 1];

2. Next, add a line to get the current settings from the standard input and copy them into the
termios structure that you created previously:

tcgetattr(fileno(stdin), &initialrsettings);

3. Make a copy of the original settings to replace them at the end. Turn off the ECHO flag on the
newrsettings and ask the user for his password:

newrsettings = initialrsettings;
newrsettings.c_lflag &= ~ECHO;

printf(“Enter password: “);

4. Next, set the terminal attributes to newrsettings and read in the password. Lastly, reset the
terminal attributes to their original setting and print the password to render all the previous
security effort useless.

if(tcsetattr(fileno(stdin), TCSAFLUSH, &newrsettings) != 0) {
fprintf(stderr,”Could not set attributes\n”);

}
else {

fgets(password, PASSWORD_LEN, stdin);
tcsetattr(fileno(stdin), TCSANOW, &initialrsettings);
fprintf(stdout, “\nYou entered %s\n”, password);

}
exit(0);

}

193

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 193

When you run the program, you should see the following:

$./password
Enter password:
You entered hello

$

How It Works
In this example, the word hello is typed but not echoed at the Enter password: prompt. No output is
produced until the user presses Enter.

Be careful to change only the flags you need to change, using the construct X &= ~FLAG (which clears the
bit defined by FLAG in the variable X). If needed, you could use X |= FLAG to set a single bit defined by
FLAG, although this wasn’t necessary in the preceding example.

When you’re setting the attributes, you use TCSAFLUSH to discard any typeahead, characters users
enter before the program is ready to read them. This is a good way of encouraging users not to start
typing their password until echo has been turned off. You also restore the previous setting before your
program terminates.

Another common use of the termios structure is to put the terminal into a state where you can read
each character as it is typed. Do this by turning off canonical mode and using the MIN and TIME settings.

Try It Out Reading Each Character
Using your new knowledge, you can make changes to the menu program. The following program,
menu4.c, is based on menu3.c and has much of the code from password.c inserted into it. Changes
are highlighted and explained in the following steps.

1. For a start, you must include a new header file at the top of the program:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <termios.h>

char *menu[] = {
“a - add new record”,
“d - delete record”,
“q - quit”,
NULL,

};

2. Then you need to declare a couple of new variables in the main function:

int getchoice(char *greet, char *choices[], FILE *in, FILE *out);

194

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 194

int main()
{

int choice = 0;
FILE *input;
FILE *output;
struct termios initial_settings, new_settings;

3. You need to change the terminal’s characteristics before you call the getchoice function, so
that’s where you place these lines:

if (!isatty(fileno(stdout))) {
fprintf(stderr,”You are not a terminal, OK.\n”);

}

input = fopen(“/dev/tty”, “r”);
output = fopen(“/dev/tty”, “w”);
if(!input || !output) {

fprintf(stderr, “Unable to open /dev/tty\n”);
exit(1);

}
tcgetattr(fileno(input),&initial_settings);
new_settings = initial_settings;
new_settings.c_lflag &= ~ICANON;
new_settings.c_lflag &= ~ECHO;
new_settings.c_cc[VMIN] = 1;
new_settings.c_cc[VTIME] = 0;
new_settings.c_lflag &= ~ISIG;
if(tcsetattr(fileno(input), TCSANOW, &new_settings) != 0) {

fprintf(stderr,”could not set attributes\n”);
}

4. You should also return the settings to their original values before exiting:

do {
choice = getchoice(“Please select an action”, menu, input, output);
printf(“You have chosen: %c\n”, choice);

} while (choice != ‘q’);
tcsetattr(fileno(input),TCSANOW,&initial_settings);
exit(0);

}

5. You need to check against carriage returns now that you’re in non-canonical mode, because the
default mapping of CR to LF is no longer being performed.

int getchoice(char *greet, char *choices[], FILE *in, FILE *out)
{

int chosen = 0;
int selected;
char **option;

do {
fprintf(out, “Choice: %s\n”,greet);
option = choices;
while(*option) {

fprintf(out, “%s\n”,*option);

195

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 195

option++;
}
do {

selected = fgetc(in);
} while (selected == ‘\n’ || selected == ‘\r’);
option = choices;
while(*option) {

if(selected == *option[0]) {
chosen = 1;
break;

}
option++;

}
if(!chosen) {

fprintf(out, “Incorrect choice, select again\n”);
}

} while(!chosen);
return selected;

}

Unless you arrange otherwise, if the user now types Ctrl+C at your program, the program will termi-
nate. You can disable processing of these special characters by clearing the ISIG flag in the local modes.
To do this, the following line is included in main, as shown in the preceding step.

new_settings.c_lflag &= ~ISIG;

If you put these changes into your menu program, you now get an immediate response and the charac-
ter you type isn’t echoed.

$./menu4
Choice: Please select an action
a - add new record
d - delete record
q - quit
You have chosen: a
Choice: Please select an action
a - add new record
d - delete record
q - quit
You have chosen: q
$

If you type Ctrl+C, it’s passed directly to the program and treated as an incorrect choice.

Terminal Output
Using the termios structure, you have control over keyboard input, but it would be good to have the
same level of control over the way a program’s output is presented on the screen. You used printf at
the beginning of the chapter to output characters to the screen, but with no way of placing the output
at a particular position on the screen.

196

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 196

Terminal Type
Many UNIX systems are used with terminals, although in many cases today, the “terminal” may actually
be a PC running a terminal emulation program or a terminal application in a windowing environment
such as xterm in X11.

Historically, there have been a very large number of hardware terminals from different manufacturers.
Although they nearly all use escape sequences (a string of characters starting with the escape character)
to provide control over the position of the cursor and other attributes, such as bold and blinking, they
are generally not very well standardized in the way they do this. Some older terminals also have differ-
ent scrolling capabilities that may or may not erase when backspace is sent, and so on.

There is an ANSI standard set of escape sequences (mostly based on the sequences used in the Digital
Equipment Corporation VT series terminals, but not identical). Many software terminal programs
provide an emulation of a standard hardware terminal, often VT100, VT220, or ANSI, and sometimes
others as well.

This variety of hardware terminals would be a major problem for programmers wanting to write soft-
ware that controls the screen and runs on many terminal types. For example, an ANSI terminal uses the
sequence Escape,[,A to move the cursor up one line. An ADM-3a terminal (very common some years
ago) uses the single control character Ctrl+K.

Writing a program that can deal with the many different types of terminals that might be connected to a
UNIX system would seem to be an extremely daunting task. The program would need different source
code for each type of terminal.

Not surprisingly, there is a solution in a package known as terminfo. Instead of each program having
to cater for every sort of terminal, the program looks up a database of terminal types to get the correct
information. In most modern UNIX systems, including Linux, this has been integrated with another
package called curses, which you learn about in the next chapter.

To use terminfo functions you normally have include the curses header file, curses.h, and terminfo’s
own header file, term.h. On some Linux systems, you may have to use the implementation of curses
known as ncurses, and include ncurses.h to provide prototypes for your terminfo functions.

Identify Your Terminal Type
The Linux environment contains a variable, TERM, which is set to the type of terminal being used. It’s usu-
ally set automatically by the system at logon time. The system administrator may set a default terminal
type for each of the directly connected terminals and may arrange for remote, networked users to be
prompted for a terminal type. The value of TERM can be negotiated via telnet and is passed by rlogin.

A user can query the shell to discover the system’s idea of the terminal he or she is using.

$ echo $TERM
xterm
$

In this case, the shell is being run from a program called xterm, a terminal emulator for the X Window
System, or a program that provides similar functionality such as KDE’s Konsole or GNOME’s gnome-
terminal.

197

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 197

The terminfo package contains a database of capabilities and escape sequences for a large number of
terminals and provides a uniform programming interface for using them. A single program can then be
written that will take advantage of future terminals as the database is extended, rather than each appli-
cation having to provide support for the many different terminals.

The terminfo capabilities are described by attributes. These are stored in a set of compiled terminfo
files, which are conventionally found in /usr/lib/terminfo or /usr/share/terminfo. For each ter-
minal (and many printers, which can also be specified in terminfo) there’s a file that defines its capabil-
ities and how its features can be accessed. To avoid creating a very large directory, the actual files are
stored in subdirectories, where the subdirectory name is simply the first letter of the terminal type. Thus,
the VT100 definition is found in ...terminfo/v/vt100.

terminfo files are written one per terminal type in a source format that is (just about!) readable, then com-
piled using the tic command into a more compact and efficient format for use by application programs.
Curiously, the X/Open specification refers to source and compiled format definitions, but fails to mention
the tic command for actually getting from source to compiled formats. You can use the infocmp program
to print a readable version of a compiled terminfo entry.

Here’s an example terminfo file for the VT100 terminal:

$ infocmp vt100
vt100|vt100-am|dec vt100 (w/advanced video),
am, mir, msgr, xenl, xon,
cols#80, it#8, lines#24, vt#3,
acsc=``aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
bel=^G, blink=\E[5m$<2>, bold=\E[1m$<2>,
clear=\E[H\E[J$<50>, cr=\r, csr=\E[%i%p1%d;%p2%dr,
cub=\E[%p1%dD, cub1=\b, cud=\E[%p1%dB, cud1=\n,
cuf=\E[%p1%dC, cuf1=\E[C$<2>,
cup=\E[%i%p1%d;%p2%dH$<5>, cuu=\E[%p1%dA,
cuu1=\E[A$<2>, ed=\E[J$<50>, el=\E[K$<3>,
el1=\E[1K$<3>, enacs=\E(B\E)0, home=\E[H, ht=\t,
hts=\EH, ind=\n, ka1=\EOq, ka3=\EOs, kb2=\EOr, kbs=\b,
kc1=\EOp, kc3=\EOn, kcub1=\EOD, kcud1=\EOB,
kcuf1=\EOC, kcuu1=\EOA, kent=\EOM, kf0=\EOy, kf1=\EOP,
kf10=\EOx, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
kf6=\EOu, kf7=\EOv, kf8=\EOl, kf9=\EOw, rc=\E8,
rev=\E[7m$<2>, ri=\EM$<5>, rmacs=^O, rmkx=\E[?1l\E>,
rmso=\E[m$<2>, rmul=\E[m$<2>,
rs2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h, sc=\E7,
sgr=\E[0%?%p1%p6%|%t;1%;%?%p2%t;4%;%?%p1%p3%|%t;7%;%?%p4%t;5%;m%?%p9%t^N%e^O%;,
sgr0=\E[m^O$<2>, smacs=^N, smkx=\E[?1h\E=,
smso=\E[1;7m$<2>, smul=\E[4m$<2>, tbc=\E[3g,

Each terminfo definition consists of three types of entry. Each entry is called a capname and defines a
terminal capability.

Boolean capabilities simply indicate whether a terminal supports a particular feature. For example, the
Boolean capability xon is present if the terminal supports XON/XOFF flow control.

198

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 198

Numeric capabilities define sizes, such as lines, the number of lines on the screen, and cols, the number
of columns on the screen. The actual number is separated from the capability name by a # character. To
define a terminal as having 80 columns and 24 lines, you would write cols#80, lines#24.

String capabilities are slightly more complex. They are used for two distinct types of capability: defining
output strings needed to access terminal features and defining the input strings that will be received
when the user presses certain keys, normally function keys or special keys on the numeric keypad. Some
string capabilities are quite simple, such as el, which is “erase to end of line.” On a VT100 terminal, the
escape sequence needed to do this is Esc,[,K. This is written el=\E[K in terminfo source format.

Special keys are defined in a similar way. For example, the F1 function key on a VT100 sends the
sequence Esc,O,P. This is defined as kf1=\EOP.

Things get slightly more complicated where the escape sequence needs some parameters. Most terminals
can move the cursor to a specified row and column location. It’s clearly impractical to have a different
capability for each possible cursor location, so a generic capability string is used, with parameters defin-
ing the values to be inserted when the stings are used. For example, a VT100 terminal uses the sequence
Esc,[,<row>,;,<col>,H to move the cursor to a specified location. In terminfo source format, this is writ-
ten with the rather intimidating cup=\E[%i%p1%d;%p2%dH$<5>.

This means

❑ \E: Send Escape

❑ [: Send the [character

❑ %i: Increment the arguments

❑ %p1: Put the first argument on the stack

❑ %d: Output the number on the stack as a decimal number

❑ ;: Send the ; character

❑ %p2: Put the second argument on the stack

❑ %d: Output the number on the stack as a decimal number

❑ H: Send the H character

This seems complex, but allows for the parameters to be in a fixed order, independent of which order the ter-
minal expects them to appear in the final escape sequence. The %i to increment the arguments is required
because standard cursor addressing is specified as starting from (0,0) at the top left of the screen, but the
VT100 addresses this location as (1,1). The final $<5> indicates that a delay equivalent to five character out-
put times is required to allow the terminal to process the cursor movement.

We could define many, many capabilities, but, fortunately, most UNIX and Linux systems come with
most terminals predefined. If you need to add a new terminal, you’ll find the complete capability list in
the terminfo manual page. A good starting point is usually to locate a terminal that is similar to your
new terminal and define the new terminal as a variation on the existing terminal or to work through the
capabilities one at a time, updating them where required.

The standard reference outside of the man pages is the Termcap and Terminfo by John Strang, Linda
Mui, and Tim O’Reilly (O’Reilly).

199

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 199

Using terminfo Capabilities
Now that you know how to define terminal capabilities, you need to learn how to access them. When
you’re using terminfo, the first thing you need to do is set up the terminal type by calling setupterm.
This will initialize a TERMINAL structure for the current terminal type. You’ll then be able to ask for capa-
bilities for the terminal and use its facilities. You do this with the setupterm call like this:

#include <term.h>

int setupterm(char *term, int fd, int *errret);

The setupterm library function sets the current terminal type to that specified by the parameter term.
If term is a null pointer, the TERM environment variable will be used. An open file descriptor to be used
for writing to the terminal must be passed as fd. The function outcome is stored in the integer variable
pointed to by errret, if this isn’t a null pointer. The value written will be

❑ –1: No terminfo database

❑ 0: No matching entry in terminfo database

❑ 1: Success

The setupterm function returns the constant OK if it succeeds and ERR if it fails. If errret is set to a null
pointer, setupterm will print a diagnostic message and exit the program if it fails, as in this example:

#include <stdio.h>
#include <term.h>
#include <curses.h>
#include <stdlib.h>

int main()
{

setupterm(“unlisted”,fileno(stdout),(int *)0);
printf(“Done.\n”);
exit(0);

}

The output from running this program on your system may not be exactly that given here, but the
meaning should be clear enough. Done. isn’t printed, because setupterm caused the program to exit
when it failed.

$ cc -o badterm badterm.c -lncurses
$./badterm
‘unlisted’: unknown terminal type.
$

Notice the compilation line in the example: On this Linux system, we are using the ncurses implemen-
tation of the curses library with a standard header file, which is available in the standard locations. On
such systems, you can simply include curses.h, and specify –lncurses for the library.

200

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 200

For the menu choice function, you would like to be able to clear the screen, move the cursor around the
screen, and write at different locations on the screen. Once you’ve called setupterm, you can access
the terminfo capabilities with three function calls, one for each of the capability types:

#include <term.h>

int tigetflag(char *capname);
int tigetnum(char *capname);
char *tigetstr(char *capname);

The functions tigetflag, tigetnum, and tigetstr return the value of Boolean, numeric, and string
terminfo capabilities, respectively. On failure (for example, if the capability isn’t present), tigetflag
returns -1, tigetnum returns -2, and tigetstr returns (char *)-1.

You can use the terminfo database to find out the size of the terminal by retrieving the cols and lines
capabilities with this program, sizeterm.c:

#include <stdio.h>
#include <term.h>
#include <curses.h>
#include <stdlib.h>

int main()
{

int nrows, ncolumns;

setupterm(NULL, fileno(stdout), (int *)0);
nrows = tigetnum(“lines”);
ncolumns = tigetnum(“cols”);
printf(“This terminal has %d columns and %d rows\n”, ncolumns, nrows);
exit(0);

}

$ echo $TERM
vt100
$./sizeterm
This terminal has 80 columns and 24 rows
$

If you run the program inside a window on a workstation, you’ll get answers that reflect the current
window’s size:

$ echo $TERM
xterm
$./sizeterm
This terminal has 88 columns and 40 rows
$

If you use tigetstr to retrieve the cursor motion capability (cup) of the xterm terminal type, you get a
parameterized answer: \E[%p1%d;%p2%dH.

This capability requires two parameters: a row and column to move the cursor to. Both coordinates are
measured starting at zero from the top-left corner of the screen.

201

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 201

You can substitute the parameters in a capability with actual values using the tparm function. Up to
nine parameters can be substituted and a usable escape sequence is returned.

#include <term.h>

char *tparm(char *cap, long p1, long p2, ..., long p9);

Once you’ve constructed the terminal escape sequence with tparm, you must send it to the terminal. To
process this properly, you shouldn’t send the string to the terminal with printf. Instead, use one of the
special functions provided that correctly process any required delays while the terminal completes an
operation. These functions are

#include <term.h>

int putp(char *const str);
int tputs(char *const str, int affcnt, int (*putfunc)(int));

On success, putp returns OK; on failure, it returns ERR. The putp function takes the terminal control
string and sends it to stdout.

So, to move to row 5, column 30 of the screen, you can use a block of code like this:

char *cursor;
char *esc_sequence;
cursor = tigetstr(“cup”);
esc_sequence = tparm(cursor,5,30);
putp(esc_sequence);

The tputs function is provided for those situations when the terminal isn’t accessed via stdout and
allows you to specify the function to be used for outputting the characters. It returns the result of the user-
specified function putfunc. The affcnt parameter is intended to indicate the number of lines affected by
the change. It’s normally set to 1. The function used to output the string must have the same parameters
and return type as the putchar function. Indeed, putp(string) is equivalent to the call tputs(string,
1, putchar). You’ll see tputs used with a user-specified output function in the next example.

Be aware that some older Linux distributions define the final parameter of the tputs function as int
(*putfunc)(char), which would oblige you to alter the definition of the char_to_terminal function
in the next Try It Out section.

If you consult the manual pages for information on tparm and terminal capabilities, you may come
across the tgoto function. The reason we haven’t used this function, when it apparently offers an easier
solution to moving the cursor, is that the X/Open specification (Single UNIX Specification Version 2)
does not include it as of the 1997 edition. We therefore recommend that you don’t use any of these func-
tions in new programs.

You’re almost ready to add screen handling to your menu choice function. The only thing left to do is
to clear the screen simply by using clear. Some terminals don’t support the clear capability, which
leaves the cursor at the top-left corner of the screen. In this case, you can position the cursor at the top-
left corner and use the “delete to end of display” command, ed.

Putting all this information together, you’ll write the final version of your sample menu program,
screenmenu.c, where you “paint” the options on the screen for the user to pick a valid one.

202

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 202

Try It Out Total Terminal Control
You can rewrite the getchoice function from menu4.c to give you total terminal control. In this listing, the
main function has been omitted because it isn’t changed. Other differences from menu4.c are highlighted.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <termios.h>
#include <term.h>
#include <curses.h>

static FILE *output_stream = (FILE *)0;

char *menu[] = {
“a - add new record”,
“d - delete record”,
“q - quit”,
NULL,

};

int getchoice(char *greet, char *choices[], FILE *in, FILE *out);
int char_to_terminal(int char_to_write);

int main()
{
...
}

int getchoice(char *greet, char *choices[], FILE *in, FILE *out)
{

int chosen = 0;
int selected;
int screenrow, screencol = 10;

char **option;
char *cursor, *clear;

output_stream = out;

setupterm(NULL,fileno(out), (int *)0);
cursor = tigetstr(“cup”);
clear = tigetstr(“clear”);

screenrow = 4;
tputs(clear, 1, (int *) char_to_terminal);
tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
fprintf(out, “Choice: %s, greet);
screenrow += 2;
option = choices;
while(*option) {

tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
fprintf(out,”%s”, *option);
screenrow++;
option++;

203

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 203

}
fprintf(out, “\n”);

do {
fflush(out);
selected = fgetc(in);
option = choices;
while(*option) {

if(selected == *option[0]) {
chosen = 1;
break;

}
option++;

}
if(!chosen) {

tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
fprintf(out,”Incorrect choice, select again\n”);

}
} while(!chosen);
tputs(clear, 1, char_to_terminal);
return selected;

}

int char_to_terminal(int char_to_write)
{

if (output_stream) putc(char_to_write, output_stream);
return 0;

}

Save this program as menu5.c.

How It Works
The rewritten getchoice function implements the same menu as in previous examples, but the output
routines are modified to make use of the terminfo capabilities. If you want to see the You have chosen:
message for more than a moment before the screen is cleared, ready for the next selection, add a call to
sleep in the main function:

do {
choice = getchoice(“Please select an action”, menu, input, output);
printf(“\nYou have chosen: %c\n”, choice);
sleep(1);

} while (choice != ‘q’);

The last function in this program, char_to_terminal, includes a call to the putc function, which we
mentioned in Chapter 3.

To round off this chapter, let’s look at a quick example of how to detect keystrokes.

204

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 204

Detecting Keystrokes
People who have programmed MS-DOS often look for the Linux equivalent of the kbhit function,
which detects whether a key has been pressed without actually reading it. Unfortunately, they fail to
find it, because there’s no direct equivalent. UNIX programmers don’t notice the omission because
UNIX is normally programmed in such a way that programs should rarely, if ever, busy-wait on an
event. Because this is the normal use for kbhit, it’s rarely missed on UNIX and Linux.

However, when you’re porting programs from MS-DOS, it’s often convenient to emulate kbhit, which
you can do using the non-canonical input mode.

Try It Out Your Very Own kbhit
1. You begin with the standard headings and declare a couple of structures for the terminal settings.

peek_character is used in the test of whether a key has been pressed. Then you prototype the
functions you’ll be using later.

#include <stdio.h>
#include <stdlib.h>
#include <termios.h>
#include <term.h>
#include <curses.h>
#include <unistd.h>
static struct termios initial_settings, new_settings;
static int peek_character = -1;
void init_keyboard();
void close_keyboard();
int kbhit();
int readch();

2. The main function calls init_keyboard to configure the terminal, then loops once a second,
calling kbhit each time it does. If the key hit is q, close_keyboard returns the behavior to
normal and the program exits.

int main()
{

int ch = 0;

init_keyboard();
while(ch != ‘q’) {

printf(“looping\n”);
sleep(1);
if(kbhit()) {

ch = readch();
printf(“you hit %c\n”,ch);

}
}

close_keyboard();
exit(0);

}

205

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 205

3. init_keyboard and close_keyboard configure the terminal at the start and end of the program.

void init_keyboard()
{

tcgetattr(0,&initial_settings);
new_settings = initial_settings;
new_settings.c_lflag &= ~ICANON;
new_settings.c_lflag &= ~ECHO;
new_settings.c_lflag &= ~ISIG;
new_settings.c_cc[VMIN] = 1;
new_settings.c_cc[VTIME] = 0;
tcsetattr(0, TCSANOW, &new_settings);

}
void close_keyboard()
{

tcsetattr(0, TCSANOW, &initial_settings);
}

4. Now for the function that checks for the keyboard hit:

int kbhit()
{

char ch;
int nread;

if(peek_character != -1)
return 1;

new_settings.c_cc[VMIN]=0;
tcsetattr(0, TCSANOW, &new_settings);
nread = read(0,&ch,1);
new_settings.c_cc[VMIN]=1;
tcsetattr(0, TCSANOW, &new_settings);

if(nread == 1) {
peek_character = ch;
return 1;

}
return 0;

}

5. The character pressed is read by the next function, readch, which then resets peek_character
to –1 for the next loop.

int readch()
{

char ch;

if(peek_character != -1) {
ch = peek_character;
peek_character = -1;
return ch;

}
read(0,&ch,1);
return ch;

}

206

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 206

When you run the program (kbhit.c), you get

$./kbhit
looping
looping
looping
you hit h
looping
looping
looping
you hit d
looping
you hit q
$

How It Works
The terminal is configured in init_keyboard to read one character before returning (MIN=1,TIME=0).
kbhit changes this behavior to check for input and return immediately (MIN=0,TIME=0) and then
restores the original settings before exiting.

Notice that you have to read the character that has been pressed but that you store it locally, ready for
returning when it’s required.

Virtual Consoles
Linux provides a feature called virtual consoles. A number of terminal devices are available, all of which
share the PC’s screen, keyboard, and mouse. Typically, a Linux installation will be configured for 8 or 12 of
these virtual consoles. The virtual consoles are made available through the character devices /dev/ttyN
where N is a number, starting at 1.

If you use a text login for your Linux system, you will be presented with a login prompt once Linux is
up and running. You then log in using a username and password. The device that you are using at this
point is the first virtual console, the terminal device /dev/tty1.

Using who and ps, you can see who is logged in and the shell and programs being executed on this
virtual console:

$ who
neil tty1 Mar 8 18:27
$ ps -e
PID TTY TIME CMD
1092 tty1 00:00:00 login
1414 tty1 00:00:00 bash
1431 tty1 00:00:00 emacs

Here, you can see in this cut-down output that user neil is logged in and running Emacs on the PC con-
sole device /dev/tty1.

207

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 207

Linux will normally start a getty process running on the first six virtual consoles so that it is possible to
log in six times using the same screen, keyboard, and mouse. You can see these processes with ps:

$ ps -e
PID TTY TIME CMD
1092 tty1 00:00:00 login
1093 tty2 00:00:00 mingetty
1094 tty3 00:00:00 mingetty
1095 tty4 00:00:00 mingetty
1096 tty5 00:00:00 mingetty
1097 tty6 00:00:00 mingetty

Here, you can see the SUSE default getty program, mingetty, running on five further virtual consoles,
waiting for a user to log in.

You can switch between virtual consoles using a special key combination: Ctrl+Alt+F<N> where N is the
number of the virtual console you want to switch to. So, to switch to the second virtual console, you would
press Alt+Ctrl+F2, and Ctrl+Alt+F1 to return to the first console. (When switching from text logins rather
than graphical logins, the combination Ctrl+F<N> also works.)

If Linux starts a graphical login, either by startx or via a display manager such as xdm, the X Window
System will start up using the first free virtual console, normally /dev/tty7. When using the X Win -
dow System, you can switch out to a text console with Ctrl+Alt+F<N> and back with Ctrl+Alt+F7.

It is possible to run more than one X session on Linux. If you do this, for example, with

$ startx -- :1

Linux will start the X server on the next free virtual console, in this case, /dev/tty8, and it is then possi-
ble to switch between them with Ctrl+Alt+F8 and Ctrl+Alt+F7.

In all other respects, the virtual consoles behave as a terminal, as described in this chapter. If a process
has the correct permissions, the virtual consoles can be opened, read from, and written to in the same
way as a normal terminal.

Pseudo-Terminals
Many UNIX-like systems, including Linux, have a feature called pseudo-terminals. These are devices
that behave much like the terminals we have been using in this chapter, except that they have no associ-
ated hardware. They can be used to provide a terminal-like interface to other programs.

For example, using pseudo-terminals, it is possible to make two chess programs play each other, despite
the fact that the programs themselves were designed to interact with a human player at a terminal. An
application acting as an intermediary passes one program’s moves to the other and vice versa. It uses
pseudo-terminals to fool the programs into behaving normally without a terminal being present.

Pseudo-terminals were at one time implemented in a system-specific manner, if at all. They have now
been incorporated into the Single UNIX Specification as UNIX98 Pseudo-Terminals or PTYs.

208

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 208

Summary
In this chapter, you’ve learned about three different aspects of controlling the terminal. In the first part of
the chapter, you learned about detecting redirection and how to talk directly to a terminal even when the
standard file descriptors have been redirected. You saw the hardware model for terminals and a little of
their history. You then learned about the General Terminal Interface and the termios structure that pro-
vides detailed control over Linux terminal handling. You also saw how to use the terminfo database and
related functions to manage screen output in a terminal-independent fashion, and you looked at immedi-
ately detecting keystrokes. Finally, you learned about Linux virtual consoles and pseudo-terminals.

209

Chapter 5: Terminals

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 209

47627c05.qxd:WroxPro 9/29/07 3:48 PM Page 210

6
Managing Text-Based
Screens with curses

In Chapter 5, you learned how to obtain much finer control over the input of characters and how
to provide character output in a terminal-independent way. The problem with using the general
terminal interface (GTI, or termios) and manipulating escape sequences with tparm and its
related functions is that it requires a lot of lower-level code. For many programs, a higher-level
interface is more desirable. We would like to be able to simply draw on the screen and use a
library of functions to take care of terminal dependencies automatically.

In this chapter, you’ll learn about just such a library, the curses library. The curses standard is
important as a halfway house between simple “line-based” programs and the fully graphical (and
generally harder to program) X Window System programs, such as GTK+/GNOME and Qt/KDE.
Linux does have the svgalib (Super VGA Library, a low-level graphics library), but that is not
a UNIX standard library, so is not generally available in other UNIX-like operating systems.
The curses library is used in many full-screen applications as a reasonably easy and terminal-
independent way to write full-screen, albeit character-based, programs. It’s almost always easier to
write such programs with curses than to use escape sequences directly. curses can also manage
the keyboard, providing an easy-to-use, nonblocking character input mode.

You may find that a few of the examples in this chapter don’t always display on the plain Linux
console exactly as you expect. There are occasions when the combination of the curses library
and the terminal definition of the console get slightly out of step and the effect is usually some
slightly odd layouts when using curses. However, if you use the X Window System and use an
xterm window to display the output, then things should display as you expect.

This chapter covers the following:

❑ Using the curses library

❑ The concepts of curses

❑ Basic input and output control

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 211

❑ Using multiple windows

❑ Using keypad mode

❑ Adding color

We finish the chapter by reimplementing the CD Collection program in C, summarizing what you’ve
learned so far.

Compiling with curses
The curses library takes its name from its ability to optimize the movement of the cursor and minimize
the updates needed on a screen, and hence, reduce the number of characters that need to be sent to a
text-based terminal. Although the number of characters output is much less important than it was in the
days of dumb terminals and low-speed modems, the curses library survives as a useful addition to
the programmer’s toolkit.

Because curses is a library, to use it you must include a header file, function declarations, and macros
from an appropriate system library. There have been several different implementations of curses. The
original version appeared in BSD UNIX and was then incorporated into the System V flavors of UNIX,
before being standardized by X/Open. Linux uses ncurses (“new curses”), a freeware emulation of
System V Release 4.0 curses that was developed on Linux. This implementation is highly portable
to other UNIX versions, although a few nonportable additional features are included. There are even
versions of curses for MS-DOS and Windows. If you find that the curses library bundled with your
flavor of UNIX doesn’t support some features, try to obtain a copy of ncurses as an alternative. Linux
users will usually find they have ncurses already installed, or at least the components required for run-
ning curses-based programs. If the development libraries for it are not pre-installed in your distribu-
tion (there is no curses.h file or no curses library file to link against), they are generally available for
most major distributions as a standard package, probably named something like libncurses5-dev.

When you’re compiling curses programs, you must include the header file curses.h, and link against
the curses library with -lcurses. On many Linux systems you can simply use curses but will find
you are actually using the superior, and newer, ncurses implementation.

You can check how your curses is set up by executing the command

ls –l /usr/include/*curses.h

The X/Open specification defines two levels of curses: base and extended. Extended
curses contains a somewhat motley crew of additional routines, including a range
of functions for handling multicolumn characters and color manipulation routines.
Apart from showing how to use color later in this chapter, we will be sticking mostly
to the base functions.

212

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 212

to look at the header files, and

ls –l /usr/lib/lib*curses*

to check the library files. If you find that curses.h and ncurses.h are just linked files, and an ncurses
library file is present, you should be able to compile the files in this chapter using a command such as
the following:

$ gcc program.c -o program -lcurses

If, however, your curses setup is not automatically using ncurses, then you may have to explicitly
force the use of ncurses by including ncurses.h, rather than curses.h, and by executing a compile
command such as this:

$ gcc -I/usr/include/ncurses program.c -o program -lncurses

where the -I option specifies the directory in which to search for the header file.

The Makefile in the downloadable code assumes your setup uses curses by default, so you must
change it or compile it by hand if this is not the case on your system.

If you’re unsure how curses is set up on your system, refer to the manual pages for ncurses, or look
for other online documentation; a common location is under /usr/share/doc/, where you may find a
curses or ncurses directory, often with a version number appended.

Curses Terminology and Concepts
The curses routines work on screens, windows, and subwindows. A screen is the device (usually a ter-
minal screen, but it could also be an xterm screen) to which you are writing. It occupies all the available
display on that device. Of course, if it’s a terminal window inside an X window, the screen is simply
all the character positions available inside the terminal window. There is always at least one curses
window, stdscr, that is the same size as the physical screen. You can create additional windows that
are smaller than the screen. Windows can overlap each other and have many subwindows, but each
subwindow must always be contained inside its parent window.

The curses library maintains two data structures that act like a map of the terminal screen: stdscr, and
curscr. stdscr, the more important of the two data structures, is updated when curses functions pro-
duce output. The stdscr data structure is the “standard screen.” It acts in much the same way as stdout,
the standard output, does for the stdio library. It’s the default output window in curses programs. The
curscr structure is similar, but holds what the displayed screen actually looks like at the current moment.
Output written to stdscr doesn’t appear on the screen until the program calls refresh, when the curses
library compares the contents of stdscr (what the screen should look like) with the second structure
curscr (what the screen currently looks like). curses then uses the differences between these two struc-
tures to update the screen.

Some curses programs need to know that curses maintains a stdscr structure, which is required as a
parameter to a few curses functions. However, the actual stdscr structure is implementation-dependent
and should never be accessed directly. curses programs should never need to use the curscr structure.

213

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 213

Thus, the process for the output of characters in a curses program is as follows:

1. Use curses functions to update a logical screen.

2. Ask curses to update the physical screen with refresh.

The advantage of a two-level approach, in addition to being much easier to program, is that curses
screen updates are very efficient. In addition, although this isn’t so important on a console screen, it can
make a considerable difference if you’re running your program over a slow network link.

A curses program will make many calls to logical screen output functions, possibly moving the cursor all
over the screen to get to the right position for writing text and drawing lines and boxes. At some stage, the
user needs to see all of this output. When this happens, typically during a call to refresh, curses will cal-
culate the optimum way of making the physical screen correspond to the logical screen. By using appropri-
ate terminal capabilities and by optimizing cursor motions, curses can often update the screen with far
fewer characters being output than if all the screen writes had happened immediately.

The layout of the logical screen is a character array, arranged by lines and columns, with the screen posi-
tion (0,0) at the top left-hand corner, as shown in Figure 6-1.

Figure 6-1

All the curses functions use coordinates with the y value (lines) before the x (columns) value. Each
position holds not only the character for that screen location, but also its attributes. The attributes that

(LINES, COLUMNS)

(0,0)

214

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 214

can be displayed depend on the physical terminal’s capabilities, but usually at least bold and underline
are available. On Linux consoles, you usually also have reverse video and color, which are covered later
in the chapter.

Because the curses library needs to create and destroy some temporary data structures, all curses pro-
grams must initialize the library before use and then allow curses to restore settings after use. This is
done with a pair of function calls: initscr and endwin.

Try It Out A Hello World curses Program
In this example, you write a very simple curses program, screen1.c, to show these and other basic
function calls in action. You then describe the function prototypes:

1. Add the curses.h header file, and in the main function make calls to initialize and reset the
curses library:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main() {
initscr();

...

endwin();
exit(EXIT_SUCCESS);

}

2. In between, add code to move the cursor to the point (5,15) on the logical screen, print “Hello
World,” and refresh the actual screen. Lastly, use the call sleep(2) to suspend the program for
two seconds so that you can see the output before the program ends:

move(5, 15);
printw(“%s”, “Hello World”);
refresh();

sleep(2);

While the program is running, you see “Hello World” in the top-left quadrant of an otherwise blank
screen, as shown in Figure 6-2.

How It Works
This program initialized the curses library, moved the cursor to a point on the screen, and displayed
some text. After a brief pause it then closed down the library and exited.

215

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 215

Figure 6-2

The Screen
As you’ve already seen, all curses programs must start with initscr and end with endwin. Here are
their header file definitions:

#include <curses.h>

WINDOW *initscr(void);
int endwin(void);

The initscr function must only be called once in each program. The initscr function returns a
pointer to the stdscr structure if it succeeds. If it fails, it simply prints a diagnostic error message and
causes the program to exit.

The endwin function returns OK on success and ERR on failure. You can call endwin to leave curses
and then later resume curses operation by calling clearok(stdscr, 1) and refresh. This effectively
makes curses forget what the physical screen looks like and forces it to perform a complete redisplay.

Output to the Screen
Several basic functions are provided for updating the screen:

#include <curses.h>

int addch(const chtype char_to_add);
int addchstr(chtype *const string_to_add);
int printw(char *format, ...);
int refresh(void);
int box(WINDOW *win_ptr, chtype vertical_char, chtype horizontal_char);
int insch(chtype char_to_insert);

216

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 216

int insertln(void);
int delch(void);
int deleteln(void);
int beep(void);
int flash(void);

curses has its own character type, chtype, which may have more bits than a standard char. In the
standard Linux version of ncurses, chtype is actually a typedef for unsigned long.

The add... functions add the character or string specified at the current location. The printw function
formats a string in the same way as printf and adds it to the current location. The refresh function
causes the physical screen to be updated, returning OK on success and ERR if an error occurred. The box
function allows you to draw a box around a window.

The insch function inserts a character, moving existing characters right, though what will happen at the end
of a line isn’t specified and depends on the terminal you’re using. insertln inserts a blank line, moving
existing lines down by one. The two delete functions are analogous to the two insert functions.

To make a sound, you can call beep. A very small number of terminals are unable to make any sound, so
some curses setups will cause the screen to flash when beep is called. If you work in a busy office, where
beeps can come from any number of machines, you might find you prefer this. As you might expect, flash
causes the screen to flash, but if this isn’t possible, it tries to make a sound on the terminal instead.

Reading from the Screen
You can read characters from the screen, although this facility isn’t commonly used because normally it’s
easier to keep track of what was written. If you need it, it’s done with the following functions:

#include <curses.h>

chtype inch(void);
int instr(char *string);
int innstr(char *string, int number_of_characters);

The inch function should always be available, but the instr and innstr functions are not always
supported. The inch function returns a character and its attribute information from the current screen
location of the cursor. Notice that inch doesn’t return a character, but a chtype, while instr and
innstr write to arrays of chars.

In standard curses, you may only use “normal” characters for the vertical and hori-
zontal line characters. In extended curses, though, you can use the two defines
ACS_VLINE and ACS_HLINE to provide vertical and horizontal line characters, respec-
tively, which enable you to draw a better-looking box. For this, your terminal needs
to support line-drawing characters. Generally, these will work better in an xterm
window than on the standard console, but support tends to be patchy, so we suggest
you avoid them if portability is important.

217

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 217

Clearing the Screen
There are four principal ways of clearing an area of the screen:

#include <curses.h>

int erase(void);
int clear(void);
int clrtobot(void);
int clrtoeol(void);

The erase function writes blanks to every screen location. The clear function, like erase, clears the
screen, but forces a screen redisplay by internally calling a lower-level function, clearok, which enforces
a clear screen sequence and redisplay when the next refresh is called.

The clear function usually uses a terminal command that erases the entire screen, rather than simply
attempting to erase any currently nonblank screen locations. This makes the clear function a reliable
way of completely erasing the screen. The combination of clear followed by refresh can provide a
useful redraw command if the screen display has become confused or corrupted in some way.

clrtobot clears the screen from the cursor position onward to the end of the screen, and clrtoeol
clears from the cursor position to the end of the line the cursor is on.

Moving the Cursor
A single function is provided for moving the cursor, with an additional command for controlling where
curses leaves the cursor after screen updates:

#include <curses.h>

int move(int new_y, int new_x);
int leaveok(WINDOW *window_ptr, bool leave_flag);

The move function simply moves the logical cursor position to the specified location. Remember that the
screen coordinates are specified with (0,0) as the top left-hand corner of the screen. In most versions of
curses, the two extern integers LINES and COLUMNS contain the physical screen size and can be used to
determine the maximum allowed values for new_y and new_x. Calling move won’t, in itself, cause the physi-
cal cursor to move. It only changes the location on the logical screen at which the next output will appear. If
you want the screen cursor to move immediately after calling move, follow it with a call to refresh.

The leaveok function sets a flag that controls where curses leaves the physical cursor after a screen
update. By default, the flag is false, and after a refresh the hardware cursor is left in the same position
on the screen as the logical cursor. If the flag is set to true, the hardware cursor may be left randomly,
anywhere on the screen. Generally, the default option is preferred to ensure that the cursor is left in a
sensible location.

Character Attributes
Each curses character can have certain attributes that control how it’s displayed on the screen, assuming
that the display hardware can support the requested attribute. The defined attributes are A_BLINK, A_BOLD,

218

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 218

A_DIM, A_REVERSE, A_STANDOUT, and A_UNDERLINE. You can use these functions to set attributes singly
or collectively:

#include <curses.h>

int attron(chtype attribute);
int attroff(chtype attribute);
int attrset(chtype attribute);
int standout(void);
int standend(void);

The attrset function sets the curses attributes, attron and attroff turn on and off specified attrib-
utes without disturbing others, while standout and standend provide a more generic emphasized, or
“stand out” mode. This is commonly mapped to reverse video on most terminals.

Try It Out Moving, Inserting, and Attributes
Now that you know more about managing the screen, you can try out a more complex example,
moveadd.c. For the purposes of this example, you’ll include several calls to refresh and sleep, to
enable you to see what the screen looks like at each stage. Normally, curses programs would refresh
the screen as little as possible because it’s not a very efficient operation. The code is slightly contrived
for the purposes of illustration.

1. To begin, include some header files, define some character arrays and a pointer to those arrays,
and then initialize the curses structures:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <curses.h>

int main()
{

const char witch_one[] = “ First Witch “;
const char witch_two[] = “ Second Witch “;
const char *scan_ptr;

initscr();

2. Now for the three initial sets of text that appear at intervals on the screen — note the on and off
flagging of text attributes:

move(5, 15);
attron(A_BOLD);
printw(“%s”, “Macbeth”);
attroff(A_BOLD);
refresh();
sleep(1);

move(8, 15);

219

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 219

attron(A_STANDOUT);
printw(“%s”, “Thunder and Lightning”);
attroff(A_STANDOUT);
refresh();
sleep(1);

move(10, 10);
printw(“%s”, “When shall we three meet again”);
move(11, 23);
printw(“%s”, “In thunder, lightning, or in rain ?”);
move(13, 10);
printw(“%s”, “When the hurlyburly’s done,”);
move(14,23);
printw(“%s”, “When the battle’s lost and won.”);
refresh();
sleep(1);

3. The actors are identified and their names are inserted one character at a time:

attron(A_DIM);
scan_ptr = witch_one + strlen(witch_one) - 1;
while(scan_ptr != witch_one) {

move(10,10);
insch(*scan_ptr--);

}
scan_ptr = witch_two + strlen(witch_two) - 1;
while (scan_ptr != witch_two) {

move(13, 10);
insch(*scan_ptr--);

}
attroff(A_DIM);
refresh();
sleep(1);

4. Finally, move the cursor to the bottom-right corner of the screen and then tidy up an exit:

move(LINES - 1, COLS - 1);

refresh();
sleep(1);

endwin();
exit(EXIT_SUCCESS);

}

When you run this program, the final screen looks like the one shown in Figure 6-3.

Unfortunately, the screenshot doesn’t convey the full effect very well, nor does it show the cursor, which
is parked at the bottom right-hand corner.

You may find that xterm is a more reliable medium for accurately displaying programs than the raw console.

220

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 220

Figure 6-3

How It Works
After initializing some variables and the curses screen, you used the move functions to move the cursor
about the screen. By using the attron and attroff functions, you controlled the attributes of the text
written out at each location. The program then demonstrated how characters can be inserted with
insch, before closing the curses library and terminating.

The Keyboard
As well as providing an easier interface for controlling the screen, curses also provides an easier
method for controlling the keyboard.

Keyboard Modes
The keyboard reading routines are controlled by modes. The functions that set the modes are as follows:

#include <curses.h>

int echo(void);
int noecho(void);
int cbreak(void);
int nocbreak(void);
int raw(void);
int noraw(void);

The two echo functions simply turn the echoing of typed characters on and off. The remaining four
function calls control how characters typed on the terminal are made available to the curses program.

221

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 221

To explain cbreak, you need to understand the default input mode. When a curses program starts by
calling initscr, the input mode is set to what is termed cooked mode. This means that all processing is done
on a line-by-line basis; that is, input is only available after the user has pressed Enter (or the Return key on
some keyboards). Keyboard special characters are enabled, so typing the appropriate key sequences can
generate a signal in the program. Flow control, if the terminal is running from a terminal, is also enabled.
By calling cbreak, a program may set the input mode to cbreak mode whereby characters are available to
the program immediately after they are typed, rather than being buffered up and only made available
to the program when Enter is pressed. As in cooked mode, keyboard special characters are enabled, but
simple keys, such as Backspace, are passed directly to the program to be processed, so if you want the
Backspace key to function as expected, you have to program it yourself.

A call to raw turns off special character processing, so it becomes impossible to generate signals or flow
control by typing special character sequences. Calling nocbreak sets the input mode back to cooked
mode, but leaves special character processing unchanged; calling noraw restores both cooked mode and
special character handling.

Keyboard Input
Reading the keyboard is very simple. The principal functions are as follows:

#include <curses.h>

int getch(void);
int getstr(char *string);
int getnstr(char *string, int number_of_characters);
int scanw(char *format, ...);

These act in a very similar way to their non-curses equivalents getchar, gets, and scanf. Note that
getstr provides no way of limiting the string length returned, so you should use it only with great cau-
tion. If your version of curses supports getnstr, which allows you to limit the number of characters
read, always use it in preference to getstr. This is very similar to the behavior of gets and fgets that
you saw in Chapter 3.

Here’s a short example program, ipmode.c, to show how to handle the keyboard.

Try It Out Keyboard Modes and Input
1. Set up the program and the initial curses calls:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>
#include <string.h>

#define PW_LEN 256
#define NAME_LEN 256

int main() {
char name[NAME_LEN];
char password[PW_LEN];
const char *real_password = “xyzzy”;

222

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 222

int i = 0;

initscr();

move(5, 10);
printw(“%s”, “Please login:”);

move(7, 10);
printw(“%s”, “User name: “);
getstr(name);

move(8, 10);
printw(“%s”, “Password: “);
refresh();

2. When the user enters his or her password, you need to stop the password being echoed to the
screen. Then check the password against xyzzy:

cbreak();
noecho();

memset(password, ‘\0’, sizeof(password));
while (i < PW_LEN) {

password[i] = getch();
if (password[i] == ‘\n’) break;
move(8, 20 + i);
addch(‘*‘);
refresh();
i++;

}

3. Finally, re-enable the keyboard echo and print out success or failure:

echo();
nocbreak();

move(11, 10);
if (strncmp(real_password, password, strlen(real_password)) == 0)

printw(“%s”, “Correct”);
else printw(“%s”, “Wrong”);
printw(“%s”, “ password”);
refresh();
sleep(2);

endwin();
exit(EXIT_SUCCESS);

}

How It Works
Having stopped the echoing of keyboard input and set the input mode to cbreak, you set up a region of
memory ready for the password. Each character of the password entered is processed immediately and a

223

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 223

* is shown at the next position on the screen. You need to refresh the screen each time, and compare the
two strings, entered and real passwords, using strcmp.

If you’re using a very old version of the curses library, you may need to make an additional refresh
call before the getstr call. In ncurses, calling getstr will refresh the screen automatically.

Windows
Until now, you have used the terminal as a full-screen output medium. This is often sufficient for small
and simple programs, but the curses library goes a long way beyond that. You can display multiple win-
dows of different sizes concurrently on the physical screen. Many of the functions in this section are only
supported by what X/Open terms “extended” curses. However, since they are supported by ncurses,
there should be little problem in them being made available on most platforms. Now it’s time to move on
and use multiple windows. You’ll also see how the commands used so far are generalized to the multiple
window scenario.

The WINDOW Structure
Although we have mentioned stdscr, the standard screen, you have so far had little need to use it, as
almost all of the functions that we’ve discussed so far assume that they’re working on stdscr and it
does not need to be passed as a parameter.

The stdscr is just a special case of the WINDOW structure, like stdout is a special case of a file stream. The
WINDOW structure is normally declared in curses.h, and while it can be instructive to examine it, programs
should never access it directly, as the structure can and does change between implementations.

You can create and destroy windows using the newwin and delwin calls:

#include <curses.h>

WINDOW *newwin(int num_of_lines, int num_of_cols, int start_y, int start_x);
int delwin(WINDOW *window_to_delete);

The newwin function creates a new window, with a screen location of (start_y,start_x) and with the
specified number of lines and columns. It returns a pointer to the new window, or null if the creation
failed. If you want the new window to have its bottom right-hand corner in the bottom right-hand corner
of the screen, you can provide the number of lines or columns as zero. All windows must fit within the cur-
rent screen, so newwin will fail if any part of the new window would fall outside the screen area. The new
window created by newwin is completely independent of all existing windows. By default, it is placed on
top of any existing windows, hiding (but not changing) their contents.

The delwin function deletes a window previously created by newwin. Since memory was probably allo-
cated when newwin was called, you should always delete windows when they are no longer required.

Take care never to try to delete curses’ own windows, stdscr and curscr!

224

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 224

Having created a new window, how do you write to it? The answer is that almost all the functions that
you’ve seen so far have generalized versions that operate on specified windows, and for convenience
these also include cursor motion.

Generalized Functions
You’ve already used the addch and printw functions for adding characters to the screen. Along with
many other functions, these can be prefixed, either with a w for window, mv for move, or mvw for move
and window. If you look in the curses header file for most implementations of curses, you’ll find that
many of the functions used so far are simply macros (#defines) that call these more general functions.

When the w prefix is added, an additional WINDOW pointer must be pre-pended to the argument list. When
the mv prefix is added, two additional parameters, a y and an x location, must be pre-pended. These specify
the location where the operation will be performed. The y and x are relative to the window, rather than the
screen, (0,0) being the top left of the window.

When the mvw prefix is added, three additional parameters, a WINDOW pointer and both y and x values,
must be passed. Confusingly, the WINDOW pointer always comes before the screen coordinates, even
though the prefix might suggest the y and x come first.

As an example, here is the full set of prototypes for just the addch and printw sets of functions:

#include <curses.h>

int addch(const chtype char);
int waddch(WINDOW *window_pointer, const chtype char)
int mvaddch(int y, int x, const chtype char);
int mvwaddch(WINDOW *window_pointer, int y, int x, const chtype char);
int printw(char *format, ...);
int wprintw(WINDOW *window_pointer, char *format, ...);
int mvprintw(int y, int x, char *format, ...);
int mvwprintw(WINDOW *window_pointer, int y, int x, char *format, ...);

Many other functions, such as inch, also have move and window variants available.

Moving and Updating a Window
These commands enable you to move and redraw windows:

#include <curses.h>

int mvwin(WINDOW *window_to_move, int new_y, int new_x);
int wrefresh(WINDOW *window_ptr);
int wclear(WINDOW *window_ptr);
int werase(WINDOW *window_ptr);
int touchwin(WINDOW *window_ptr);
int scrollok(WINDOW *window_ptr, bool scroll_flag);
int scroll(WINDOW *window_ptr);

The mvwin function moves a window on the screen. Since all parts of a window must fit within the screen
area, mvwin will fail if you attempt to move a window so that any part of it falls outside the screen area.

225

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 225

The wrefresh, wclear, and werase functions are simply generalizations of the functions you met earlier;
they just take a WINDOW pointer so that they can refer to a specific window, rather than stdscr.

The touchwin function is rather special. It informs the curses library that the contents of the window
pointed to by its parameter have been changed. This means that curses will always redraw that win-
dow the next time wrefresh is called, even if you haven’t actually changed the contents of the window.
This function is often useful for arranging which window to display when you have several overlapping
windows stacked on the screen.

The two scroll functions control scrolling of a window. The scrollok function, when passed a Boolean
true (usually nonzero) allows a window to scroll. By default, windows can’t scroll. The scroll func-
tion simply scrolls the window up one line. Some curses implementations also have a wsctl function
that also takes a number of lines to scroll, which may be a negative number. We’ll return to scrolling a
little later in the chapter.

Try It Out Managing Multiple Windows
Now that you know how to manage more than a single window, you can put these new functions to
work in a program, multiw1.c. For the sake of brevity, error checking is omitted:

1. As usual, let’s get the definitions sorted first:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()
{

WINDOW *new_window_ptr;
WINDOW *popup_window_ptr;
int x_loop;
int y_loop;
char a_letter = ‘a’;

initscr();

2. Fill the base window with characters, refreshing the actual screen once the logical screen has
been filled:

move(5, 5);
printw(“%s”, “Testing multiple windows”);
refresh();

for (y_loop = 0; y_loop < LINES - 1; y_loop++) {
for (x_loop = 0; x_loop < COLS - 1; x_loop++) {

mvwaddch(stdscr, y_loop, x_loop, a_letter);
a_letter++;
if (a_letter > ‘z’) a_letter = ‘a’;

}
}

226

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 226

/* Update the screen */
refresh();
sleep(2);

3. Now create a new 10 x 20 window and add some text to it before drawing it on the screen:

new_window_ptr = newwin(10, 20, 5, 5);
mvwprintw(new_window_ptr, 2, 2, “%s”, “Hello World”);
mvwprintw(new_window_ptr, 5, 2, “%s”,

“Notice how very long lines wrap inside the window”);
wrefresh(new_window_ptr);
sleep(2);

4. Change the contents of the background window. When you refresh the screen, the window
pointed to by new_window_ptr is obscured:

a_letter = ‘0’;
for (y_loop = 0; y_loop < LINES -1; y_loop++) {
for (x_loop = 0; x_loop < COLS - 1; x_loop++) {

mvwaddch(stdscr, y_loop, x_loop, a_letter);
a_letter++;
if (a_letter > ‘9’)

a_letter = ‘0’;
}

}

refresh();
sleep(2);

5. If you make a call to refresh the new window, nothing will change, because you haven’t
changed the new window:

wrefresh(new_window_ptr);
sleep(2);

6. But if you touch the window first and trick curses into thinking that the window has been
changed, the next call to wrefresh will bring the new window to the front again:

touchwin(new_window_ptr);
wrefresh(new_window_ptr);
sleep(2);

7. Add another overlapping window with a box around it:

popup_window_ptr = newwin(10, 20, 8, 8);
box(popup_window_ptr, ‘|’, ‘-‘);
mvwprintw(popup_window_ptr, 5, 2, “%s”, “Pop Up Window!”);
wrefresh(popup_window_ptr);
sleep(2);

227

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 227

8. Fiddle with the new and pop-up windows before clearing and deleting them:

touchwin(new_window_ptr);
wrefresh(new_window_ptr);
sleep(2);
wclear(new_window_ptr);
wrefresh(new_window_ptr);
sleep(2);
delwin(new_window_ptr);
touchwin(popup_window_ptr);
wrefresh(popup_window_ptr);
sleep(2);
delwin(popup_window_ptr);
touchwin(stdscr);
refresh();
sleep(2);
endwin();
exit(EXIT_SUCCESS);

}

Unfortunately, it’s not practical to show this running in the book, but Figure 6-4 shows a screenshot after
the first pop-up window has been drawn.

Figure 6-4

After the background has been changed and a new pop-up window has been drawn, you see the display
shown in Figure 6-5.

228

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 228

Figure 6-5

How It Works
After the usual initialization, the program fills the standard screen with numbers, to make it easier to see
the new curses windows being added on top. It then demonstrates how a new window can be added
over the background, with text inside the new window wrapping. You then saw how to use touchwin
to force curses to redraw the window, even if nothing has been changed.

A second window was then added which overlapped the first window, to demonstrate how curses can
mange overlapping windows, before the program closes the curses library and exits.

As you can see from the example code, you need to be quite careful about refreshing windows to ensure
that they appear on the screen in the correct order. The curses library doesn’t store any information about
the hierarchy of windows, so if you ask curses to refresh several windows, you must manage any win-
dow hierarchy.

Optimizing Screen Refreshes
As you saw in the example in the previous section, refreshing multiple windows can be a little tricky, but
not overly onerous. However, a potentially more serious problem arises when the terminal to be updated

To ensure that curses draws the windows in the correct order, you must refresh
them in the correct order. One way of doing this is to store all the pointers to your
windows in an array or list, which you maintain in the order they should appear on
the screen.

229

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 229

is on a slow network. Fortunately, this is now a very rare problem, but handling it is so easy that we will
show you just for the sake of completeness.

The aim is to minimize the number of characters drawn on the screen, because on slow links screen
draws can be uncomfortably slow. curses provides a special way of doing this, with a pair of functions:
wnoutrefresh and doupdate:

#include <curses.h>

int wnoutrefresh(WINDOW *window_ptr);
int doupdate(void);

The wnoutrefresh function determines which characters would need sending to the screen, but doesn’t
actually send them. The doupdate function actually sends the changes to the terminal. If you simply call
wnoutrefresh, followed immediately by doupdate, the effect is the same as calling wrefresh. However, if
you wish to redraw a stack of windows, you can call wnoutrefresh on each window (in the correct order,
of course) and then call doupdate only after the last wnoutrefresh. This allows curses to perform its
screen update calculations on each window in turn and only then output the updated screen. This almost
always enables curses to minimize the number of characters that needs to be sent.

Subwindows
Now that we’ve looked at multiple windows, we can look at a special case of multiple windows, called
subwindows. You create and destroy subwindows with these calls:

#include <curses.h>

WINDOW *subwin(WINDOW *parent, int num_of_lines, int num_of_cols,
int start_y, int start_x);

int delwin(WINDOW *window_to_delete);

The subwin function has almost the same parameter list as newwin, and subwindows are deleted in just
the same way as other windows, with a delwin call. Just like new windows, you can use the range of mvw
functions to write to subwindows. Indeed, most of the time, subwindows behave in a very similar fashion
to new windows, with one very important exception: Subwindows don’t themselves store a separate set
of screen characters; they share the same character storage space as the parent window specified when the
subwindow is created. This means that any changes made in a subwindow are also made in the underly-
ing parent window, so when a subwindow is deleted, the screen doesn’t change.

At first sight, subwindows seem like a pointless exercise. Why not just make the changes to the parent
window? The main use for subwindows is to provide a clean way of scrolling parts of another window.
The need to scroll a small subsection of the screen is surprisingly common when writing a curses pro-
gram. By making this a subwindow and then scrolling the subwindow, you achieve the desired result.

One restriction imposed by using subwindows is that the application should call touchwin on the par-
ent window before refreshing the screen.

230

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 230

Try It Out Subwindows
Now that you have met the new functions, this short example shows you how they work, and how they
differ from the windows functions used earlier:

1. The initial code section of subscl.c initializes the base window display with some text:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()

{
WINDOW *sub_window_ptr;
int x_loop;
int y_loop;
int counter;
char a_letter = ‘1’;

initscr();

for (y_loop = 0; y_loop < LINES - 1; y_loop++) {
for (x_loop = 0; x_loop < COLS - 1; x_loop++) {

mvwaddch(stdscr, y_loop, x_loop, a_letter);
a_letter++;
if (a_letter > ‘9’) a_letter = ‘1’;

}
}

2. Now create the new scrolling subwindow. As advised, you must “touch” the parent window
before refreshing the screen:

sub_window_ptr = subwin(stdscr, 10, 20, 10, 10);
scrollok(sub_window_ptr, 1);

touchwin(stdscr);
refresh();
sleep(1);

3. Erase the contents of the subwindow, print text to it, and refresh it. The scrolling text is achieved
by a loop:

werase(sub_window_ptr);
mvwprintw(sub_window_ptr, 2, 0, “%s”, “This window will now scroll”);
wrefresh(sub_window_ptr);
sleep(1);

for (counter = 1; counter < 10; counter++) {
wprintw(sub_window_ptr, “%s”, “This text is both wrapping and \

scrolling.”);
wrefresh(sub_window_ptr);
sleep(1);

}

231

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 231

4. Having finished this loop, delete the subwindow, and then refresh the base screen:

delwin(sub_window_ptr);

touchwin(stdscr);
refresh();
sleep(1);

endwin();
exit(EXIT_SUCCESS);

}

Toward the end of the program, you see the output shown in Figure 6-6.

Figure 6-6

How It Works
After arranging for the sub_window_ptr to point to the result of the subwin call, you make the sub-
window scrollable. Even after the subwindow has been deleted and the base window (strdcr) is
refreshed, the text on the screen remains the same because the subwindow was actually updating the
character data for stdscr.

The Keypad
You’ve already seen some of the facilities that curses provides for handling the keyboard. Many key-
boards have, at the very least, cursor keys and function keys. Many also have a keypad and other keys,
such as Insert and Home.

232

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 232

Decoding these keys is a difficult problem on most terminals because they normally send a string of char-
acters, starting with the escape character. Not only does the application have the problem of distinguishing
between a single press of the Esc key and a string of characters caused by pressing a function key, it must
also cope with different terminals using different sequences for the same logical key.

Fortunately, curses provides an elegant facility for managing function keys. For each terminal, the
sequence sent by each of its function keys is stored, normally in a terminfo structure, and the include
file curses.h has a set of defines prefixed by KEY_ that define the logical keys.

The translation between the sequences and logical keys is disabled when curses starts and has to be
turned on by the keypad function. If the call succeeds, then it returns OK; otherwise it returns ERR:

#include <curses.h>

int keypad(WINDOW *window_ptr, bool keypad_on);

Once keypad mode has been enabled by calling keypad with keypad_on set to true, curses takes over
the processing of key sequences so that reading the keyboard may now not only return the key that was
pressed, but also one of the KEY_ defines for logical keys.

Note three slight restrictions when using keypad mode:

❑ The recognition of escape sequences is timing-dependent, and many network protocols will
group characters into packets (leading to improper recognition of escape sequences), or separate
them (leading to function key sequences being recognized as escape and individual characters).
This behavior is worst over WANs and other slower links. The only workaround is to try to pro-
gram terminals to send single, unique characters for each function key that you want to use,
although this limits the number of control characters.

❑ In order for curses to separate a press of the Esc key from a keyboard sequence starting with Esc,
it must wait for a brief period of time. Sometimes, a very slight delay on processing of the Esc key
can be noticed once keypad mode has been enabled.

❑ curses can’t process non-unique escape sequences. If your terminal has two different keys that
can send the same sequence, curses will simply not process that sequence, as it can’t tell which
logical key it should return.

Try It Out Using the Keypad
Here’s a short program, keypad.c, showing how the keypad mode can be used. When you run this pro-
gram, try pressing the Esc key and notice the slight delay while the program waits to see whether the
Esc is simply the start of an escape sequence or a single key press:

1. Having initialized the program and the curses library, set the keypad mode to TRUE:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

#define LOCAL_ESCAPE_KEY 27

233

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 233

int main()
{

int key;

initscr();
crmode();
keypad(stdscr, TRUE);

2. Turn echo off to prevent the cursor from being moved when some cursor keys are pressed. The
screen is cleared and some text displayed. The program waits for each keystroke and, unless it’s
Q or produces an error, the key is printed. If the keystrokes match one of the terminal’s keypad
sequences, this is printed instead:

noecho();
clear();
mvprintw(5, 5, “Key pad demonstration. Press ‘q’ to quit”);
move(7, 5);
refresh();
key = getch();

while(key != ERR && key != ‘q’) {
move(7, 5);
clrtoeol();

if ((key >= ‘A’ && key <= ‘Z’) ||
(key >= ‘a’ && key <= ‘z’)) {
printw(“Key was %c”, (char)key);

}
else {

switch(key) {
case LOCAL_ESCAPE_KEY: printw(“%s”, “Escape key”); break;
case KEY_END: printw(“%s”, “END key”); break;
case KEY_BEG: printw(“%s”, “BEGINNING key”); break;
case KEY_RIGHT: printw(“%s”, “RIGHT key”); break;
case KEY_LEFT: printw(“%s”, “LEFT key”); break;
case KEY_UP: printw(“%s”, “UP key”); break;
case KEY_DOWN: printw(“%s”, “DOWN key”); break;
default: printw(“Unmatched - %d”, key); break;
} /* switch */

} /* else */

refresh();
key = getch();

} /* while */

endwin();
exit(EXIT_SUCCESS);

}

234

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 234

How It Works
Having turned on keypad mode, you saw how it’s possible to recognize the various additional keys on
the keypad, which generate escape sequences. You will probably also be able to notice how detection
of the Esc key is slightly slower than the others.

Using Color
Originally, very few “dumb” terminals supported color, so most very early versions of curses had no sup-
port for it. Color is supported in ncurses and most other modern curses implementations. Unfortunately
the “dumb screen” origins of curses has influenced the API, and curses uses color in a very restricted
way, reflecting the poor capabilities of early color terminals.

Each character cell on the screen can be written in one of a number of different colors, against one of a
number of different colored backgrounds. For example, you can write text in green on a red background.

Color support in curses is slightly unusual in that the color for a character isn’t defined independently
of its background. You must define the foreground and background colors of a character as a pair, called,
not surprisingly, a color pair.

Before you can use color capability in curses, you must check that the current terminal supports color and
then initialize the curses color routines. For this, use a pair of routines: has_colors and start_color:

#include <curses.h>

bool has_colors(void);
int start_color(void);

The has_colors routine returns true if color is supported. You should then call start_color, which
returns OK if color has been initialized successfully. Once start_color has been called and the colors ini-
tialized, the variable COLOR_PAIRS is set to the maximum number of color pairs that the terminal can sup-
port. A limit of 64 color pairs is common. The variable COLORS defines the maximum number of colors
available, which is often as few as eight. Internally, numbers from 0 to 63 act as a unique ID for each of the
colors available.

Before you can use colors as attributes, you must initialize the color pairs that you wish to use. You do
this with the init_pair function. Color attributes are accessed with the COLOR_PAIR function:

#include <curses.h>

int init_pair(short pair_number, short foreground, short background);
int COLOR_PAIR(int pair_number);
int pair_content(short pair_number, short *foreground, short *background);

curses.h usually defines some basic colors, starting with COLOR_. An additional function, pair_con-
tent, allows previously defined color-pair information to be retrieved.

235

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 235

To define color pair number 1 to be red on green, you would use

init_pair(1, COLOR_RED, COLOR_GREEN);

You can then access this color pair as an attribute, using COLOR_PAIR like this:

wattron(window_ptr, COLOR_PAIR(1));

This would set future additions to the screen to be red on a green background.

Since a COLOR_PAIR is an attribute, you can combine it with other attributes. On a PC, you can often
access screen high-intensity colors by combining the COLOR_PAIR attribute with the additional attribute
A_BOLD, by using a bitwise OR of the attributes:

wattron(window_ptr, COLOR_PAIR(1) | A_BOLD);

Let’s check these functions in an example, color.c.

Try It Out Colors
1. First, check whether the program’s display terminal supports color. If it does, start the color display:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <curses.h>

int main()
{

int i;

initscr();

if (!has_colors()) {
endwin();
fprintf(stderr, “Error - no color support on this terminal\n”);
exit(1);

}

if (start_color() != OK) {
endwin();
fprintf(stderr, “Error - could not initialize colors\n”);
exit(2);

}

2. You can now print out the allowed number of colors and color pairs. Create seven color pairs
and display them one at a time:

clear();
mvprintw(5, 5, “There are %d COLORS, and %d COLOR_PAIRS available”,

COLORS, COLOR_PAIRS);
refresh();

236

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 236

init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_RED, COLOR_GREEN);
init_pair(3, COLOR_GREEN, COLOR_RED);
init_pair(4, COLOR_YELLOW, COLOR_BLUE);
init_pair(5, COLOR_BLACK, COLOR_WHITE);
init_pair(6, COLOR_MAGENTA, COLOR_BLUE);
init_pair(7, COLOR_CYAN, COLOR_WHITE);

for (i = 1; i <= 7; i++) {
attroff(A_BOLD);
attrset(COLOR_PAIR(i));
mvprintw(5 + i, 5, “Color pair %d”, i);
attrset(COLOR_PAIR(i) | A_BOLD);
mvprintw(5 + i, 25, “Bold color pair %d”, i);
refresh();
sleep(1);

}

endwin();
exit(EXIT_SUCCESS);

}

This example results in the output shown in Figure 6-7, minus the actual colors, of course, which don’t
show up in the black-and-white screenshot.

Figure 6-7

How It Works
After checking that the screen supports color, the program initializes color handling and defines some
color pairs. Some text is then written to the screen using the color pairs, to show different color combina-
tions on the screen.

237

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 237

Redefining Colors
As a leftover from early dumb terminals that could display very few colors at any one time, but allowed
the active color set to be configured, curses allows color redefinition with the init_color function:

#include <curses.h>

int init_color(short color_number, short red, short green, short blue);

This allows an existing color (in the range 0 to COLORS) to be redefined with new intensity values in the
range 0 to 1,000. This is a little like defining color values for GIF format image files.

Pads
When you’re writing more advanced curses programs, it’s sometimes easier to build a logical screen
and then output all or part of it to the physical screen later. Occasionally, it’s also better to have a logical
screen that is actually bigger than the physical screen and to display only part of the logical screen at any
one time.

It’s not easy to do this with the curses functions that you’ve met so far, as all windows must be no
larger than the physical screen. curses does provide a special data structure, a pad, for manipulating
logical screen information that doesn’t fit within a normal window.

A pad structure is very similar to a WINDOW structure, and all the curses routines that write to windows
can also be used on pads. However, pads do have their own routines for creation and refreshing.

You create pads in much the same way that you create normal windows:

#include <curses.h>

WINDOW *newpad(int number_of_lines, int number_of_columns);

Note that the return value is a pointer to a WINDOW structure, the same as newwin. Pads are deleted with
delwin, just like windows.

Pads do have different routines for refreshing. Since a pad isn’t confined to a particular screen location,
you must specify the region of the pad you wish to put on the screen, and the location it should occupy
on the screen. Do this with the prefresh function:

#include <curses.h>

int prefresh(WINDOW *pad_ptr, int pad_row, int pad_column,
int screen_row_min, int screen_col_min,
int screen_row_max, int screen_col_max);

238

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 238

This causes an area of the pad, starting at (pad_row, pad_column) to be written to the screen in the
region defined by (screen_row_min, screen_col_min) to (screen_row_max, screen_col_max).

An additional routine, pnoutrefresh, is also provided. It acts in the same way as wnoutrefresh, for
more efficient screen updates.

Let’s check these out with a quick program, pad.c.

Try It Out Using a Pad
1. At the start of this program, you initialize the pad structure and then create a pad, which

returns a pointer to that pad. Add characters to fill the pad structure (which is 50 characters
wider and longer than the terminal display):

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()
{

WINDOW *pad_ptr;
int x, y;
int pad_lines;
int pad_cols;
char disp_char;

initscr();
pad_lines = LINES + 50;
pad_cols = COLS + 50;
pad_ptr = newpad(pad_lines, pad_cols);
disp_char = ‘a’;

for (x = 0; x < pad_lines; x++) {
for (y = 0; y < pad_cols; y++) {

mvwaddch(pad_ptr, x, y, disp_char);
if (disp_char == ‘z’) disp_char = ‘a’;
else disp_char++;

}
}

2. Now draw different areas of the pad on the screen at different locations before quitting:

prefresh(pad_ptr, 5, 7, 2, 2, 9, 9);
sleep(1);
prefresh(pad_ptr, LINES + 5, COLS + 7, 5, 5, 21, 19);
sleep(1);
delwin(pad_ptr);
endwin();
exit(EXIT_SUCCESS);

}

Running the program, you should see something like what is shown in Figure 6-8.

239

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 239

Figure 6-8

The CD Collection Application
Now that you’ve learned about the facilities that curses has to offer, you can develop the sample appli-
cation. Here’s a version written in C using the curses library. It offers some advantages in that the infor-
mation is more clearly displayed on the screen and a scrolling window is used for track listings.

The whole application is eight pages long, so we’ve split it up into sections and functions within each
section. You can get the source code, curses_app.c, from the Wrox Web site. As with all the programs in
this book, it’s under the GNU Public License.

We have broken the code for this application into several distinct portions as indicated by the following
headings. The code conventions used here are slightly different from most of the rest of the book; here,
highlighted code is used only to show where other application functions are called.

Starting a New CD Collection Application
This first section of code is just concerned with declaring the variables and functions you will use later,
and initializing some data structures:

1. Include all those header files and then some global constants:

#include <unistd.h>
#include <stdlib.h>

We’ve written this version of the CD database application using the information
presented in earlier chapters. It’s derived from the original shell script presented in
Chapter 2. It hasn’t been redesigned for the C implementation, so you can still see
many features of the shell in this version. Note that there are some significant limi-
tations with this implementation that we will resolve in later revisions.

240

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 240

#include <stdio.h>
#include <string.h>
#include <curses.h>

#define MAX_STRING 80 /* Longest allowed response */
#define MAX_ENTRY 1024 /* Longest allowed database entry */

#define MESSAGE_LINE 6 /* Misc. messages on this line */
#define ERROR_LINE 22 /* Line to use for errors */
#define Q_LINE 20 /* Line for questions */
#define PROMPT_LINE 18 /* Line for prompting on */

2. Now you need some global variables. The variable current_cd is used to store the current CD
title with which you are working. It’s initialized so that the first character is null, to indicate
that no CD selected. The \0 is not strictly necessary, but it ensures that the variable is initialized,
which is generally a good thing. The variable current_cat is used to record the catalog num-
ber of the current CD.

static char current_cd[MAX_STRING] = “\0”;
static char current_cat[MAX_STRING];

3. Now declare some filenames. To keep things simple, the files are fixed in this version, as is the
temporary filename.

const char *title_file = “title.cdb”;
const char *tracks_file = “tracks.cdb”;
const char *temp_file = “cdb.tmp”;

4. Finally, the function prototypes:

void clear_all_screen(void);
void get_return(void);
int get_confirm(void);
int getchoice(char *greet, char *choices[]);
void draw_menu(char *options[], int highlight,

int start_row, int start_col);
void insert_title(char *cdtitle);
void get_string(char *string);
void add_record(void);
void count_cds(void);
void find_cd(void);
void list_tracks(void);
void remove_tracks(void);
void remove_cd(void);
void update_cd(void);

This could cause a problem if the program is run by two users in the same directory. A
better way to obtain database filenames would be either by program arguments or from
environment variables. We also need an improved method of generating a unique tem-
porary filename, for which we could use the POSIX tmpnam function. We’ll address
many of these issues in Chapter 8, when we use MySQL to store the data.

241

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 241

5. Before you look at their implementation, you need some structures (actually, an array of menu
options) for the menus. The first character of each menu text is returned when the option is selected.
Fox example, if the menu item is Add New CD, then the first letter, a, will be returned when this
menu item is selected. The extended menu is displayed when a CD is currently selected:

char *main_menu[] =
{

“add new CD”,
“find CD”,
“count CDs and tracks in the catalog”,
“quit”,
0,

};

char *extended_menu[] =
{

“add new CD”,
“find CD”,
“count CDs and tracks in the catalog”,
“list tracks on current CD”,
“remove current CD”,
“update track information”,
“quit”,
0,

};

That finishes the initialization. Now you can move on to the program functions, but first you need to sum-
marize the interrelations of these functions, all 16 of them. They are divided into three program subsections:

❑ Drawing the menu

❑ Adding CDs to the database

❑ Retrieving and displaying CD data

See Figure 6-9 for a visual representation.

Figure 6-9

242

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 242

Looking at main
main enables you to make selections from the menu until you select quit. Here’s the code:

int main()
{

int choice;
initscr();
do {

choice = getchoice(“Options:”,
current_cd[0] ? extended_menu : main_menu);

switch (choice) {
case ‘q’:

break;
case ‘a’:

add_record();
break;

case ‘c’:
count_cds();
break;

case ‘f’:
find_cd();
break;

case ‘l’:
list_tracks();
break;

case ‘r’:
remove_cd();
break;

case ‘u’:
update_cd();
break;

}
} while (choice != ‘q’);
endwin();
exit(EXIT_SUCCESS);

}

Let’s now look at the detail of the functions associated with the three program subsections.

Building the Menu
This section looks at the three functions that relate to the program’s user interface:

1. The getchoice function called by main is the principal function in this section. getchoice is
passed greet, an introduction, and choices, which points either to the main or to the extended
menu (depending on whether a CD has been selected). You can see how either main_menu or
extended_menu is passed as a parameter in the preceding main function:

int getchoice(char *greet, char *choices[])
{

static int selected_row = 0;

243

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 243

int max_row = 0;
int start_screenrow = MESSAGE_LINE, start_screencol = 10;
char **option;
int selected;
int key = 0;

option = choices;
while (*option) {

max_row++;
option++;

}
/* protect against menu getting shorter when CD deleted */

if (selected_row >= max_row)
selected_row = 0;

clear_all_screen();
mvprintw(start_screenrow - 2, start_screencol, greet);
keypad(stdscr, TRUE);
cbreak();
noecho();
key = 0;
while (key != ‘q’ && key != KEY_ENTER && key != ‘\n’) {

if (key == KEY_UP) {
if (selected_row == 0)

selected_row = max_row - 1;
else

selected_row--;
}
if (key == KEY_DOWN) {

if (selected_row == (max_row - 1))
selected_row = 0;

else
selected_row++;

}
selected = *choices[selected_row];
draw_menu(choices, selected_row, start_screenrow,

start_screencol);
key = getch();

}
keypad(stdscr, FALSE);
nocbreak();
echo();

if (key == ‘q’)
selected = ‘q’;

return (selected);
}

2. Note how two more local functions are called from within getchoice: clear_all_screen and
draw_menu. Let’s look at draw_menu first:

void draw_menu(char *options[], int current_highlight,
int start_row, int start_col)

{

244

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 244

int current_row = 0;
char **option_ptr;
char *txt_ptr;
option_ptr = options;
while (*option_ptr) {

if (current_row == current_highlight) attron(A_STANDOUT);
txt_ptr = options[current_row];
txt_ptr++;
mvprintw(start_row + current_row, start_col, “%s”, txt_ptr);
if (current_row == current_highlight) attroff(A_STANDOUT);
current_row++;
option_ptr++;

}

mvprintw(start_row + current_row + 3, start_col,
“Move highlight then press Return “);

refresh();
}

3. Next look at clear_all_screen, which, surprisingly enough, clears the screen and rewrites
the title. If a CD is selected, then its information is displayed:

void clear_all_screen()
{

clear();
mvprintw(2, 20, “%s”, “CD Database Application”);
if (current_cd[0]) {

mvprintw(ERROR_LINE, 0, “Current CD: %s: %s\n”,
current_cat, current_cd);

}
refresh();

}

Database File Manipulation
This section covers the functions that add to or update the CD database. The functions called from main
are add_record, update_cd, and remove_cd.

Adding Records
1. Add a new CD record to the database:

void add_record()
{

char catalog_number[MAX_STRING];
char cd_title[MAX_STRING];
char cd_type[MAX_STRING];
char cd_artist[MAX_STRING];
char cd_entry[MAX_STRING];

int screenrow = MESSAGE_LINE;
int screencol = 10;

245

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 245

clear_all_screen();
mvprintw(screenrow, screencol, “Enter new CD details”);
screenrow += 2;

mvprintw(screenrow, screencol, “Catalog Number: “);
get_string(catalog_number);
screenrow++;

mvprintw(screenrow, screencol, “ CD Title: “);
get_string(cd_title);
screenrow++;

mvprintw(screenrow, screencol, “ CD Type: “);
get_string(cd_type);
screenrow++;

mvprintw(screenrow, screencol, “ Artist: “);
get_string(cd_artist);
screenrow++;

mvprintw(PROMPT_LINE-2, 5, “About to add this new entry:”);
sprintf(cd_entry, “%s,%s,%s,%s”,

catalog_number, cd_title, cd_type, cd_artist);
mvprintw(PROMPT_LINE, 5, “%s”, cd_entry);
refresh();
move(PROMPT_LINE, 0);
if (get_confirm()) {

insert_title(cd_entry);
strcpy(current_cd, cd_title);
strcpy(current_cat, catalog_number);

}
}

2. get_string prompts for and reads in a string at the current screen position. It also deletes any
trailing newline:

void get_string(char *string)
{

int len;

wgetnstr(stdscr, string, MAX_STRING);
len = strlen(string);
if (len > 0 && string[len - 1] == ‘\n’)

string[len - 1] = ‘\0’;
}

3. get_confirm prompts and reads user confirmation. It reads the user’s input string and checks
the first character for Y or y. If it finds any other character, it gives no confirmation:

int get_confirm()
{

int confirmed = 0;
char first_char;

246

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 246

mvprintw(Q_LINE, 5, “Are you sure? “);
clrtoeol();
refresh();

cbreak();
first_char = getch();
if (first_char == ‘Y’ || first_char == ‘y’) {

confirmed = 1;
}
nocbreak();

if (!confirmed) {
mvprintw(Q_LINE, 1, “ Cancelled”);
clrtoeol();
refresh();
sleep(1);

}
return confirmed;

}

4. Lastly, look at insert_title. This adds a title to the CD database by appending the title string
to the end of the titles file:

void insert_title(char *cdtitle)
{

FILE *fp = fopen(title_file, “a”);
if (!fp) {

mvprintw(ERROR_LINE, 0, “cannot open CD titles database”);
} else {

fprintf(fp, “%s\n”, cdtitle);
fclose(fp);

}
}

Updating Records
1. On to the other file manipulation functions called by main. Next is update_cd. This function

uses a scrolling, boxed subwindow and needs some constants, which you define globally
because they will be needed later for the list_tracks function.

#define BOXED_LINES 11
#define BOXED_ROWS 60
#define BOX_LINE_POS 8
#define BOX_ROW_POS 2

2. update_cd enables the user to reenter the tracks for the current CD. Having deleted the previ-
ous tracks record, it prompts for new information:

void update_cd()
{

FILE *tracks_fp;

247

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 247

char track_name[MAX_STRING];
int len;
int track = 1;
int screen_line = 1;
WINDOW *box_window_ptr;
WINDOW *sub_window_ptr;

clear_all_screen();
mvprintw(PROMPT_LINE, 0, “Re-entering tracks for CD. “);
if (!get_confirm())

return;
move(PROMPT_LINE, 0);
clrtoeol();

remove_tracks();

mvprintw(MESSAGE_LINE, 0, “Enter a blank line to finish”);

tracks_fp = fopen(tracks_file, “a”);

box_window_ptr = subwin(stdscr, BOXED_LINES + 2, BOXED_ROWS + 2,
BOX_LINE_POS - 1, BOX_ROW_POS - 1);

if (!box_window_ptr)
return;

box(box_window_ptr, ACS_VLINE, ACS_HLINE);

sub_window_ptr = subwin(stdscr, BOXED_LINES, BOXED_ROWS,
BOX_LINE_POS, BOX_ROW_POS);

if (!sub_window_ptr)
return;

scrollok(sub_window_ptr, TRUE);
werase(sub_window_ptr);
touchwin(stdscr);

do {
mvwprintw(sub_window_ptr, screen_line++, BOX_ROW_POS + 2,

“Track %d: “, track);
clrtoeol();
refresh();
wgetnstr(sub_window_ptr, track_name, MAX_STRING);
len = strlen(track_name);
if (len > 0 && track_name[len - 1] == ‘\n’)

track_name[len - 1] = ‘\0’;
if (*track_name)
fprintf(tracks_fp, “%s,%d,%s\n”, current_cat, track, track_name);

track++;
if (screen_line > BOXED_LINES - 1) {

We’ll continue the listing in just a moment; here, we want to take a brief intermis-
sion to highlight how you enter the information in a scrolling, boxed window. The
trick is to set up a subwindow, draw a box around the edge, and then add a new
scrolling subwindow just inside the boxed subwindow.

248

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 248

/* time to start scrolling */
scroll(sub_window_ptr);
screen_line — ;

}
} while (*track_name);
delwin(sub_window_ptr);

fclose(tracks_fp);
}

Removing Records
1. The last function called from main is remove_cd:

void remove_cd()
{

FILE *titles_fp, *temp_fp;
char entry[MAX_ENTRY];
int cat_length;

if (current_cd[0] == ‘\0’)
return;

clear_all_screen();
mvprintw(PROMPT_LINE, 0, “About to remove CD %s: %s. “,

current_cat, current_cd);
if (!get_confirm())

return;

cat_length = strlen(current_cat);

/* Copy the titles file to a temporary, ignoring this CD */
titles_fp = fopen(title_file, “r”);
temp_fp = fopen(temp_file, “w”);

while (fgets(entry, MAX_ENTRY, titles_fp)) {
/* Compare catalog number and copy entry if no match */
if (strncmp(current_cat, entry, cat_length) != 0)

fputs(entry, temp_fp);
}
fclose(titles_fp);
fclose(temp_fp);

/* Delete the titles file, and rename the temporary file */
unlink(title_file);
rename(temp_file, title_file);

/* Now do the same for the tracks file */
remove_tracks();

/* Reset current CD to ‘None’ */
current_cd[0] = ‘\0’;

}

249

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 249

2. You now need to only list remove_tracks, the function that deletes the tracks from the current
CD. It’s called by both update_cd and remove_cd:

void remove_tracks()
{

FILE *tracks_fp, *temp_fp;
char entry[MAX_ENTRY];
int cat_length;

if (current_cd[0] == ‘\0’)
return;

cat_length = strlen(current_cat);

tracks_fp = fopen(tracks_file, “r”);
if (tracks_fp == (FILE *)NULL) return;
temp_fp = fopen(temp_file, “w”);

while (fgets(entry, MAX_ENTRY, tracks_fp)) {
/* Compare catalog number and copy entry if no match */
if (strncmp(current_cat, entry, cat_length) != 0)

fputs(entry, temp_fp);
}
fclose(tracks_fp);
fclose(temp_fp);

/* Delete the tracks file, and rename the temporary file */
unlink(tracks_file);
rename(temp_file, tracks_file);

}

Querying the CD Database
Now look at the functions for accessing the data, which is simply stored in a pair of flat files as comma-
separated fields, for easy access:

1. Essential to all acquisitive hobbies is the knowledge of how many you own of whatever you collect.
The next function performs this task admirably; it scans the database, counting titles and tracks:

void count_cds()
{

FILE *titles_fp, *tracks_fp;
char entry[MAX_ENTRY];
int titles = 0;
int tracks = 0;

titles_fp = fopen(title_file, “r”);
if (titles_fp) {

while (fgets(entry, MAX_ENTRY, titles_fp))
titles++;

fclose(titles_fp);
}

250

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 250

tracks_fp = fopen(tracks_file, “r”);
if (tracks_fp) {

while (fgets(entry, MAX_ENTRY, tracks_fp))
tracks++;

fclose(tracks_fp);
}
mvprintw(ERROR_LINE, 0,

“Database contains %d titles, with a total of %d tracks.”,
titles, tracks);

get_return();
}

2. You’ve lost the sleeve notes from your favorite CD, but don’t worry! Having carefully entered the
details into the database, you can now find the track listing using find_cd. It prompts for a sub-
string to match in the database and sets the global variable current_cd to the CD title found:

void find_cd()
{

char match[MAX_STRING], entry[MAX_ENTRY];
FILE *titles_fp;
int count = 0;
char *found, *title, *catalog;

mvprintw(Q_LINE, 0, “Enter a string to search for in CD titles: “);
get_string(match);

titles_fp = fopen(title_file, “r”);
if (titles_fp) {

while (fgets(entry, MAX_ENTRY, titles_fp)) {

/* Skip past catalog number */
catalog = entry;
if (found == strstr(catalog, “,”)) {

*found = ‘\0’;
title = found + 1;

/* Zap the next comma in the entry to reduce it to
title only */

if (found == strstr(title, “,”)) {
*found = ‘\0’;

/* Now see if the match substring is present */
if (found == strstr(title, match)) {

count++;
strcpy(current_cd, title);
strcpy(current_cat, catalog);

}
}

}
}
fclose(titles_fp);

}
if (count != 1) {

if (count == 0) {

251

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 251

mvprintw(ERROR_LINE, 0, “Sorry, no matching CD found. “);
}
if (count > 1) {

mvprintw(ERROR_LINE, 0,
“Sorry, match is ambiguous: %d CDs found. “, count);

}
current_cd[0] = ‘\0’;
get_return();

}
}

Though catalog points at a larger array than current_cat and could conceivably overwrite
memory, the check in fgets prevents this.

3. You also need to be able to list the selected CD’s tracks on the screen. You can make use of the
#defines for the subwindows used in update_cd in the last section:

void list_tracks()
{

FILE *tracks_fp;
char entry[MAX_ENTRY];
int cat_length;
int lines_op = 0;
WINDOW *track_pad_ptr;
int tracks = 0;
int key;
int first_line = 0;

if (current_cd[0] == ‘\0’) {
mvprintw(ERROR_LINE, 0, “You must select a CD first. “);
get_return();
return;

}
clear_all_screen();
cat_length = strlen(current_cat);

/* First count the number of tracks for the current CD */
tracks_fp = fopen(tracks_file, “r”);
if (!tracks_fp)

return;
while (fgets(entry, MAX_ENTRY, tracks_fp)) {

if (strncmp(current_cat, entry, cat_length) == 0)
tracks++;

}
fclose(tracks_fp);

/* Make a new pad, ensure that even if there is only a single
track the PAD is large enough so the later prefresh() is always
valid. */

track_pad_ptr = newpad(tracks + 1 + BOXED_LINES, BOXED_ROWS + 1);
if (!track_pad_ptr)

return;

tracks_fp = fopen(tracks_file, “r”);
if (!tracks_fp)

252

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:57 AM Page 252

return;

mvprintw(4, 0, “CD Track Listing\n”);

/* write the track information into the pad */
while (fgets(entry, MAX_ENTRY, tracks_fp)) {

/* Compare catalog number and output rest of entry */
if (strncmp(current_cat, entry, cat_length) == 0) {

mvwprintw(track_pad_ptr, lines_op++, 0, “%s”,
entry + cat_length + 1);

}
}
fclose(tracks_fp);

if (lines_op > BOXED_LINES) {
mvprintw(MESSAGE_LINE, 0,

“Cursor keys to scroll, RETURN or q to exit”);
} else {

mvprintw(MESSAGE_LINE, 0, “RETURN or q to exit”);
}
wrefresh(stdscr);
keypad(stdscr, TRUE);
cbreak();
noecho();
key = 0;
while (key != ‘q’ && key != KEY_ENTER && key != ‘\n’) {

if (key == KEY_UP) {
if (first_line > 0)

first_line--;
}
if (key == KEY_DOWN) {

if (first_line + BOXED_LINES + 1 < tracks)
first_line++;

}

/* now draw the appropriate part of the pad on the screen */
prefresh(track_pad_ptr, first_line, 0,

BOX_LINE_POS, BOX_ROW_POS,
BOX_LINE_POS + BOXED_LINES, BOX_ROW_POS + BOXED_ROWS);

key = getch();
}

delwin(track_pad_ptr);
keypad(stdscr, FALSE);
nocbreak();
echo();

}

4. The last two functions call get_return, which prompts for and reads a carriage return, ignor-
ing other characters:

void get_return()
{

253

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:58 AM Page 253

int ch;
mvprintw(23, 0, “%s”, “ Press return “);
refresh();
while ((ch = getchar()) != ‘\n’ && ch != EOF);

}

If you run this program, you should see something like what is shown in Figure 6-10.

Figure 6-10

Summary
In this chapter, we have explored the curses library. curses provides a good way for text-based pro-
grams to control the screen and read the keyboard. Although curses doesn’t offer as much control as
the general terminal interface (GTI) and direct terminfo access, it’s considerably easier to use. If you’re
writing a full-screen, text-based application, you should consider using the curses library to manage
the screen and keyboard for you.

254

Chapter 6: Managing Text-Based Screens with curses

47627c06.qxd:WroxPro 10/1/07 7:58 AM Page 254

7
Data Management

In earlier chapters, we touched on the subject of resource limits. In this chapter, we’re going to look
first at ways of managing your resource allocation, then at ways of dealing with files that are accessed
by many users more or less simultaneously, and lastly at one tool provided in Linux systems for over-
coming the limitations of flat files as a data storage medium.

We can summarize these topics as three ways of managing data:

❑ Dynamic memory management: what to do and what Linux won’t let you do

❑ File locking: cooperative locking, locking regions of shared files, and avoiding deadlocks

❑ The dbm database: a basic, non-SQL-based database library featured in most Linux
systems

Managing Memory
On all computer systems memory is a scarce resource. No matter how much memory is available,
it never seems to be enough. It doesn’t seem so long ago that 256MB of RAM was considered suffi-
cient, but now 2GB of RAM is commonplace as a sensible minimum requirement even for desktop
systems, with servers usefully having significantly more.

From the earliest versions of the operating system, UNIX-style operating systems have had a very
clean approach to managing memory, which Linux, because it implements the X/Open specifica-
tion, has inherited. Linux applications, except for a few specialized embedded applications, are
never permitted to access physical memory directly. It might appear so to the application, but
what the application is seeing is a carefully controlled illusion.

Linux provides applications with a clean view of a huge directly addressable memory space.
Additionally, it provides protection so that different applications are protected from each other,
and it allows applications to apparently access more memory than is physically present in the
machine, provided the machine is at least well configured and has sufficient swap space.

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 255

Simple Memory Allocation
You allocate memory using the malloc call in the standard C library:

#include <stdlib.h>
void *malloc(size_t size);

Notice that Linux (following the X/Open specification) differs from some UNIX implementations by
not requiring a special malloc.h include file. Note also that the size parameter that specifies the
number of bytes to allocate isn’t a simple int, although it’s usually an unsigned integer type.

You can allocate a great deal of memory on most Linux systems. Let’s start with a very simple program,
but one that would defeat old MS-DOS-based programs, because they cannot access memory outside the
base 640K memory map of PCs.

Try It Out Simple Memory Allocation
Type the following program, memory1.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define A_MEGABYTE (1024 * 1024)

int main()
{

char *some_memory;
int megabyte = A_MEGABYTE;
int exit_code = EXIT_FAILURE;

some_memory = (char *)malloc(megabyte);
if (some_memory != NULL) {

sprintf(some_memory, “Hello World\n”);
printf(“%s”, some_memory);
exit_code = EXIT_SUCCESS;

}
exit(exit_code);

}

When you run this program, it gives the following output:

$./memory1
Hello World

How It Works
This program asks the malloc library to give it a pointer to a megabyte of memory. You check to ensure
that malloc was successful and then use some of the memory to show that it exists. When you run the
program, you should see Hello World printed out, showing that malloc did indeed return the megabyte

256

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 256

of usable memory. We don’t check that all of the megabyte is present; we have to put some trust in the
malloc code!

Notice that because malloc returns a void * pointer, you cast the result to the char * that you need.
The malloc function is guaranteed to return memory that is aligned so that it can be cast to a pointer of
any type.

The simple reason is that most current Linux systems use 32-bit integers and 32-bit pointers for pointing
to memory, which allows you to specify up to 4 gigabytes. This ability to address directly with a 32-bit
pointer, without needing segment registers or other tricks, is termed a flat 32-bit memory model. This
model is also used in 32-bit versions of Windows XP and Vista. You should never rely on integers being
32-bit however, as an ever-increasing number of 64-bit versions of Linux are in use.

Allocating Lots of Memory
Now that you’ve seen Linux exceed the limitations of the MS-DOS memory model, let’s give it a more
difficult problem. The next program asks to allocate somewhat more memory than is physically present
in the machine, so you might expect malloc to start failing somewhere a little short of the actual amount
of memory present, because the kernel and all the other running processes are using some memory.

Try It Out Asking for All Physical Memory
With memory2.c, we’re going to ask for more than the machine’s physical memory. You should adjust
the define PHY_MEM_MEGS depending on your physical machine:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define A_MEGABYTE (1024 * 1024)
#define PHY_MEM_MEGS 1024 /* Adjust this number as required */

int main()
{

char *some_memory;
size_t size_to_allocate = A_MEGABYTE;
int megs_obtained = 0;

while (megs_obtained < (PHY_MEM_MEGS * 2)) {
some_memory = (char *)malloc(size_to_allocate);
if (some_memory != NULL) {

megs_obtained++;
sprintf(some_memory, “Hello World”);
printf(“%s - now allocated %d Megabytes\n”, some_memory, megs_obtained);

}
else {

exit(EXIT_FAILURE);
}

}
exit(EXIT_SUCCESS);

}

257

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 257

The output, somewhat abbreviated, is as follows:

$./memory2
Hello World - now allocated 1 Megabytes
Hello World - now allocated 2 Megabytes
...
Hello World - now allocated 2047 Megabytes
Hello World - now allocated 2048 Megabytes

How It Works
The program is very similar to the previous example. It simply loops, asking for more and more memory,
until it has allocated twice the amount of memory you said your machine had when you adjusted the
define PHY_MEM_MEGS. The surprise is that it works at all, because we appear to have created a program
that uses every single byte of physical memory on the author’s machine. Notice that we use the size_t
type for our call to malloc.

The other interesting feature is that, at least on this machine, it ran the program in the blink of an eye.
So not only have we apparently used up all the memory, but we’ve done it very quickly indeed.

Let’s investigate further and see just how much memory we can allocate on this machine with memory3.c.
Since it’s now clear that Linux can do some very clever things with requests for memory, we’ll allocate
memory just 1K at a time and write to each block that we obtain.

Try It Out Available Memory
This is memory3.c. By its very nature, it’s extremely system-unfriendly and could affect a multiuser
machine quite seriously. If you’re at all concerned about the risk, it’s better not to run it at all; it won’t
harm your understanding if you don’t:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define ONE_K (1024)

int main()
{

char *some_memory;
int size_to_allocate = ONE_K;
int megs_obtained = 0;
int ks_obtained = 0;

while (1) {
for (ks_obtained = 0; ks_obtained < 1024; ks_obtained++) {

some_memory = (char *)malloc(size_to_allocate);
if (some_memory == NULL) exit(EXIT_FAILURE);
sprintf(some_memory, “Hello World”);

}
megs_obtained++;

258

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 258

printf(“Now allocated %d Megabytes\n”, megs_obtained);
}
exit(EXIT_SUCCESS);

}

This time, the output, again abbreviated, is

$./memory3
Now allocated 1 Megabytes
...
Now allocated 1535 Megabytes
Now allocated 1536 Megabytes
Out of Memory: Killed process 2365
Killed

and then the program ends. It also takes quite a few seconds to run, and slows down significantly around
the same number as the physical memory in the machine, and exercises the hard disk quite noticeably.
However, the program has allocated, and accessed, more memory than this author physically has in his
machine at the time of writing. Finally, the system protects itself from this rather aggressive program and
kills it. On some systems it may simply exit quietly when malloc fails.

How It Works
The application’s allocated memory is managed by the Linux kernel. Each time the program asks for
memory or tries to read or write to memory that it has allocated, the Linux kernel takes charge and
decides how to handle the request.

Initially, the kernel was simply able to use free physical memory to satisfy the application’s request for
memory, but once physical memory was full, it started using what’s called swap space. On Linux, this is
a separate disk area allocated when the system was installed. If you’re familiar with Windows, the Linux
swap space acts a little like the hidden Windows swap file. However, unlike Windows, there are no local
heap, global heap, or discardable memory segments to worry about in code — the Linux kernel does all
the management for you.

The kernel moves data and program code between physical memory and the swap space so that each
time you read or write memory, the data always appears to have been in physical memory, wherever it
was actually located before you attempted to access it.

In more technical terms, Linux implements a demand paged virtual memory system. All memory seen
by user programs is virtual; that is, it doesn’t actually exist at the physical address the program uses.
Linux divides all memory into pages, commonly 4,096 bytes per page. When a program tries to access
memory, a virtual-to-physical translation is made, although how this is implemented and the time it
takes depend on the particular hardware you’re using. When the access is to memory that isn’t physi-
cally resident, a page fault results and control is passed to the kernel.

The Linux kernel checks the address being accessed and, if it’s a legal address for that program, determines
which page of physical memory to make available. It then either allocates it, if it has never been written
before, or, if it has been stored on the disk in the swap space, reads the memory page containing the data

259

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 259

into physical memory (possibly moving an existing page out to disk). Then, after mapping the virtual
memory address to match the physical address, it allows the user program to continue. Linux applications
don’t need to worry about this activity because the implementation is all hidden in the kernel.

Eventually, when the application exhausts both the physical memory and the swap space, or when the
maximum stack size is exceeded, the kernel finally refuses the request for further memory and may pre-
emptively terminate the program.

So what does this mean to the application programmer? Basically, it’s all good news. Linux is very good
at managing memory and will allow applications to use very large amounts of memory and even very
large single blocks of memory. However, you must remember that allocating two blocks of memory
won’t result in a single continuously addressable block of memory. What you get is what you ask for:
two separate blocks of memory.

Does this apparently limitless supply of memory, followed by preemptive killing of the process, mean that
there’s no point in checking the return from malloc? Definitely not. One of the most common problems in
C programs using dynamically allocated memory is writing beyond the end of an allocated block. When
this happens, the program may not terminate immediately, but you have probably overwritten some data
used internally by the malloc library routines.

Usually, the result is that future calls to malloc may fail, not because there’s no memory to allocate,
but because the memory structures have been corrupted. These problems can be quite difficult to track
down, and in programs the sooner the error is detected, the better the chances of tracking down the
cause. In Chapter 10, on debugging and optimizing, we’ll discuss some tools that can help you track
down memory problems.

Abusing Memory
Suppose you try to do “bad” things with memory. In this exercise, you allocate some memory and then
attempt to write past the end, in memory4.c.

Try It Out Abusing Your Memory
#include <stdlib.h>

#define ONE_K (1024)

int main()
{

char *some_memory;
char *scan_ptr;

This “killing the process” behavior is different from early versions of Linux and many
other flavors of UNIX, where malloc simply fails. It’s termed the “out of memory
(OOM) killer,” and although it may seem rather drastic, it is in fact a good compromise
between letting processes allocate memory rapidly and efficiently and having the
Linux kernel protect itself from a total lack of resources, which is a serious issue.

260

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 260

some_memory = (char *)malloc(ONE_K);
if (some_memory == NULL) exit(EXIT_FAILURE);

scan_ptr = some_memory;
while(1) {

*scan_ptr = ‘\0’;
scan_ptr++;

}
exit(EXIT_SUCCESS);

}

The output is simply

$ /memory4
Segmentation fault

How It Works
The Linux memory management system has protected the rest of the system from this abuse of memory.
To ensure that one badly behaved program (this one) can’t damage any other programs, Linux has ter-
minated it.

Each running program on a Linux system sees its own memory map, which is different from every other
program’s. Only the operating system knows how physical memory is arranged, and not only manages
it for user programs, but also protects user programs from each other.

The Null Pointer
Unlike MS-DOS, but more like newer flavors of Windows, modern Linux systems are very protective
about writing or reading from the address referred to by a null pointer, although the actual behavior is
implementation-specific.

Try It Out Accessing a Null Pointer
Let’s find out what happens when you access a null pointer in memory5a.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{

char *some_memory = (char *)0;

printf(“A read from null %s\n”, some_memory);
sprintf(some_memory, “A write to null\n”);
exit(EXIT_SUCCESS);

}

261

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 261

The output is

$./memory5a
A read from null (null)
Segmentation fault

How It Works
The first printf attempts to print out a string obtained from a null pointer; then the sprintf attempts to
write to a null pointer. In this case, Linux (in the guise of the GNU “C” library) has been forgiving about
the read and has simply provided a “magic” string containing the characters (n u l l) \0. It hasn’t been
so forgiving about the write and has terminated the program. This can sometimes be helpful in tracking
down program bugs.

If you try this again but this time don’t use the GNU “C” library, you’ll discover that reading from loca-
tion zero is not permitted. Here is memory5b.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{

char z = *(const char *)0;
printf(“I read from location zero\n”);

exit(EXIT_SUCCESS);
}

The output is

$./memory5b
Segmentation fault

This time you attempt to read directly from location zero. There is no GNU libc library between you
and the kernel now, and the program is terminated. Note that some versions of UNIX do permit reading
from location zero, but Linux doesn’t.

Freeing Memory
Up to now, we’ve been simply allocating memory and then hoping that when the program ends, the
memory we’ve used hasn’t been lost. Fortunately, the Linux memory management system is quite capable
of reliably ensuring that memory is returned to the system when a program ends. However, most pro-
grams don’t simply want to allocate some memory, use it for a short period, and then exit. A much more
common use is dynamically using memory as required.

Programs that use memory on a dynamic basis should always release unused memory back to the
malloc memory manager using the free call. This enables separate blocks to be remerged and enables
the malloc library to look after memory, rather than have the application manage it. If a running program

262

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 262

(process) uses and then frees memory, that free memory remains allocated to the process. Behind the
scenes, Linux is managing the blocks of memory the programmer is using as a set of physical “pages,”
usually 4K bytes each, in memory. However, if a page of memory is not being used, then the Linux mem-
ory manager will be able to move it from physical memory to swap space (termed paging), where it has
little impact on the use of resources. If the program tries to access data inside the memory page that has be
moved to swap space, then Linux will very briefly suspend the program, move the memory page back
from swap space into physical memory again, and then allow the program to continue, just as though the
data had been in memory all along.

#include <stdlib.h>

void free(void *ptr_to memory);

A call to free should be made only with a pointer to memory allocated by a call to malloc, calloc, or
realloc. You’ll meet calloc and realloc very shortly.

Try It Out Freeing Memory
This program is called memory6.c:

#include <stdlib.h>
#include <stdio.h>

#define ONE_K (1024)

int main()
{

char *some_memory;
int exit_code = EXIT_FAILURE;

some_memory = (char *)malloc(ONE_K);
if (some_memory != NULL) {

free(some_memory);
printf(“Memory allocated and freed again\n”);
exit_code = EXIT_SUCCESS;

}
exit(exit_code);

}

The output is

$./memory6
Memory allocated and freed again

How It Works
This program simply shows how to call free with a pointer to some previously allocated memory.

263

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 263

Other Memory Allocation Functions
Two other memory allocation functions are not used as often as malloc and free: calloc and realloc.
The prototypes are

#include <stdlib.h>

void *calloc(size_t number_of_elements, size_t element_size);
void *realloc(void *existing_memory, size_t new_size);

Although calloc allocates memory that can be freed with free, it has somewhat different parameters
from malloc: It allocates memory for an array of structures and requires the number of elements and the
size of each element as its parameters. The allocated memory is filled with zeros; and if calloc is success-
ful, a pointer to the first element is returned. Like malloc, subsequent calls are not guaranteed to return
contiguous space, so you can’t enlarge an array created by calloc by simply calling calloc again and
expecting the second call to return memory appended to that returned by the first call.

The realloc function changes the size of a block of memory that has been previously allocated. It’s
passed a pointer to some memory previously allocated by malloc, calloc, or realloc and resizes it
up or down as requested. The realloc function may have to move data around to achieve this, so it’s
important to ensure that once memory has been realloced, you always use the new pointer and never
try to access the memory using pointers set up before realloc was called.

Another problem to watch out for is that realloc returns a null pointer if it has been unable to resize
the memory. This means that in some applications you should avoid writing code like this:

my_ptr = malloc(BLOCK_SIZE);
....
my_ptr = realloc(my_ptr, BLOCK_SIZE * 10);

If realloc fails, then it returns a null pointer; my_ptr will point to null; and the original memory allocated
with malloc can no longer be accessed via my_ptr. It may therefore be to your advantage to request the
new memory first with malloc and then copy data from the old block to the new block using memcpy
before freeing the old block. On error, this would allow the application to retain access to the data stored
in the original block of memory, perhaps while arranging a clean termination of the program.

File Locking
File locking is a very important part of multiuser, multitasking operating systems. Programs frequently
need to share data, usually through files, and it’s very important that those programs have some way of

Remember that once you’ve called free on a block of memory, it no longer belongs
to the process. It’s not being managed by the malloc library. Never try to read or
write memory after calling free on it.

264

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 264

establishing control of a file. The file can then be updated in a safe fashion, or a second program can stop
itself from trying to read a file that is in a transient state while another program is writing to it.

Linux has several features that you can use for file locking. The simplest method is a technique to create
lock files in an atomic way, so that nothing else can happen while the lock is being created. This gives a
program a method of creating files that are guaranteed to be unique and could not have been simultane-
ously created by a different program.

The second method is more advanced; it enables programs to lock parts of a file for exclusive access.
There are two different ways of achieving this second form of locking. We’ll look at only one in detail,
as the second is very similar — it just has a slightly different programming interface.

Creating Lock Files
Many applications just need to be able to create a lock file for a resource. Other programs can then check
the file to see whether they are permitted to access the resource.

Usually, these lock files are in a special place with a name that relates to the resource being controlled.
For example, when a modem is in use, Linux creates a lock file, often using a directory in the /var/
spool directory.

Remember that lock files act only as indicators; programs need to cooperate to use them. They are
termed advisory locks as opposed to mandatory locks, where the system will enforce the lock behavior.

To create a file to use as a lock indicator, you can use the open system call defined in fcntl.h (which
you met in an earlier chapter) with the O_CREAT and O_EXCL flags set. This enables you to check that the
file doesn’t already exist and then create it in a single, atomic operation.

Try It Out Creating a Lock File
You can see this in action with lock1.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

int main()
{

int file_desc;
int save_errno;

file_desc = open(“/tmp/LCK.test”, O_RDWR | O_CREAT | O_EXCL, 0444);
if (file_desc == -1) {

save_errno = errno;
printf(“Open failed with error %d\n”, save_errno);

}
else {

printf(“Open succeeded\n”);
}
exit(EXIT_SUCCESS);

}

265

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 265

The first time you run the program, the output is

$./lock1
Open succeeded

but the next time you try, you get

$./lock1
Open failed with error 17

How It Works
The program calls open to create a file called /tmp/LCK.test, using the O_CREAT and O_EXCL flags. The
first time you run the program, the file doesn’t exist, so the open call is successful. Subsequent invoca-
tions of the program fail because the file already exists. To get the program to succeed again, you have to
manually remove the lock file.

On Linux systems at least, error 17 refers to EEXIST, an error used to indicate that a file already exists.
Error numbers are defined in the header file errno.h or, more commonly, by files included by it. In this
case, the definition, actually in /usr/include/asm-generic/errno-base.h, reads

#define EEXIST 17 /* File exists */

This is an appropriate error for an open(O_CREAT | O_EXCL) failure.

If a program simply needs a resource exclusively for a short period of its execution, often termed a critical
section, it should create the lock file using the open system call before entering the critical section, and use
the unlink system call to delete it afterward, when the program exits the critical section.

You can demonstrate how programs can cooperate with this locking mechanism by writing a sample
program and running two copies of it at the same time. You’ll use the getpid call, which you saw in
Chapter 4; it returns the process identifier, a unique number for each currently executing program.

Try It Out Cooperative Lock Files
1. Here’s the source of the test program, lock2.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

const char *lock_file = “/tmp/LCK.test2”;

int main()
{

int file_desc;
int tries = 10;

266

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 266

while (tries--) {
file_desc = open(lock_file, O_RDWR | O_CREAT | O_EXCL, 0444);
if (file_desc == -1) {

printf(“%d - Lock already present\n”, getpid());
sleep(3);

}
else {

2. The critical section starts here:

printf(“%d - I have exclusive access\n”, getpid());
sleep(1);
(void)close(file_desc);
(void)unlink(lock_file);

3. It ends here:

sleep(2);
}

}
exit(EXIT_SUCCESS);

}

To run the program, you should first use this command to ensure that the lock file doesn’t exist:

$ rm -f /tmp/LCK.test2

Then run two copies of the program by using this command:

$./lock2 & ./lock2

This starts a copy of lock2 in the background and a second copy running in the foreground. This is
the output:

1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present

267

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 267

The preceding example shows how the two invocations of the same program are cooperating. If you try
this, you’ll almost certainly see different process identifiers in the output, but the program behavior will
be the same.

How It Works
For the purposes of demonstration, you make the program loop 10 times using the while loop. The
program then tries to access the critical resource by creating a unique lock file, /tmp/LCK.test2. If this
fails because the file already exists, then the program waits for a short time and tries again. If it succeeds,
then it can access the resource and, in the part marked “critical section,” carry out whatever processing
is required with exclusive access.

Since this is just a demonstration, you wait for only a short period. When the program has finished with
the resource, it releases the lock by deleting the lock file. It can then carry out some other processing
(just the sleep function in this case) before trying to reacquire the lock. The lock file acts as a binary
semaphore, giving each program a yes or no answer to the question, “Can I use the resource?” You will
learn more about semaphores in Chapter 14.

Locking Regions
Creating lock files is fine for controlling exclusive access to resources such as serial ports or infrequently
accessed files, but it isn’t so good for access to large shared files. Suppose you have a large file that is written
by one program but updated by many different programs simultaneously. This might occur if a program is
logging some data that is obtained continuously over a long period and is being processed by several other
programs. The processing programs can’t wait for the logging program to finish — it runs continuously —
so they need some way of cooperating to provide simultaneous access to the same file.

You can accommodate this situation by locking regions of the file so that a particular section of the file is
locked, but other programs may access other parts of the file. This is called file-segment, or file-region, locking.
Linux has (at least) two ways to do this: using the fcntl system call and using the lockf call. We’ll look
primarily at the fcntl interface because that is the most commonly used interface. lockf is reasonably
similar, and, on Linux, is normally just an alternative interface to fcntl. However, the fcntl and lockf
locking mechanisms do not work together: They use different underlying implementations, so you should
never mix the two types of call; stick to one or the other.

You met the fcntl call in Chapter 3. Its definition is

#include <fcntl.h>

int fcntl(int fildes, int command, ...);

It’s important to realize that this is a cooperative arrangement and that you must write
the programs correctly for it to work. A program failing to create the lock file can’t
simply delete the file and try again. It might then be able to create the lock file, but
the other program that created the lock file has no way of knowing that it no longer
has exclusive access to the resource.

268

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 268

fcntl operates on open file descriptors and, depending on the command parameter, can perform different
tasks. The three command options of interest for file locking are as follows:

❑ F_GETLK

❑ F_SETLK

❑ F_SETLKW

When you use these the third argument must be a pointer to a struct flock, so the prototype is effec-
tively this:

int fcntl(int fildes, int command, struct flock *flock_structure);

The flock (file lock) structure is implementation dependent, but it will contain at least the following
members:

❑ short l_type;

❑ short l_whence;

❑ off_t l_start;

❑ off_t l_len;

❑ pid_t l_pid;

The l_type member takes one of several values, also defined in fcntl.h. These are shown in the fol-
lowing table:

The l_whence, l_start, and l_len members define a region — a contiguous set of bytes — in a file.. The
l_whence must be one of SEEK_SET, SEEK_CUR, SEEK_END (from unistd.h). These correspond to the start,
current position, and end of a file, respectively. l_whence defines the offset to which l_start, the first byte
in the region, is relative. Normally, this would be SEEK_SET, so l_start is counted from the beginning of
the file. The l_len parameter defines the number of bytes in the region.

The l_pid parameter is used for reporting the process holding a lock; see the F_GETLK description
that follows.

Value Description

F_RDLCK A shared (or “read”) lock. Many different processes can have a shared lock
on the same (or overlapping) regions of the file. If any process has a shared
lock, then no process will be able to get an exclusive lock on that region. In
order to obtain a shared lock, the file must have been opened with read or
read/write access.

F_UNLCK Unlock; used for clearing locks

F_WRLCK An exclusive (or “write”) lock. Only a single process may have an exclusive
lock on any particular region of a file. Once a process has such a lock, no other
process will be able to get any sort of lock on the region. To obtain an exclusive
lock, the file must have been opened with write or read/write access.

269

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 269

Each byte in a file can have only a single type of lock on it at any one time, and may be locked for shared
access, locked for exclusive access, or unlocked. There are quite a few combinations of commands and
options to the fcntl call, so let’s look at each of them in turn.

The F_GETLK Command
The first command is F_GETLK. It gets locking information about the file that fildes (the first parameter)
has open. It doesn’t attempt to lock the file. The calling process passes information about the type of lock
it might wish to create, and fcntl used with the F_GETLK command returns any information that would
prevent the lock from occurring.

The values used in the flock structure are described in the following table:

A process may use the F_GETLK call to determine the current state of locks on a region of a file. It should
set up the flock structure to indicate the type of lock it may require and define the region it’s interested
in. The fcntl call returns a value other than -1 if it’s successful. If the file already has locks that would
prevent a lock request from succeeding, it overwrites the flock structure with the relevant information.
If the lock will succeed, the flock structure is unchanged. If the F_GETLK call is unable to obtain the
information, it returns -1 to indicate failure.

If the F_GETLK call is successful (i.e., it returns a value other than -1), the calling application must check
the contents of the flock structure to determine whether it was modified. Since the l_pid value is set
to the locking process (if one was found), this is a convenient field to check to determine whether the
flock structure has been changed.

The F_SETLK Command
This command attempts to lock or unlock part of the file referenced by fildes. The values used in the
flock structure (and different from those used by F_GETLK) are as follows:

Value Description

l_type One of the following:
F_RDLCK for a read-only, or shared, lock
F_WRLCK for an exclusive or write lock
F_UNLCK to unlock a region

l_pid Unused

Value Description

l_type Either F_RDLCK for a shared (read-only) lock or F_WRLCK for an exclusive
(write) lock

l_whence One of SEEK_SET, SEEK_CUR, or SEEK_END LCK

l_start The start byte of the file region of interest

l_len The number of bytes in the file region of interest

l_pid The identifier of the process with the lock

270

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 270

As with F_GETLK, the region to be locked is defined by the values of the l_start, l_whence, and l_len
fields of the flock structure. If the lock is successful, fcntl returns a value other than -1; on failure, -1 is
returned. The function always returns immediately.

The F_SETLKW Command
The F_SETLKW command is the same as the F_SETLK command above except that if it can’t obtain the
lock, the call will wait until it can. Once this call has started waiting, it will return only when the lock
can be obtained or a signal occurs. We cover signals in Chapter 11.

All locks held by a program on a file are automatically cleared when the relevant file descriptor is closed.
This also happens automatically when the program finishes.

Use of read and write with Locking
When you’re using locking on regions of a file, it’s very important to use the lower-level read and
write calls to access the data in the file, rather than the higher-level fread and fwrite. This is neces-
sary because fread and fwrite perform buffering of data read or written inside the library, so execut-
ing an fread call to read the first 100 bytes of a file may (in fact almost certainly will) read more than
100 bytes and buffer the additional data inside the library. If the program then uses fread to read the
next 100 bytes, it will actually read data already buffered inside the library and not allow a low-level
read to pull more data from the file.

To see why this is a problem, consider two programs that wish to update the same file. Suppose the file
consists of 200 bytes of data, all zeros. The first program starts first and obtains a write lock on the first 100
bytes of the file. It then uses fread to read in those 100 bytes. However, as shown in an earlier chapter,
fread will read ahead by up to BUFSIZ bytes at a time, so it actually reads the entire file into memory, but
only passes the first 100 bytes back to the program.

The second program then starts. It obtains a write lock on the second 100 bytes of the program. This is
successful because the first program locked only the first 100 bytes. The second program writes twos to
bytes 100 to 199, closes the file, unlocks it, and exits. The first program then locks the second 100 bytes
of the file and calls fread to read them in. As that data was already buffered in memory by the library,
what the program actually sees is 100 bytes of zeros, not the 100 twos that actually exist in the file on the
hard disk. This problem doesn’t occur when you’re using read and write.

That description of file locking may seem a bit complex, but it’s actually more difficult to describe than it
is to use.

Try It Out Locking a File with fcntl
Let’s look at an example of how file locking works: lock3.c. To try out locking, you need two programs:
one to do the locking and one to test. The first program does the locking.

1. Start with the includes and variable declarations:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

271

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 271

const char *test_file = “/tmp/test_lock”;

int main()
{

int file_desc;
int byte_count;
char *byte_to_write = “A”;
struct flock region_1;
struct flock region_2;
int res;

2. Open a file descriptor:

file_desc = open(test_file, O_RDWR | O_CREAT, 0666);
if (!file_desc) {

fprintf(stderr, “Unable to open %s for read/write\n”, test_file);
exit(EXIT_FAILURE);

}

3. Put some data in the file:

for(byte_count = 0; byte_count < 100; byte_count++) {
(void)write(file_desc, byte_to_write, 1);

}

4. Set up region 1 with a shared lock, from bytes 10 to 30:

region_1.l_type = F_RDLCK;
region_1.l_whence = SEEK_SET;
region_1.l_start = 10;
region_1.l_len = 20;

5. Set up region 2 with an exclusive lock, from bytes 40 to 50:

region_2.l_type = F_WRLCK;
region_2.l_whence = SEEK_SET;
region_2.l_start = 40;
region_2.l_len = 10;

6. Now lock the file:

printf(“Process %d locking file\n”, getpid());
res = fcntl(file_desc, F_SETLK, ®ion_1);
if (res == -1) fprintf(stderr, “Failed to lock region 1\n”);
res = fcntl(file_desc, F_SETLK, ®ion_2);
if (res == -1) fprintf(stderr, “Failed to lock region 2\n”);

7. Wait for a while:

sleep(60);

printf(“Process %d closing file\n”, getpid());

272

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 272

close(file_desc);
exit(EXIT_SUCCESS);

}

How It Works
The program first creates a file, opens it for both reading and writing, and then fills the file with data.
It then sets up two regions: the first from bytes 10 to 30, for a shared (read) lock, and the second from
bytes 40 to 50, for an exclusive (write) lock. It then calls fcntl to lock the two regions and waits for a
minute before closing the file and exiting.

Figure 7-1 shows this scenario with locks when the program starts to wait.

Figure 7-1

On its own, this program isn’t very useful. You need a second program to test the locks, lock4.c.

Try It Out Testing Locks on a File
In this example, you’ll write a program that tests the different sorts of locks that you might need on dif-
ferent regions of a file:

1. As usual, begin with the includes and declarations:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

const char *test_file = “/tmp/test_lock”;
#define SIZE_TO_TRY 5

0

10

30

40

50

100

F_RDLCK

F_WRLCK

shared lock

exclusive lock

273

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 273

void show_lock_info(struct flock *to_show);

int main()
{

int file_desc;
int res;
struct flock region_to_test;
int start_byte;

2. Open a file descriptor:

file_desc = open(test_file, O_RDWR | O_CREAT, 0666);
if (!file_desc) {

fprintf(stderr, “Unable to open %s for read/write”, test_file);
exit(EXIT_FAILURE);

}

for (start_byte = 0; start_byte < 99; start_byte += SIZE_TO_TRY) {

3. Set up the region you wish to test:

region_to_test.l_type = F_WRLCK;
region_to_test.l_whence = SEEK_SET;
region_to_test.l_start = start_byte;
region_to_test.l_len = SIZE_TO_TRY;
region_to_test.l_pid = -1;

printf(“Testing F_WRLCK on region from %d to %d\n”,
start_byte, start_byte + SIZE_TO_TRY);

4. Now test the lock on the file:

res = fcntl(file_desc, F_GETLK, ®ion_to_test);
if (res == -1) {

fprintf(stderr, “F_GETLK failed\n”);
exit(EXIT_FAILURE);

}
if (region_to_test.l_pid != -1) {

printf(“Lock would fail. F_GETLK returned:\n”);
show_lock_info(®ion_to_test);

}
else {

printf(“F_WRLCK - Lock would succeed\n”);
}

5. Now repeat the test with a shared (read) lock. Set up the region you wish to test again:

region_to_test.l_type = F_RDLCK;
region_to_test.l_whence = SEEK_SET;
region_to_test.l_start = start_byte;
region_to_test.l_len = SIZE_TO_TRY;
region_to_test.l_pid = -1;
printf(“Testing F_RDLCK on region from %d to %d\n”,

start_byte, start_byte + SIZE_TO_TRY);

274

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 274

6. Test the lock on the file again:

res = fcntl(file_desc, F_GETLK, ®ion_to_test);
if (res == -1) {

fprintf(stderr, “F_GETLK failed\n”);
exit(EXIT_FAILURE);

}
if (region_to_test.l_pid != -1) {

printf(“Lock would fail. F_GETLK returned:\n”);
show_lock_info(®ion_to_test);

}
else {

printf(“F_RDLCK - Lock would succeed\n”);
}

}
close(file_desc);
exit(EXIT_SUCCESS);

}

void show_lock_info(struct flock *to_show) {
printf(“\tl_type %d, “, to_show->l_type);
printf(“l_whence %d, “, to_show->l_whence);
printf(“l_start %d, “, (int)to_show->l_start);
printf(“l_len %d, “, (int)to_show->l_len);
printf(“l_pid %d\n”, to_show->l_pid);

}

To test locking, you first need to run the lock3 program; then run the lock4 program to test the locked
file. You do this by executing the lock3 program in the background, with the following command:

$./lock3 &
$ process 1534 locking file

The command prompt returns because lock3 is running in the background, and you then immediately
run the lock4 program with the following command:

$./lock4

The output you get, with some omissions for brevity, is as follows:

Testing F_WRLOCK on region from 0 to 5
F_WRLCK - Lock would succeed
Testing F_RDLOCK on region from 0 to 5
F_RDLCK - Lock would succeed
...
Testing F_WRLOCK on region from 10 to 15
Lock would fail. F_GETLK returned:
l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534
Testing F_RDLOCK on region from 10 to 15
F_RDLCK - Lock would succeed
Testing F_WRLOCK on region from 15 to 20
Lock would fail. F_GETLK returned:
l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534

275

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 275

Testing F_RDLOCK on region from 15 to 20
F_RDLCK - Lock would succeed
...
Testing F_WRLOCK on region from 25 to 30
Lock would fail. F_GETLK returned:
l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534
Testing F_RDLOCK on region from 25 to 30
F_RDLCK - Lock would succeed
...
Testing F_WRLOCK on region from 40 to 45
Lock would fail. F_GETLK returned:
l_type 1, l_whence 0, l_start 40, l_len 10, l_pid 1534
Testing F_RDLOCK on region from 40 to 45
Lock would fail. F_GETLK returned:
l_type 1, l_whence 0, l_start 40, l_len 10, l_pid 1534
...
Testing F_RDLOCK on region from 95 to 100
F_RDLCK - Lock would succeed

How It Works
For each group of five bytes in the file, lock4 sets up a region structure to test for locks on the file, which it
then uses to determine whether the region can be either write or read locked. The returned information
shows the region bytes, offset from byte zero, that would cause the lock request to fail. Since the l_pid part
of the returned structure contains the process identifier of the program that currently has the file locked,
the program sets it to -1 (an invalid value) and then checks whether it has been changed when the fcntl
call returns. If the region isn’t currently locked, l_pid will be unchanged.

To understand the output, you need to look in the include file fcntl.h (normally /usr/include/
fcntl.h) to find that an l_type of 1 is from the definition of F_WRLCK as 1, and an l_type of 0 is from
the definition of F_RDLCK as 0. Thus, an l_type of 1 tells you that the lock would fail because of an exist-
ing write lock, and an l_type of 0 is caused by an existing read lock. On the regions of the file that
lock3 has not locked, both shared and exclusive locks will succeed.

From bytes 10 to 30, you can see that it would be possible to have a shared lock, because the existing lock
from the lock3 program is a shared, not an exclusive, lock. On the region from bytes 40 to 50, both types
of lock will fail because lock3 has an exclusive (F_WRLCK) lock on this region.

Once the program lock4 has completed, you need to wait for a short period for lock3 to complete its
sleep call and exit.

Competing Locks
Now that you’ve seen how to test for existing locks on a file, let’s see what happens when two programs
compete for locks on the same section of the file. You’ll use the lock3 program again for locking the file,
and a new program, lock5, to try to lock it again. To complete the example you’ll also add some calls for
unlocking into lock5.

276

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 276

Try It Out Competing Locks
Here’s a program, lock5.c, that tries to lock regions of a file that are already locked, rather than test the
lock status of different parts of the file:

1. After the #includes and declarations, open a file descriptor:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

const char *test_file = “/tmp/test_lock”;

int main()
{

int file_desc;
struct flock region_to_lock;
int res;

file_desc = open(test_file, O_RDWR | O_CREAT, 0666);
if (!file_desc) {

fprintf(stderr, “Unable to open %s for read/write\n”, test_file);
exit(EXIT_FAILURE);

}

2. The remainder of the program specifies different regions of the file and tries different locking
operations on them:

region_to_lock.l_type = F_RDLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 10;
region_to_lock.l_len = 5;
printf(“Process %d, trying F_RDLCK, region %d to %d\n”, getpid(),

(int)region_to_lock.l_start, (int)(region_to_lock.l_start +
region_to_lock.l_len));

res = fcntl(file_desc, F_SETLK, ®ion_to_lock);
if (res == -1) {

printf(“Process %d - failed to lock region\n”, getpid());
} else {

printf(“Process %d - obtained lock region\n”, getpid());
}

region_to_lock.l_type = F_UNLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 10;
region_to_lock.l_len = 5;
printf(“Process %d, trying F_UNLCK, region %d to %d\n”, getpid(),

(int)region_to_lock.l_start,
(int)(region_to_lock.l_start +

region_to_lock.l_len));
res = fcntl(file_desc, F_SETLK, ®ion_to_lock);
if (res == -1) {

277

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 277

printf(“Process %d - failed to unlock region\n”, getpid());
} else {

printf(“Process %d - unlocked region\n”, getpid());
}

region_to_lock.l_type = F_UNLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 0;
region_to_lock.l_len = 50;
printf(“Process %d, trying F_UNLCK, region %d to %d\n”, getpid(),

(int)region_to_lock.l_start,
(int)(region_to_lock.l_start +

region_to_lock.l_len));
res = fcntl(file_desc, F_SETLK, ®ion_to_lock);
if (res == -1) {

printf(“Process %d - failed to unlock region\n”, getpid());
} else {

printf(“Process %d - unlocked region\n”, getpid());
}

region_to_lock.l_type = F_WRLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 16;
region_to_lock.l_len = 5;
printf(“Process %d, trying F_WRLCK, region %d to %d\n”, getpid(),

(int)region_to_lock.l_start,
(int)(region_to_lock.l_start +

region_to_lock.l_len));
res = fcntl(file_desc, F_SETLK, ®ion_to_lock);
if (res == -1) {

printf(“Process %d - failed to lock region\n”, getpid());
} else {

printf(“Process %d - obtained lock on region\n”, getpid());
}

region_to_lock.l_type = F_RDLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 40;
region_to_lock.l_len = 10;
printf(“Process %d, trying F_RDLCK, region %d to %d\n”, getpid(),

(int)region_to_lock.l_start,
(int)(region_to_lock.l_start +

region_to_lock.l_len));
res = fcntl(file_desc, F_SETLK, ®ion_to_lock);
if (res == -1) {

printf(“Process %d - failed to lock region\n”, getpid());
} else {

printf(“Process %d - obtained lock on region\n”, getpid());
}

region_to_lock.l_type = F_WRLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 16;
region_to_lock.l_len = 5;

278

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 278

printf(“Process %d, trying F_WRLCK with wait, region %d to %d\n”, getpid(),
(int)region_to_lock.l_start,

(int)(region_to_lock.l_start +
region_to_lock.l_len));

res = fcntl(file_desc, F_SETLKW, ®ion_to_lock);
if (res == -1) {

printf(“Process %d - failed to lock region\n”, getpid());
} else {

printf(“Process %d - obtained lock on region\n”, getpid());
}

printf(“Process %d ending\n”, getpid());
close(file_desc);
exit(EXIT_SUCCESS);

}

If you first run the lock3 program in the background, then immediately run this new program:

$./lock3 &
$ process 227 locking file
$./lock5

The output you get is as follows:

Process 227 locking file
Process 228, trying F_RDLCK, region 10 to 15
Process 228 - obtained lock on region
Process 228, trying F_UNLCK, region 10 to 15
Process 228 - unlocked region
Process 228, trying F_UNLCK, region 0 to 50
Process 228 - unlocked region
Process 228, trying F_WRLCK, region 16 to 21
Process 228 - failed to lock on region
Process 228, trying F_RDLCK, region 40 to 50
Process 228 - failed to lock on region
Process 228, trying F_WRLCK with wait, region 16 to 21
Process 227 closing file
Process 228 - obtained lock on region
Process 228 ending

How It Works
First, the program attempts to lock a region from bytes 10 to 15 with a shared lock. This region is already
locked with a shared lock, but simultaneous shared locks are allowed and the lock is successful.

It then unlocks its own shared lock on the region, which is also successful. The program then attempts to
unlock the first 50 bytes of the file, even though it doesn’t have any locks set. This is also successful because,
even though this program had no locks in the first place, the final result of the unlock request is that no locks
are held by this program in the first 50 bytes.

Next, the program attempts to lock the region from bytes 16 to 21 with an exclusive lock. This region is
also already locked with a shared lock, so this time the new lock fails, because an exclusive lock could
not be created.

279

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 279

After that, the program attempts a shared lock on the region from bytes 40 to 50. This region is already
locked with an exclusive lock, so again the lock fails.

Finally, the program again attempts to obtain an exclusive lock on the region from bytes 16 to 21, but this
time it uses the F_SETLCKW command to wait until it can obtain a lock. There is then a long pause in the
output until the lock3 program, which has already locked the region, completes its sleep and closes
the file, thus releasing all the locks it had acquired. The lock5 program resumes execution, successfully
locking the region, before it also exits.

Other Lock Commands
There is a second method of locking files: the lockf function. This also operates using file descriptors.
It has the prototype

#include <unistd.h>

int lockf(int fildes, int function, off_t size_to_lock);

It can take the following function values:

❑ F_ULOCK: Unlock

❑ F_LOCK: Lock exclusively

❑ F_TLOCK: Test and lock exclusively

❑ F_TEST: Test for locks by other processes

The size_to_lock parameter is the number of bytes to operate on, from the current offset in the file.

lockf has a simpler interface than the fcntl interface, principally because it has rather less functionality
and flexibility. To use the function, you must seek the start of the region you wish to lock and then call it
with the number of bytes to lock.

Like the fcntl method of file locking, all locks are only advisory; they won’t actually prevent reading
from or writing to the file. It’s the responsibility of programs to check for locks. The effect of mixing
fcntl locks and lockf locks is undefined, so you must decide which type of locking you wish to use
and stick to it.

Deadlocks
No discussion of locking would be complete without a mention of the dangers of deadlocks. Suppose
two programs wish to update the same file. They both need to update byte 1 and byte 2 at the same time.
Program A chooses to update byte 2 first, then byte 1. Program B tries to update byte 1 first, then byte 2.

Both programs start at the same time. Program A locks byte 2 and program B locks byte 1. Program A
tries for a lock on byte 1. Since this is already locked by program B, program A waits. Program B tries for
a lock on byte 2. Since this is locked by program A, program B too waits.

280

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 280

This situation, when neither program is able to proceed, is called a deadlock, or deadly embrace. It is a com-
mon problem with database applications in which many users are frequently trying to access the same
data. Most commercial relational databases detect deadlocks and break them automatically; the Linux
kernel doesn’t. Some external intervention, perhaps forcibly terminating one of the programs, is required
to sort out the resulting mess.

Programmers must be wary of this situation. When you have multiple programs waiting for locks, you
need to be very careful to consider whether a deadlock could occur. In this example it’s quite easy to avoid:
Both programs should simply lock the bytes they require in the same order, or use a larger region to lock.

We don’t have the space to consider the difficulties of concurrent programs here. If you’re interested in read-
ing further, you might like to consider obtaining a copy of Principles of Concurrent and Distributed
Programming by M. Ben-Ari (Prentice Hall, 1990).

Databases
You’ve seen how to use files for storing data, so why should you want to use a database? Quite simply,
there are some circumstances where the features of a database provide a better way to solve the problem.
Using a database is better than storing files for two reasons:

❑ You can store data records that vary in size, which can be a little difficult to implement using
flat, unstructured files.

❑ Databases store and retrieve data efficiently using an index. The big advantage is that this index
need not be a simple record number, which would be quite easy to implement in a flat file, but
can be an arbitrary string.

The dbm Database
All versions of Linux, and most flavors of UNIX, come with a basic, but very efficient, data storage set of
routines called the dbm database. The dbm database is excellent for storing indexed data that is relatively
static. Some database purists might argue that dbm isn’t a database at all, simply an indexed file storage
system. The X/Open specification, however, refers to dbm as a database, so we’ll continue to refer to it as
such in this book.

Introduction to dbm
In spite of the rise of free relational databases, such as MySQL and PostgreSQL, the dbm database continues
to play an important role in Linux. Distributions that use RPM, such as Red Hat and SUSE, use dbm as the
underlying storage for installed package information. The open-source implementation of LDAP, Open
LDAP, can also use dbm as a storage mechanism. The advantage of dbm over a more complete database
product such as MySQL is that it is very lightweight, and much easier to build into a distributed binary
because no separate database server installation is required. At the time of this writing, both Sendmail and
Apache use dbm.

The dbm database enables you store data structures of variable size, using an index, and then retrieve the
structure either using the index or simply by sequentially scanning the database. The dbm database is best
used for data that is accessed frequently but updated rarely, because it tends to be rather slow to create
entries but quick to retrieve them.

281

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 281

At this point, we come to a minor problem: Over the years, there have been several variations of the dbm
database with slightly different APIs and features. There is the original dbm set, the “new” dbm set, called
ndbm, and the GNU implementation, gdbm. The GNU implementation can also emulate the older dbm
and ndbm interfaces, but natively has a significantly different interface than the other implementations.
Different Linux distributions ship with different versions of the dbm libraries, although the most common
choice is to ship with the gdbm library, but installed such that it can emulate the other two interface types.

Here we are going to concentrate on the ndbm interface because that is the one standardized by X/OPEN
and because it is somewhat simpler to use than the raw gdbm implementation.

Getting dbm
Most mainstream Linux distributions come with a version of gdbm already installed, although on a few
distributions you may need to use the relevant package manager to install the appropriate development
libraries. For example, on Ubuntu you may need to use the Synaptic package manager to install the
libgdbm-dev package, as it is not generally installed by default.

If you want to look at the source code, or are using a distribution for which no pre-built development pack-
age is available, the GNU implementation can be found at www.gnu.org/software/gdbm/gdbm.html.

Troubleshooting and Reinstalling dbm
This chapter was written with the assumption that you have the GNU implementation of gdbm installed,
complete with the ndbm compatibility libraries. This is generally the case for Linux distributions; however,
as noted earlier, you may have to explicitly install the development library package in order to compile
files using the ndbm routines.

Unfortunately, the include and link libraries required do vary slightly among distributions, so although
installed, you may have to experiment slightly to discover how to compile source files using ndbm. The
most common case is that gdbm is installed and by default supports the ndbm compatibility mode. Red
Hat distributions, for example, commonly do this. In this case you need to do the following:

1. Include the file ndbm.h in your C file.

2. Include the header file directory /usr/include/gdbm using -I/usr/include/gdbm.

3. Link against the gdbm library using -lgdbm.

If this doesn’t work, a common alternative, as used by recent Ubuntu and SUSE distributions, for
example, is that gdbm is installed, but you must explicitly request ndbm compatibility if you require
it, and you may have to link against the compatability library before the main library. In this case you
need to do the following:

1. Include the file gdbm-ndbm.h in your C file instead of ndbm.h.

2. Include the header file directory /usr/include/gdbm using -I/usr/include/gdbm.

3. Link against the additional gdbm compatibility library using -lgdbm_compat -lgdbm.

The downloadable Makefile and dbm C files are set to the first option by default, but contain comments
about how they need to be edited to easily select the second option. For the rest of this chapter we assume
your system comes with ndbm compatibility as the default behavior.

282

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 282

The dbm Routines
Like curses, which we discussed in Chapter 6, the dbm facility consists of a header file and a library
that must be linked when the program is compiled. The library is called simply dbm, but because we are
normally using the GNU implementation on Linux, we need to link against this implementation using
-lgdbm on the compilation line. The header file is ndbm.h.

Before we can attempt to explain each of these functions, it’s important to understand what the dbm
database is trying to achieve. Once you understand this, you’ll be in a much better position to under-
stand how to use the dbm functions.

The dbm database’s basic element is a block of data to store, coupled with a companion block of data that
acts as a key for retrieving that data. Each dbm database must have a unique key for each block of data to
be stored. The key value acts as an index into the data stored. There’s no restriction on either the keys or
the data, nor are any errors defined for using data or keys that are too large. The specification allows an
implementation to limit the size of the key/data pair to be 1,023 bytes, but generally there is no limit,
because implementations have been more flexible than they were required to be.

To manipulate these blocks as data, the ndbm.h include file defines a new type called datum. The exact
content of this type is implementation dependent, but it must have at least the following members:

void *dptr;
size_t dsize

datum will be a type defined by a typedef. Also declared in the ndbm.h file is a type definition for dbm,
which is a structure used for accessing the database, much like a FILE is used for accessing files. The
internals of the dbm typedef are implementation dependent and should never be used.

To reference a block of data when you’re using the dbm library, you must declare a datum, set dptr to
point to the start of the data, and set dsize to contain its size. Both the data to store and the index used
to access it are always referenced by a datum type.

The dbm type is best thought of as analogous to a FILE type. When you open a dbm database, two physical
files are normally created: one with a .pag extension and one with a .dir extension. A single dbm pointer
is returned, which is used to access these two files as a pair. The files should never be read or written to
directly; they are intended to be accessed only via the dbm routines.

In some implementations the two files have been merged and only a single new file is created.

If you’re familiar with SQL databases, you’ll notice that there are no table or column structures associated
with a dbm database. These structures are unnecessary because dbm neither imposes a fixed size on each
item of data to be stored nor requires internal structure to the data. The dbm library works on blocks of
unstructured binary data.

dbm Access Functions
Now that we’ve introduced the basis on which the dbm library works, we can take a look at the functions
in detail. The prototypes for the main dbm functions are as follows:

#include <ndbm.h>

283

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 283

DBM *dbm_open(const char *filename, int file_open_flags, mode_t file_mode);
int dbm_store(DBM *database_descriptor, datum key, datum content, int store_mode);
datum dbm_fetch(DBM *database_descriptor, datum key);
void dbm_close(DBM *database_descriptor);

dbm_open
This function is used to open existing databases and can be used to create new databases. The filename
argument is a base filename, without a .dir or .pag extension.

The remaining parameters are the same as the second and third parameters to the open function, which
you met in Chapter 3. You can use the same #defines. The second argument controls whether the data-
base can be read from, written to, or both. If you are creating a new database, the flags must be binary
O_RED with O_CREAT to allow the files to be created. The third argument specifies the initial permissions
of the files that will be created.

dbm_open returns a pointer to a DBM type. This is used in all subsequent accesses of the database. On
failure, a (DBM *)0 is returned.

dbm_store
You use this function for entering data into the database. As mentioned earlier, all data must be stored
with a unique index. To define the data you wish to store and the index used to refer to it, you must set up
two datum types: one to refer to the index and one for the actual data. The final parameter, store_mode,
controls what happens if an attempt is made to store some data using a key that already exists. If it’s set to
dbm_insert, the store fails and dbm_store returns 1. If it’s set to dbm_replace, the new data overwrites
the existing data and dbm_store returns 0. dbm_store will return negative numbers on other errors.

dbm_fetch
The dbm_fetch routine is used for retrieving data from the database. It takes a dbm pointer, as returned
from a previous call to dbm_open, and a datum type, which must be set up to point to a key. A datum
type is returned. If the data relating to the key used was found in the database, the returned datum
structure will have dptr and dsize values set up to refer to the returned data. If the key was not found,
the dptr will be set to null.

dbm_close
This routine closes a database opened with dbm_open and must be passed a dbm pointer returned from a
previous call to dbm_open.

Try It Out A Simple dbm Database
Now that you’ve learned the basic functions of the dbm database, you know enough to write your first
dbm program: dbm1.c. In this program, you’ll use a structure called test_data.

It’s important to remember that dbm_fetch is returning only a datum containing a
pointer to the data. The actual data may still be held in local storage space inside the
dbm library and must be copied into program variables before any further dbm func-
tions are called.

284

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 284

1. First, here are its #include files, #defines, the main function, and the declaration of the
test_data structure:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

#include <ndbm.h>
/* On some systems you need to replace the above with
#include <gdbm-ndbm.h>
*/

#include <string.h>

#define TEST_DB_FILE “/tmp/dbm1_test”
#define ITEMS_USED 3

struct test_data {
char misc_chars[15];
int any_integer;
char more_chars[21];

};

int main()
{

2. Within main, set up the items_to_store and items_received structures, the key string, and
the datum types:

struct test_data items_to_store[ITEMS_USED];
struct test_data item_retrieved;

char key_to_use[20];
int i, result;

datum key_datum;
datum data_datum;

DBM *dbm_ptr;

3. Having declared a pointer to a dbm type structure, now open your test database for reading and
writing, creating it if necessary:

dbm_ptr = dbm_open(TEST_DB_FILE, O_RDWR | O_CREAT, 0666);
if (!dbm_ptr) {

fprintf(stderr, “Failed to open database\n”);
exit(EXIT_FAILURE);

}

4. Now add some data to the items_to_store structure:

memset(items_to_store, ‘\0’, sizeof(items_to_store));
strcpy(items_to_store[0].misc_chars, “First!”);

285

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 285

items_to_store[0].any_integer = 47;
strcpy(items_to_store[0].more_chars, “foo”);

strcpy(items_to_store[1].misc_chars, “bar”);
items_to_store[1].any_integer = 13;
strcpy(items_to_store[1].more_chars, “unlucky?”);

strcpy(items_to_store[2].misc_chars, “Third”);
items_to_store[2].any_integer = 3;
strcpy(items_to_store[2].more_chars, “baz”);

5. For each entry, you need to build a key for future referencing. This is the first letter of each
string and the integer. This key is then identified with the key_datum, while the data_datum
refers to the items_to_store entry. Then you store the data in the database:

for (i = 0; i < ITEMS_USED; i++) {
sprintf(key_to_use, “%c%c%d”,

items_to_store[i].misc_chars[0],
items_to_store[i].more_chars[0],
items_to_store[i].any_integer);

key_datum.dptr = (void *)key_to_use;
key_datum.dsize = strlen(key_to_use);
data_datum.dptr = (void *)&items_to_store[i];
data_datum.dsize = sizeof(struct test_data);

result = dbm_store(dbm_ptr, key_datum, data_datum, DBM_REPLACE);
if (result != 0) {

fprintf(stderr, “dbm_store failed on key %s\n”, key_to_use);
exit(2);

}
}

6. Next, see if you can retrieve this new data, and then, finally, you must close the database:

sprintf(key_to_use, “bu%d”, 13);
key_datum.dptr = key_to_use;
key_datum.dsize = strlen(key_to_use);

data_datum = dbm_fetch(dbm_ptr, key_datum);
if (data_datum.dptr) {

printf(“Data retrieved\n”);
memcpy(&item_retrieved, data_datum.dptr, data_datum.dsize);
printf(“Retrieved item - %s %d %s\n”,

item_retrieved.misc_chars,
item_retrieved.any_integer,
item_retrieved.more_chars);

}
else {

printf(“No data found for key %s\n”, key_to_use);
}
dbm_close(dbm_ptr);
exit(EXIT_SUCCESS);

}

286

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 286

When you compile and run the program, the output is simply

$ gcc -o dbm1 -I/usr/include/gdbm dbm1.c -lgdbm
$./dbm1
Data retrieved
Retrieved item - bar 13 unlucky?

This is the output you’ll get if you have gdbm installed in compatible mode. If this fails to compile, you
may need to change the include directive as shown in the file to use the gdbm-ndbm.h file in place of
ndbm.h, and specify the compatibility library before the main library when you compile, as shown here:

$ gcc -o dbm1 –I/usr/include/gdbm dbm1.c -lgdbm_compat –lgdbm

How It Works
First, you open the database, creating it if necessary. You then fill in three members of items_to_store
to use as test data. For each of these three members you create an index key. To keep it simple, use the
first characters of each of the two strings, plus the integer stored.

You then set up two datum structures, one for the key and one for the data to store. Having stored the
three items in the database, you construct a new key and set up a datum structure to point at it. You then
use this key to retrieve data from the database. Check for success by making sure that the dptr in the
returned datum isn’t null. Provided it isn’t, you can then copy the retrieved data (which may be stored
internally within the dbm library) into your own structure, being careful to use the size dbm_fetch has
returned (if you didn’t do this and were using variable-sized data, you might attempt to copy nonexist-
ent data). Finally, you print out the retrieved data to show it was retrieved correctly.

Additional dbm Functions
Now that you’ve seen the principal dbm functions, we can cover the few remaining functions that are
used with dbm:

int dbm_delete(DBM *database_descriptor, datum key);
int dbm_error(DBM *database_descriptor);
int dbm_clearerr(DBM *database_descriptor);
datum dbm_firstkey(DBM *database_descriptor);
datum dbm_nextkey(DBM *database_descriptor);

dbm_delete
The dbm_delete function is used to delete entries from the database. It takes a key datum just like
dbm_fetch but rather than retrieve the data, it deletes the data. It returns 0 on success.

dbm_error
The dbm_error function simply tests whether an error has occurred in the database, returning 0 if there
is none.

dbm_clearerr
The dbm_clearerr clears any error condition flag that may be set in the database.

287

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 287

dbm_firstkey and dbm_nextkey
These routines are normally used as a pair to scan through all the keys of all the items in a database. The
loop structure required is as follows:

DBM *db_ptr;
datum key;

for(key = dbm_firstkey(db_ptr); key.dptr; key = dbm_nextkey(db_ptr));

Try It Out Retrieving and Deleting
In this example, you amend dbm1.c with some of these new functions to create a new file, dbm2.c:

1. Make a copy of dbm1.c and open it for editing. Edit the #define TEST_DB_FILE line:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <ndbm.h>
#include <string.h>

#define TEST_DB_FILE “/tmp/dbm2_test”
#define ITEMS_USED 3

2. Now the only change you need to make is in the retrieval section:

/* now try to delete some data */
sprintf(key_to_use, “bu%d”, 13);
key_datum.dptr = key_to_use;
key_datum.dsize = strlen(key_to_use);

if (dbm_delete(dbm_ptr, key_datum) == 0) {
printf(“Data with key %s deleted\n”, key_to_use);

}
else {

printf(“Nothing deleted for key %s\n”, key_to_use);
}
for (key_datum = dbm_firstkey(dbm_ptr);

key_datum.dptr;
key_datum = dbm_nextkey(dbm_ptr)) {

data_datum = dbm_fetch(dbm_ptr, key_datum);
if (data_datum.dptr) {

printf(“Data retrieved\n”);
memcpy(&item_retrieved, data_datum.dptr, data_datum.dsize);
printf(“Retrieved item - %s %d %s\n”,

item_retrieved.misc_chars,
item_retrieved.any_integer,
item_retrieved.more_chars);

}
else {

288

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 288

printf(“No data found for key %s\n”, key_to_use);
}

}

The output is

$./dbm2
Data with key bu13 deleted
Data retrieved
Retrieved item - Third 3 baz
Data retrieved
Retrieved item - First! 47 foo

How It Works
The first part of this program is identical to the previous example, simply storing some data in the data-
base. You then build a key to match the second item and delete it from the database.

The program then uses dbm_firstkey and dbm_nextkey to access each key in the database in turn,
retrieving the data. Notice that the data isn’t retrieved in order: No retrieval order is implied in the key
order; it’s simply a way of scanning all the entries.

The CD Application
Now that you’ve learned about the environment and about managing data, it’s time to update the appli-
cation. The dbm database seems well suited to storing CD information, so you’ll use that as the basis for
your new implementation.

Updating the Design
Because this update involves a significant rewrite, now would be a good time to look at your design
decisions to see if they need revising. Using comma-separated variable files to store the information,
although it gave an easy implementation in the shell, has turned out to be very restrictive. A lot of CD
titles and tracks turn out to have commas in them. You can discard this method of separation entirely
using dbm, so that’s one element of the design that we will change.

The split of the information between title and tracks, using a separate file for each, seems to have been a
good decision, so you’ll stick to the same logical arrangement.

Both the previous implementations have, to some extent, mixed the data access parts of the application
with the user interface parts, not least because it was all implemented in a single file. In this implementa-
tion, you’ll use a header file to describe the data and the routines to access it, and split the user interface
and data manipulation into separate files.

289

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 289

Although you could keep the curses implementation of the user interface, you’ll return to a simple
line-based system. This will keep the user interface part of the application small and simple and allow
you to concentrate on the other implementation aspects.

You can’t use SQL with dbm code, but you can express your new database in more formal terms using
SQL terminology. Don’t worry if you’re not familiar with SQL; we will explain the definitions, and you’ll
see more SQL in Chapter 8. In code, the table can be described as follows:

CREATE TABLE cdc_entry (
catalog CHAR(30) PRIMARY KEY REFERENCES cdt_entry(catalog),
title CHAR(70),
type CHAR(30),
artist CHAR(70)

);

CREATE TABLE cdt_entry (
catalog CHAR(30) REFERENCES cdc_entry(catalog),
track_no INTEGER,
track_txt CHAR(70),
PRIMARY KEY(catalog, track_no)

);

This very succinct description tells you the names and sizes of the fields. For the cdc_entry table, it
says that there’s a unique catalog column for every entry. For the cdt_entry table, it says that the track
number can’t be zero and that the combination of catalog and track_no columns is unique. You will
see these being defined as typedef struct structures in the next section of code.

The CD Database Application Using dbm
You’re now going to reimplement the application using the dbm database to store the information you
need, with the files cd_data.h, app_ui.c, and cd_access.c.

You’ll also rewrite the user interface as a command-line program. Later in the book, you’ll be reusing the
database interface and parts of the user interface as you explore implementing your application using
different client/server mechanisms and, finally, as an application that can be accessed across a network
using a Web browser. Converting the interface to a simpler line-driven interface makes it easier to focus
on the important parts of the application, rather than on the interface.

You’ll see the database header file cd_data.h and functions from the file cd_access.c reused several
times in later chapters.

Remember that some Linux distributions require slightly different build options,
such as using the include file gdbm-ndbm.h in your C file instead of ndbm.h, and
using -lgdbm_compat -lgdbm instead of simply -lgdbm. If this is the case with
your Linux distribution, you will need to make the appropriate changes to the files
access.c and Makefile.

290

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 290

Try It Out cd_data.h
Start here with the header file, to define the structure of your data and the routines that you’ll use to access it:

1. This is the data structure definition for the CD database. It defines structures and sizes for the
two tables that make up the database. Start by defining some sizes for the fields that you’ll use
and two structures: one for the catalog entry and one for the track entry:

/* The catalog table */
#define CAT_CAT_LEN 30
#define CAT_TITLE_LEN 70
#define CAT_TYPE_LEN 30
#define CAT_ARTIST_LEN 70

typedef struct {
char catalog[CAT_CAT_LEN + 1];
char title[CAT_TITLE_LEN + 1];
char type[CAT_TYPE_LEN + 1];
char artist[CAT_ARTIST_LEN + 1];

} cdc_entry;

/* The tracks table, one entry per track */
#define TRACK_CAT_LEN CAT_CAT_LEN
#define TRACK_TTEXT_LEN 70

typedef struct {
char catalog[TRACK_CAT_LEN + 1];
int track_no;
char track_txt[TRACK_TTEXT_LEN + 1];

} cdt_entry;

2. Now that you have some data structures, you can define some access routines that you’ll need.
Functions with cdc_ are for catalog entries; functions with cdt_ are for track entries:

/* Initialization and termination functions */
int database_initialize(const int new_database);
void database_close(void);

/* two for simple data retrieval */
cdc_entry get_cdc_entry(const char *cd_catalog_ptr);
cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no);

/* two for data addition */
int add_cdc_entry(const cdc_entry entry_to_add);
int add_cdt_entry(const cdt_entry entry_to_add);

/* two for data deletion */

Notice that some of the functions return data structures. You can indicate the failure
of these functions by forcing the contents of the structure to be empty.

291

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 291

int del_cdc_entry(const char *cd_catalog_ptr);
int del_cdt_entry(const char *cd_catalog_ptr, const int track_no);

/* one search function */
cdc_entry search_cdc_entry(const char *cd_catalog_ptr, int *first_call_ptr);

Try It Out app_ui.c
Now move on to the user interface. This gives you a (relatively) simple program with which to access
your database functions. You’ll implement the interface in a separate file.

1. As usual, start with some header files:

#define _XOPEN_SOURCE

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

#include “cd_data.h”

#define TMP_STRING_LEN 125 /* this number must be larger than the biggest
single string in any database structure */

2. Make your menu options typedefs. This is in preference to using #defined constants, as it
allows the compiler to check the types of the menu option variables:

typedef enum {
mo_invalid,
mo_add_cat,
mo_add_tracks,
mo_del_cat,
mo_find_cat,
mo_list_cat_tracks,
mo_del_tracks,
mo_count_entries,
mo_exit

} menu_options;

3. Now write the prototypes for the local functions. Remember that the prototypes for actually
accessing the database were included in cd_data.h:

static int command_mode(int argc, char *argv[]);
static void announce(void);
static menu_options show_menu(const cdc_entry *current_cdc);
static int get_confirm(const char *question);
static int enter_new_cat_entry(cdc_entry *entry_to_update);
static void enter_new_track_entries(const cdc_entry *entry_to_add_to);
static void del_cat_entry(const cdc_entry *entry_to_delete);
static void del_track_entries(const cdc_entry *entry_to_delete);

292

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 292

static cdc_entry find_cat(void);
static void list_tracks(const cdc_entry *entry_to_use);
static void count_all_entries(void);
static void display_cdc(const cdc_entry *cdc_to_show);
static void display_cdt(const cdt_entry *cdt_to_show);
static void strip_return(char *string_to_strip);

4. Finally, you get to main. This starts by ensuring that the current_cdc_entry, which you use
to keep track of the currently selected CD catalog entry, is initialized. You also parse the com-
mand line, announce what program is being run, and initialize the database:

void main(int argc, char *argv[])
{

menu_options current_option;
cdc_entry current_cdc_entry;
int command_result;

memset(¤t_cdc_entry, ‘\0’, sizeof(current_cdc_entry));

if (argc > 1) {
command_result = command_mode(argc, argv);
exit(command_result);

}

announce();

if (!database_initialize(0)) {
fprintf(stderr, “Sorry, unable to initialize database\n”);
fprintf(stderr, “To create a new database use %s -i\n”, argv[0]);
exit(EXIT_FAILURE);

}

5. You’re now ready to process user input. You sit in a loop, asking for a menu choice and pro-
cessing it, until the user selects the exit option. Notice that you pass the current_cdc_entry
structure to the show_menu function to allow the menu options to change if a catalog entry is
currently selected:

while(current_option != mo_exit) {
current_option = show_menu(¤t_cdc_entry);

switch(current_option) {
case mo_add_cat:

if (enter_new_cat_entry(¤t_cdc_entry)) {
if (!add_cdc_entry(current_cdc_entry)) {

fprintf(stderr, “Failed to add new entry\n”);
memset(¤t_cdc_entry, ‘\0’,

sizeof(current_cdc_entry));
}

}
break;

case mo_add_tracks:
enter_new_track_entries(¤t_cdc_entry);
break;

293

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 293

case mo_del_cat:
del_cat_entry(¤t_cdc_entry);
break;

case mo_find_cat:
current_cdc_entry = find_cat();
break;

case mo_list_cat_tracks:
list_tracks(¤t_cdc_entry);
break;

case mo_del_tracks:
del_track_entries(¤t_cdc_entry);
break;

case mo_count_entries:
count_all_entries();
break;

case mo_exit:
break;

case mo_invalid:
break;

default:
break;

} /* switch */
} /* while */

6. When the main loop exits, close the database and exit back to the environment. The welcoming
sentence is printed by the announce function:

database_close();
exit(EXIT_SUCCESS);

} /* main */

static void announce(void)
{

printf(“\n\nWelcome to the demonstration CD catalog database \
program\n”);

}

7. Here you implement the show_menu function. This function checks whether a current catalog
entry is selected, using the first character of the catalog name. More options are available if a
catalog entry is selected:

static menu_options show_menu(const cdc_entry *cdc_selected)
{

char tmp_str[TMP_STRING_LEN + 1];
menu_options option_chosen = mo_invalid;

while (option_chosen == mo_invalid) {
if (cdc_selected->catalog[0]) {

Note that numbers are now used to select menu items, rather than the initial letters
used in the previous two examples.

294

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 294

printf(“\n\nCurrent entry: “);
printf(“%s, %s, %s, %s\n”, cdc_selected->catalog,

cdc_selected->title,
cdc_selected->type,
cdc_selected->artist);

printf(“\n”);
printf(“1 - add new CD\n”);
printf(“2 - search for a CD\n”);
printf(“3 - count the CDs and tracks in the database\n”);
printf(“4 - re-enter tracks for current CD\n”);
printf(“5 - delete this CD, and all its tracks\n”);
printf(“6 - list tracks for this CD\n”);
printf(“q - quit\n”);
printf(“\nOption: “);
fgets(tmp_str, TMP_STRING_LEN, stdin);

switch(tmp_str[0]) {
case ‘1’: option_chosen = mo_add_cat; break;
case ‘2’: option_chosen = mo_find_cat; break;
case ‘3’: option_chosen = mo_count_entries; break;
case ‘4’: option_chosen = mo_add_tracks; break;
case ‘5’: option_chosen = mo_del_cat; break;
case ‘6’: option_chosen = mo_list_cat_tracks; break;
case ‘q’: option_chosen = mo_exit; break;

}
}
else {

printf(“\n\n”);
printf(“1 - add new CD\n”);
printf(“2 - search for a CD\n”);
printf(“3 - count the CDs and tracks in the database\n”);
printf(“q - quit\n”);
printf(“\nOption: “);
fgets(tmp_str, TMP_STRING_LEN, stdin);
switch(tmp_str[0]) {

case ‘1’: option_chosen = mo_add_cat; break;
case ‘2’: option_chosen = mo_find_cat; break;
case ‘3’: option_chosen = mo_count_entries; break;
case ‘q’: option_chosen = mo_exit; break;

}
}

} /* while */
return(option_chosen);

}

8. There are several places where you wish to ask the user if he is sure about what he requested.
Rather than have several places in the code asking the question, extract the code as a separate
function, get_confirm:

static int get_confirm(const char *question)
{

char tmp_str[TMP_STRING_LEN + 1];

295

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 295

printf(“%s”, question);
fgets(tmp_str, TMP_STRING_LEN, stdin);
if (tmp_str[0] == ‘Y’ || tmp_str[0] == ‘y’) {

return(1);
}
return(0);

}

9. The function enter_new_cat_entry allows the user to enter a new catalog entry. You don’t
want to store the linefeed that fgets returns, so strip it off:

static int enter_new_cat_entry(cdc_entry *entry_to_update)
{

cdc_entry new_entry;
char tmp_str[TMP_STRING_LEN + 1];

memset(&new_entry, ‘\0’, sizeof(new_entry));

printf(“Enter catalog entry: “);
(void)fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);
strncpy(new_entry.catalog, tmp_str, CAT_CAT_LEN - 1);

printf(“Enter title: “);
(void)fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);
strncpy(new_entry.title, tmp_str, CAT_TITLE_LEN - 1);

printf(“Enter type: “);
(void)fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);
strncpy(new_entry.type, tmp_str, CAT_TYPE_LEN - 1);

printf(“Enter artist: “);
(void)fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);
strncpy(new_entry.artist, tmp_str, CAT_ARTIST_LEN - 1);

printf(“\nNew catalog entry entry is :-\n”);
display_cdc(&new_entry);
if (get_confirm(“Add this entry ?”)) {

memcpy(entry_to_update, &new_entry, sizeof(new_entry));
return(1);

}
return(0);

}

Notice that you don’t use the gets function, because you have no way of checking
for an overflow of the buffer. Always avoid the gets function!

296

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 296

10. Now you come to the function for entering the track information: enter_new_track_entries.
This is slightly more complex than the catalog entry function because you allow an existing
track entry to be left alone:

static void enter_new_track_entries(const cdc_entry *entry_to_add_to)
{

cdt_entry new_track, existing_track;
char tmp_str[TMP_STRING_LEN + 1];
int track_no = 1;
if (entry_to_add_to->catalog[0] == ‘\0’) return;

printf(“\nUpdating tracks for %s\n”, entry_to_add_to->catalog);
printf(“Press return to leave existing description unchanged,\n”);
printf(“ a single d to delete this and remaining tracks,\n”);
printf(“ or new track description\n”);

while(1) {

11. First, you must check whether a track already exists with the current track number. Depending
on what you find, you change the prompt:

memset(&new_track, ‘\0’, sizeof(new_track));
existing_track = get_cdt_entry(entry_to_add_to->catalog,

track_no);
if (existing_track.catalog[0]) {

printf(“\tTrack %d: %s\n”, track_no,
existing_track.track_txt);

printf(“\tNew text: “);
}
else {

printf(“\tTrack %d description: “, track_no);
}
fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);

12. If there was no existing entry for this track and the user hasn’t added one, assume that there are
no more tracks to be added:

if (strlen(tmp_str) == 0) {
if (existing_track.catalog[0] == ‘\0’) {

/* no existing entry, so finished adding */
break;

}
else {

/* leave existing entry, jump to next track */
track_no++;
continue;

}
}

297

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 297

13. If the user enters a single d character, this deletes the current and any higher-numbered tracks.
The del_cdt_entry function will return false if it can’t find a track to delete:

if ((strlen(tmp_str) == 1) && tmp_str[0] == ‘d’) {
/* delete this and remaining tracks */

while (del_cdt_entry(entry_to_add_to->catalog, track_no)) {
track_no++;

}
break;

}

14. Here you get to the code for adding a new track or updating an existing one. You construct the
cdt_entry structure new_track, and then call the database function add_cdt_entry to add it
to the database:

strncpy(new_track.track_txt, tmp_str, TRACK_TTEXT_LEN - 1);
strcpy(new_track.catalog, entry_to_add_to->catalog);
new_track.track_no = track_no;
if (!add_cdt_entry(new_track)) {

fprintf(stderr, “Failed to add new track\n”);
break;

}
track_no++;

} /* while */
}

15. The function del_cat_entry deletes a catalog entry. Never allow tracks for a nonexistent cata-
log entry to exist:

static void del_cat_entry(const cdc_entry *entry_to_delete)
{

int track_no = 1;
int delete_ok;

display_cdc(entry_to_delete);
if (get_confirm(“Delete this entry and all it’s tracks? “)) {

do {
delete_ok = del_cdt_entry(entry_to_delete->catalog,

track_no);
track_no++;

} while(delete_ok);

if (!del_cdc_entry(entry_to_delete->catalog)) {
fprintf(stderr, “Failed to delete entry\n”);

}
}

}

16. The next function is a utility for deleting all the tracks for a catalog:

static void del_track_entries(const cdc_entry *entry_to_delete)
{

int track_no = 1;

298

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 298

int delete_ok;

display_cdc(entry_to_delete);
if (get_confirm(“Delete tracks for this entry? “)) {

do {
delete_ok = del_cdt_entry(entry_to_delete->catalog, track_no);
track_no++;

} while(delete_ok);
}

}

17. Create a very simple catalog search facility. You allow the user to enter a string, and then check
for catalog entries that contain the string. Because there could be multiple entries that match,
you simply offer the user each match in turn:

static cdc_entry find_cat(void)
{

cdc_entry item_found;
char tmp_str[TMP_STRING_LEN + 1];
int first_call = 1;
int any_entry_found = 0;
int string_ok;
int entry_selected = 0;

do {
string_ok = 1;
printf(“Enter string to search for in catalog entry: “);
fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);
if (strlen(tmp_str) > CAT_CAT_LEN) {

fprintf(stderr, “Sorry, string too long, maximum %d \
characters\n”, CAT_CAT_LEN);

string_ok = 0;
}

} while (!string_ok);

while (!entry_selected) {
item_found = search_cdc_entry(tmp_str, &first_call);
if (item_found.catalog[0] != ‘\0’) {

any_entry_found = 1;
printf(“\n”);
display_cdc(&item_found);
if (get_confirm(“This entry? “)) {

entry_selected = 1;
}

}
else {

if (any_entry_found) printf(“Sorry, no more matches found\n”);
else printf(“Sorry, nothing found\n”);
break;

}
}
return(item_found);

}

299

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 299

18. list_tracks is a utility function that prints out all the tracks for a given catalog entry:

static void list_tracks(const cdc_entry *entry_to_use)
{

int track_no = 1;
cdt_entry entry_found;

display_cdc(entry_to_use);
printf(“\nTracks\n”);
do {

entry_found = get_cdt_entry(entry_to_use->catalog,
track_no);

if (entry_found.catalog[0]) {
display_cdt(&entry_found);
track_no++;

}
} while(entry_found.catalog[0]);
(void)get_confirm(“Press return”);

} /* list_tracks */

19. The count_all_entries function counts all the tracks:

static void count_all_entries(void)
{

int cd_entries_found = 0;
int track_entries_found = 0;
cdc_entry cdc_found;
cdt_entry cdt_found;
int track_no = 1;
int first_time = 1;
char *search_string = “”;

do {
cdc_found = search_cdc_entry(search_string, &first_time);
if (cdc_found.catalog[0]) {

cd_entries_found++;
track_no = 1;
do {

cdt_found = get_cdt_entry(cdc_found.catalog, track_no);
if (cdt_found.catalog[0]) {

track_entries_found++;
track_no++;

}
} while (cdt_found.catalog[0]);

}
} while (cdc_found.catalog[0]);

printf(“Found %d CDs, with a total of %d tracks\n”, cd_entries_found,
track_entries_found);

(void)get_confirm(“Press return”);
}

300

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 300

20. Now you have display_cdc, a utility for displaying a catalog entry:

static void display_cdc(const cdc_entry *cdc_to_show)
{

printf(“Catalog: %s\n”, cdc_to_show->catalog);
printf(“\ttitle: %s\n”, cdc_to_show->title);
printf(“\ttype: %s\n”, cdc_to_show->type);
printf(“\tartist: %s\n”, cdc_to_show->artist);

}

and display_cdt, for displaying a single track entry:

static void display_cdt(const cdt_entry *cdt_to_show)
{

printf(“%d: %s\n”, cdt_to_show->track_no, cdt_to_show->track_txt);
}

21. The utility function strip_return removes a trailing linefeed character from a string. Remember
that Linux, like UNIX, uses a single linefeed to indicate end of line:

static void strip_return(char *string_to_strip)
{

int len;

len = strlen(string_to_strip);
if (string_to_strip[len - 1] == ‘\n’) string_to_strip[len - 1] = ‘\0’;

}

22. command_mode is a function for parsing the command-line arguments. The getopt function is a
good way of ensuring that your program accepts arguments conforming to the standard Linux
conventions:

static int command_mode(int argc, char *argv[])
{

int c;
int result = EXIT_SUCCESS;
char *prog_name = argv[0];

/* these externals used by getopt */
extern char *optarg;
extern optind, opterr, optopt;

while ((c = getopt(argc, argv, “:i”)) != -1) {
switch(c) {

case ‘i’:
if (!database_initialize(1)) {

result = EXIT_FAILURE;
fprintf(stderr, “Failed to initialize database\n”);

}
break;

case ‘:’:
case ‘?’:
default:

301

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 301

fprintf(stderr, “Usage: %s [-i]\n”, prog_name);
result = EXIT_FAILURE;
break;

} /* switch */
} /* while */
return(result);

}

Try It Out cd_access.c
Now you come to the functions that access the dbm database:

1. As usual, you start with some #include files. You then use some #defines for specifying the
files that you’ll use for storing the data:

#define _XOPEN_SOURCE

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>

#include <ndbm.h>
/* The above may need to be changed to gdbm-ndbm.h on some distributions */

#include “cd_data.h”

#define CDC_FILE_BASE “cdc_data”
#define CDT_FILE_BASE “cdt_data”
#define CDC_FILE_DIR “cdc_data.dir”
#define CDC_FILE_PAG “cdc_data.pag”
#define CDT_FILE_DIR “cdt_data.dir”
#define CDT_FILE_PAG “cdt_data.pag”

2. Use these two file scope variables to keep track of the current database:

static DBM *cdc_dbm_ptr = NULL;
static DBM *cdt_dbm_ptr = NULL;

3. By default, the database_initialize function opens an existing database, but by passing a
nonzero (i.e., true) parameter, new_database, you can force it to create a new (empty) database,
effectively removing any existing database. If the database is successfully initialized, the two
database pointers are also initialized, indicating that a database is open:

int database_initialize(const int new_database)
{

int open_mode = O_CREAT | O_RDWR;

/* If any existing database is open then close it */
if (cdc_dbm_ptr) dbm_close(cdc_dbm_ptr);

302

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 302

if (cdt_dbm_ptr) dbm_close(cdt_dbm_ptr);

if (new_database) {
/* delete the old files */
(void) unlink(CDC_FILE_PAG);
(void) unlink(CDC_FILE_DIR);
(void) unlink(CDT_FILE_PAG);
(void) unlink(CDT_FILE_DIR);

}

/* Open some new files, creating them if required */
cdc_dbm_ptr = dbm_open(CDC_FILE_BASE, open_mode, 0644);
cdt_dbm_ptr = dbm_open(CDT_FILE_BASE, open_mode, 0644);
if (!cdc_dbm_ptr || !cdt_dbm_ptr) {

fprintf(stderr, “Unable to create database\n”);
cdc_dbm_ptr = cdt_dbm_ptr = NULL;
return (0);

}
return (1);

}

4. database_close simply closes the database if it was open and sets the two database pointers
to null to indicate that no database is currently open:

void database_close(void)
{

if (cdc_dbm_ptr) dbm_close(cdc_dbm_ptr);
if (cdt_dbm_ptr) dbm_close(cdt_dbm_ptr);

cdc_dbm_ptr = cdt_dbm_ptr = NULL;
}

5. Next, you have a function that retrieves a single catalog entry when passed a pointer pointing to
a catalog text string. If the entry isn’t found, the returned data has an empty catalog field:

cdc_entry get_cdc_entry(const char *cd_catalog_ptr)
{

cdc_entry entry_to_return;
char entry_to_find[CAT_CAT_LEN + 1];
datum local_data_datum;
datum local_key_datum;

memset(&entry_to_return, ‘\0’, sizeof(entry_to_return));

6. Start with some sanity checks, to ensure that a database is open and that you were passed
reasonable parameters — that is, the search key contains only the valid string and nulls:

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (entry_to_return);
if (!cd_catalog_ptr) return (entry_to_return);
if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (entry_to_return);

memset(&entry_to_find, ‘\0’, sizeof(entry_to_find));
strcpy(entry_to_find, cd_catalog_ptr);

303

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 303

7. Set up the datum structure the dbm functions require, and then use dbm_fetch to retrieve
the data. If no data was retrieved, you return the empty entry_to_return structure that you
initialized earlier:

local_key_datum.dptr = (void *) entry_to_find;
local_key_datum.dsize = sizeof(entry_to_find);

memset(&local_data_datum, ‘\0’, sizeof(local_data_datum));
local_data_datum = dbm_fetch(cdc_dbm_ptr, local_key_datum);
if (local_data_datum.dptr) {

memcpy(&entry_to_return, (char *)local_data_datum.dptr,
local_data_datum.dsize);

}
return (entry_to_return);

} /* get_cdc_entry */

8. You’d better be able to get a single track entry as well, which is what the next function does, in
the same fashion as get_cdc_entry, but with a pointer pointing to a catalog string and a track
number as parameters:

cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{

cdt_entry entry_to_return;
char entry_to_find[CAT_CAT_LEN + 10];
datum local_data_datum;
datum local_key_datum;

memset(&entry_to_return, ‘\0’, sizeof(entry_to_return));

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (entry_to_return);
if (!cd_catalog_ptr) return (entry_to_return);
if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (entry_to_return);
/* set up the search key, which is a composite key of catalog entry

and track number */
memset(&entry_to_find, ‘\0’, sizeof(entry_to_find));
sprintf(entry_to_find, “%s %d”, cd_catalog_ptr, track_no);

local_key_datum.dptr = (void *) entry_to_find;
local_key_datum.dsize = sizeof(entry_to_find);

memset(&local_data_datum, ‘\0’, sizeof(local_data_datum));
local_data_datum = dbm_fetch(cdt_dbm_ptr, local_key_datum);
if (local_data_datum.dptr) {

memcpy(&entry_to_return, (char *) local_data_datum.dptr,
local_data_datum.dsize);

}
return (entry_to_return);

}

9. The next function, add_cdc_entry, adds a new catalog entry:

int add_cdc_entry(const cdc_entry entry_to_add)
{

char key_to_add[CAT_CAT_LEN + 1];

304

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 304

datum local_data_datum;
datum local_key_datum;
int result;

/* check database initialized and parameters valid */
if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
if (strlen(entry_to_add.catalog) >= CAT_CAT_LEN) return (0);

/* ensure the search key contains only the valid string and nulls */
memset(&key_to_add, ‘\0’, sizeof(key_to_add));
strcpy(key_to_add, entry_to_add.catalog);

local_key_datum.dptr = (void *) key_to_add;
local_key_datum.dsize = sizeof(key_to_add);
local_data_datum.dptr = (void *) &entry_to_add;
local_data_datum.dsize = sizeof(entry_to_add);

result = dbm_store(cdc_dbm_ptr, local_key_datum, local_data_datum,
DBM_REPLACE);

/* dbm_store() uses 0 for success */
if (result == 0) return (1);
return (0);

}

10. add_cdt_entry adds a new track entry. The access key is the catalog string and track number
acting as a composite:

int add_cdt_entry(const cdt_entry entry_to_add)
{

char key_to_add[CAT_CAT_LEN + 10];
datum local_data_datum;
datum local_key_datum;
int result;

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
if (strlen(entry_to_add.catalog) >= CAT_CAT_LEN) return (0);

memset(&key_to_add, ‘\0’, sizeof(key_to_add));
sprintf(key_to_add, “%s %d”, entry_to_add.catalog,

entry_to_add.track_no);

local_key_datum.dptr = (void *) key_to_add;
local_key_datum.dsize = sizeof(key_to_add);
local_data_datum.dptr = (void *) &entry_to_add;
local_data_datum.dsize = sizeof(entry_to_add);

result = dbm_store(cdt_dbm_ptr, local_key_datum, local_data_datum,
DBM_REPLACE);

/* dbm_store() uses 0 for success and -ve numbers for errors */
if (result == 0)

return (1);
return (0);

}

305

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 305

11. If you can add things, you’d better be able to delete them, too. This function deletes catalog entries:

int del_cdc_entry(const char *cd_catalog_ptr)
{

char key_to_del[CAT_CAT_LEN + 1];
datum local_key_datum;
int result;

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (0);

memset(&key_to_del, ‘\0’, sizeof(key_to_del));
strcpy(key_to_del, cd_catalog_ptr);

local_key_datum.dptr = (void *) key_to_del;
local_key_datum.dsize = sizeof(key_to_del);

result = dbm_delete(cdc_dbm_ptr, local_key_datum);

/* dbm_delete() uses 0 for success */
if (result == 0) return (1);
return (0);

}

12. Here’s the equivalent function for deleting a track. Remember that the track key is a composite
index of both the catalog entry string and the track number:

int del_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{

char key_to_del[CAT_CAT_LEN + 10];
datum local_key_datum;
int result;

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (0);

memset(&key_to_del, ‘\0’, sizeof(key_to_del));
sprintf(key_to_del, “%s %d”, cd_catalog_ptr, track_no);

local_key_datum.dptr = (void *) key_to_del;
local_key_datum.dsize = sizeof(key_to_del);

result = dbm_delete(cdt_dbm_ptr, local_key_datum);

/* dbm_delete() uses 0 for success */
if (result == 0) return (1);
return (0);

}

13. Last but not least, you have a simple search function. It’s not very sophisticated, but it does
demonstrate how you can scan through dbm entries without knowing the keys in advance.

Since you don’t know in advance how many entries there might be, you implement this func-
tion to return a single entry on each call. If nothing is found, the entry will be empty. To scan the

306

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 306

whole database, start by calling this function with a pointer to an integer, *first_call_ptr,
which should be 1 the first time the function is called. This function then knows it should start
searching at the start of the database. On subsequent calls, the variable is 0 and the function
resumes searching after the last entry it found.

When you wish to restart your search, probably with a different catalog entry, you must again
call this function with *first_call_ptr set to true, which reinitializes the search.

Between calls, the function maintains some internal state information. This hides the complexity
of continuing a search from the client and preserves the “secrecy” of how the search function is
implemented.

If the search text points to a null character, then all entries are considered to match.

cdc_entry search_cdc_entry(const char *cd_catalog_ptr, int *first_call_ptr)
{

static int local_first_call = 1;
cdc_entry entry_to_return;
datum local_data_datum;
static datum local_key_datum; /* notice this must be static */

memset(&entry_to_return, ‘\0’, sizeof(entry_to_return));

14. As usual, start with sanity checks:

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (entry_to_return);
if (!cd_catalog_ptr || !first_call_ptr) return (entry_to_return);
if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (entry_to_return);

/* protect against never passing *first_call_ptr true */
if (local_first_call) {

local_first_call = 0;
*first_call_ptr = 1;

}

15. If this function has been called with *first_call_ptr set to true, you need to start (or restart)
searching from the beginning of the database. If *first_call_ptr isn’t true, then simply
move on to the next key in the database:

if (*first_call_ptr) {
*first_call_ptr = 0;
local_key_datum = dbm_firstkey(cdc_dbm_ptr);

}
else {

local_key_datum = dbm_nextkey(cdc_dbm_ptr);
}

do {
if (local_key_datum.dptr != NULL) {

/* an entry was found */
local_data_datum = dbm_fetch(cdc_dbm_ptr, local_key_datum);
if (local_data_datum.dptr) {

memcpy(&entry_to_return, (char *) local_data_datum.dptr,
local_data_datum.dsize);

307

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 307

16. The search facility is a very simple check to see whether the search string occurs in the current
catalog entry:

/* check if search string occurs in the entry */
if (!strstr(entry_to_return.catalog, cd_catalog_ptr))

{
memset(&entry_to_return, ‘\0’,

sizeof(entry_to_return));
local_key_datum = dbm_nextkey(cdc_dbm_ptr);

}
}

}
} while (local_key_datum.dptr &&

local_data_datum.dptr &&
(entry_to_return.catalog[0] == ‘\0’));

return (entry_to_return);
} /* search_cdc_entry */

You’re now in a position to be able to put everything together with this makefile. Don’t worry
about it too much right now, because you’ll be looking at how it works in the next chapter. For
the time being, type it and save it as Makefile:

all: application

INCLUDE=/usr/include/gdbm
LIBS=gdbm
On some distributions you may need to change the above line to include
the compatability library, as shown below.
LIBS= -lgdbm_compat -lgdbm
CFLAGS=

app_ui.o: app_ui.c cd_data.h
gcc $(CFLAGS) -c app_ui.c

access.o: access.c cd_data.h
gcc $(CFLAGS) -I$(INCLUDE) -c access.c

application: app_ui.o access.o
gcc $(CFLAGS) -o application app_ui.o access.o -l$(LIBS)

clean:
rm -f application *.o

nodbmfiles:
rm -f *.dir *.pag

To compile your new CD application, type this at the prompt:

$ make

If all has gone well, the application executable will be compiled and placed in the current
directory.

308

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 308

Summary
In this chapter, you learned about three aspects of data management. First, you learned about the Linux
memory system and how simple it is to use, even though the internal implementation of demand paged
virtual memory is quite involved. You also saw how it protects both the operating system and other pro-
grams from attempts at illegal memory access.

We then moved on to look at how file locking enables multiple programs to cooperate in their access to
data. You looked first at a simple binary semaphore scheme and then at a more complex situation in
which you lock different parts of a file for either shared or exclusive access. Next you looked at the dbm
library and its ability to store and efficiently retrieve arbitrary blocks of data using a very flexible index-
ing arrangement.

Finally, we redesigned and reimplemented the example CD database application to use the dbm library
as its data storage technique.

309

Chapter 7: Data Management

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 309

47627c07.qxd:WroxPro 9/29/07 3:55 PM Page 310

8
MySQL

Now that you’ve explored some basic data management using flat files and then the simple but very
quick dbm, you’re ready to move on to a more full-featured data tool: the RDBMS, or Relational
Database Management System.

The two best-known Open Source RDBMS applications are probably PostgreSQL and MySQL,
although there are many others. There are also many commercial RDBMS products, such as Oracle,
Sybase, and DB2, all of which are highly capable and run on multiple platforms. The Windows-only
Microsoft SQL Server is another popular choice in the commercial marketplace. All these packages
have their particular strengths; but for reasons of space, and a commitment to Open Source soft-
ware, this book focuses exclusively on MySQL.

MySQL has origins going back to about 1984, but it has been commercially developed and man-
aged under the auspices of MySQL AB for several years now. Because MySQL is Open Source, its
terms of use are often confused with those of other Open Source projects. It’s worth pointing out
that although MySQL can be used under the GNU General Public License (GPL) in many circum-
stances, there are circumstances where you must buy a commercial license to use the product. You
should check the license requirements on the MySQL website (www.mysql.com) carefully, and
determine which edition of MySQL is applicable to your requirements.

If you need an Open Source database and the terms for using MySQL under the GPL are not accept-
able, and if you don’t want to purchase a commercial license, then the licensing terms for using
PostgreSQL are, at the time of writing, much less restrictive, so you may want to consider the highly
capable PostgreSQL database as an alternative. You can find details at www.postgresql.org.

To learn more about PostgreSQL, check out our book, Beginning Databases with PostgreSQL:
From Novice to Professional, Second Edition (Apress, 2005, ISBN 1590594789).

This chapter covers the following MySQL topics:

❑ Installing MySQL

❑ The administrative commands necessary to work with MySQL

❑ Basic MySQL features

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 311

❑ The API for interfacing your C programs with MySQL databases

❑ Creating a relational database that you can use for your CD database application using C

Installation
Whatever your preferred flavor of Linux, it’s likely that a version of MySQL is available pre-built and
ready to install. For example, Red Hat, SUSE, and Ubuntu all have pre-built packages available in their
current distributions. In general we recommend you use one of the pre-built versions because this will
provide the easiest way to get up and running with MySQL quickly. If your distribution does not pro-
vide a MySQL package, or if you want to get the most current release, you can download binary and
source packages from the MySQL website.

In this chapter we address installing only pre-built versions of MySQL.

MySQL Packages
If for any reason you need to download MySQL rather than using a bundled version, for the purposes
of this book you should be able to use the community edition Standard build. You will see some Max
and Debug packages are also available. The Max package contains additional features, such as support
for more unusual storage file types and advanced features such as clustering. The Debug packages have
been compiled with additional debugging code and information; hopefully you will not need such low-
level debugging.

Don’t use the Debug versions for production use; the performance is degraded by the additional
debug support.

For developing MySQL applications you need to install not only the server, but also the development
libraries. Generally you should find your package manager has a MySQL option; you just need to ensure
that the development libraries are also installed. In Figure 8-1, you can see Fedora’s package manager
ready to install MySQL, with the additional development package selected ready for install.

On other distributions the arrangement of packages is slightly different. For example, Figure 8-2 shows
Ubuntu’s synaptic package manager ready to install MySQL.

The MySQL installation also creates the user “mysql”, which by default is the user name that the MySQL
server demon runs as.

After you have the packages installed, you need to check if MySQL has been automatically started for
you. At the time of writing some distributions such as Ubuntu do this, whereas others, such as Fedora,
do not. Fortunately it’s very easy to check if the MySQL server is running:

$ ps -el | grep mysqld

If you see one or more mysqld processes running, the server has been started. On many systems you will
also see safe_mysqld, which is a utility used to start the actual mysqld process under the correct user id.

If you need to start (or restart or stop) the MySQL server, you can use the GUI services control panel.
Fedora’s Service Configuration panel is shown in Figure 8-3.

312

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 312

Figure 8-1

Figure 8-2

313

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 313

Figure 8-3

You should also use the service configuration editor to determine if you want the MySQL server to auto-
matically start each time Linux starts.

Post-Install Configuration
Assuming everything went correctly, MySQL is now installed and started with a common default set of
options. You can test that assumption:

$ mysql -u root mysql

If you get a “Welcome to the MySQL monitor” message and then a mysql> prompt, the server is run-
ning. Of course, at the moment anyone can connect to the server and have administrator privileges, but
we address that shortly. Try typing \s to get some additional information on your server. When you’ve
seen enough, type quit, or \q, to exit the monitor.

You can get more information by using the mysql -? command, which prints even more details about
the server. In the output there is one important thing to check for. After the list of arguments, you will
usually see something like Default options are read from the following files in the
given order:. This tells you where to find the configuration file that you will use if you need to config-
ure your MySQL server. The usual configuration file is /etc/my.cnf, though some distributions, like
Ubuntu, use /etc/mysql/my.cnf.

You can also check the status of a running server with the mysqladmin command:

$ mysqladmin -u root version

The output will serve not only to confirm that the server is running but also to give you the version
number of the server you are using.

314

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 314

Another very useful thing you can do with mysqladmin is to check all the configuration options in the
running server, using the variables option:

$ mysqladmin variables

This will print a long list of variable settings. A couple of particularly useful ones are datadir, which
tells you where MySQL is storing its data, and have_innodb, which is usually YES, indicating that the
InnoDB storage engine is supported. MySQL supports a number of storage engines, that is, underlying
implementation handlers for data storage. The most common (and most useful) two are InnoDB and
MyISAM, but there are others, such as a memory engine, which doesn’t use permenant storage at all,
and the CSV engine, which uses comma-separated variable files. The different engines have different
features and performance. InnoDB is the storage engine we would currently recommend for general-
purpose database usage, because it has a good compromise between performance and support for
enforcing relationships between different data elements. If you don’t have InnoDB support enabled,
check the configuration file /etc/my.cnf, and comment out the line skip-innodb by putting a hash
mark at the start of the line, and use the service editor to restart MySQL. If this doesn’t work you may
have a version of MySQL that was compiled without InnoDB support. Check the MySQL website for a
version supporting InnoDB if this is important to you. For the purposes of this chapter it shouldn’t mat-
ter if you use the alternative MyISAM storage engine, which is the default engine in many distributions.

Once you know that InnoDB support is included in your server binary, to make it the default storage
engine you must configure it as such in the /etc/my.cnf file, or by default the MyISAM engine will be
used. The edit is very simple; in the mysqld section add an additional line reading default-storage-
engine=INNODB. For example, the start of the file would now look something like this:

[mysqld]
default-storage-engine=INNOD
datadir=/var/lib/mysql
…

For the rest of this chapter we assume that the default storage engine has been set to InnoDB.

In a production environment you will also normally want to change the default storage location, specified
by the datadir variable setting. This is also done by editing the mysqld section of the /etc/my.cnf con-
figuration file. For example, if you are using the InnoDB storage engine, to put the data files on /vol02 and
the log files on /vol03, plus give the data file an initial size of 10M but allow it to extend, you could use
configuration lines such as:

innodb_data_home_dir = /vol02/mysql/data
innodb_data_file_path = ibdata1:10M:autoextend
innodb_log_group_home_dir = /vol03/mysql/logs

You can find more details and other configuration options in the online manuals on the
www.mysql.com website.

If the server won’t start or you can’t connect to the database once it does start, see the next section to
troubleshoot your installation.

OK, remember that gaping security hole a few paragraphs back that allowed anyone to connect as root with
no password? Now is a good time to make things more secure. Don’t let yourself be confused by the name

315

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 315

of the root user in a MySQL installation. There is no relationship between the MySQL root user and the sys-
tem root user; MySQL simply defaults to having a user called “root” as the administration user, like Linux
does. The users of a MySQL database and Linux user IDs are not related; MySQL has its own built-in user
and permission management. By default, any user with an account on your Linux installation can log in to
your MySQL server as the MySQL administrator. Once you’ve tightened down the MySQL root user per-
missions, such as allowing only a local user to log in as root and to set a password for this access, you can
add only the users and permissions that are absolutely necessary to the functioning of your application.

Any number of ways will suffice to set a root password, most easily using the command

$ mysqladmin -u root password newpassword

This will set an initial password of newpassword.

This method poses a problem, however, in that the clear text password will be left behind in your shell
history and could have been seen by someone using the ps command while your command was executing,
or may possibly be recovered from your command history. A better method is to use the MySQL monitor
again, this time to send some SQL that will change your password.

$ mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> SET password=PASSWORD(‘secretpassword‘);
Query OK, 0 rows affected (0.00 sec)

Pick, of course, a password known only to yourself, not the example “secretpassword” that we used here to
show you where your own password needs to be entered. If you ever want to remove the password again,
you can simply give an empty string in place of “secretpassword”, and the password will be deleted.

Notice that we terminate SQL commands with a semicolon (;). This is not, strictly speaking, part of the
actual SQL command; it is used to tell the MySQL client program that we are ready for our SQL state-
ment to be executed. We also use uppercase for SQL keywords, such as SET. This is not necessary,
because the actual syntax of MySQL allows keywords in either upper- or lowercase, but we use it as a
convention in this book, as well as in our day jobs, because we find it makes the SQL easier to read.

Now have a look at the permissions table to verify that a password has been set. First switch to the
mysql database, with the use command, and then query the internal tables:

mysql> use mysql
mysql> SELECT user, host, password FROM user;
+------+-----------+------------------+
| user | host | password |
+------+-----------+------------------+
root	localhost	2dxf8e9c23age6ed
root	fc7blp4e	
	localhost	
	fc7blp4e	
+------+-----------+------------------+

316

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 316

4 rows in set (0.01 sec)

mysql>

Observe that you have created a password for root only when connecting from the localhost. MySQL
can store distinct privileges not only for users, but also for connection classes based on host name. The
next step in securing your installation will be to get rid of those unnecessary users that MySQL installed
by default. The following command will remove all nonroot users from the permissions table:

mysql> DELETE FROM user WHERE user != ‘root’;
Query OK, 2 rows affected (0.01 sec)

The next command deletes any login from a host other than localhost:

mysql> DELETE FROM user WHERE host != ‘localhost’;
Query OK, 1 row affected (0.01 sec)

Last, use the following command to check that there are no stray logins:

mysql> SELECT user, host, password FROM user;
+------+-----------+------------------+
| user | host | password |
+------+-----------+------------------+
| root | localhost | 2dxf8e9c23age6ed |
+------+-----------+------------------+
1 row in set (0.00 sec)

mysql>exit

As you can see from the preceding output, you now have a single login that can connect from only
localhost.

Now for the moment of truth: Can you still log in using the password you set? This time you give the
-p parameter, which tells MySQL that it must prompt for a password:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql>

You now have a running version of MySQL that is locked down so that only the root user, with a pass-
word you have set, can connect to the database server, and that the root user can connect from only
the local machine. It is possible to connect to MySQL and provide the password on the command line.
You do this by using the parameter --password, for example --password=secretpassword, or by
-psecretpassword, but obviously this is less secure, because the password might be seen by a ps
command, or retrieved from command history. However, providing the password on the command
line can sometimes be necessary if you are writing scripts that need to connect to MySQL.

317

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 317

The next step is to add back in the user, or users, you require. As with a Linux system, it’s a bad idea to
use the root account to log in to MySQL unless it’s absolutely necessary, so you should create an every-
day user for normal use.

As we hinted earlier, you can create users with different connect permissions from different machines;
in the example, the root user is allowed to connect from only the local machine as a security measure.
For the purposes of this chapter, you are going to create a new user, rick, with fairly wide-ranging per-
missions. rick will be able to connect in three different ways:

❑ He can connect from the local host.

❑ He can connect from any machine with IP addresses in the range 192.168.0.0 through to
192.168.0.255.

❑ He can connect from any machine in the wiley.com domain.

The easiest way of doing this in a secure manner is to create three different users with three different
connection origins. They could, if you wanted, even have three different passwords, depending on
which network address they are connecting from.

You create users and assign them privileges by using the grant command. Here you create the user with
the three connection origins just listed. The IDENTIFIED BY is slightly odd syntax for setting an initial
password. Notice the way quotes are used; it’s important to use the single quote characters exactly as
shown or you will not create the users exactly as intended.

Connect to MySQL as the root user and then perform the following sequence:

1. Create a local login for rick:

mysql> GRANT ALL ON *.* TO rick@localhost IDENTIFIED BY ‘secretpassword’;
Query OK, 0 rows affected (0.03 sec)

2. Then create a login from anywhere on the class C subnet of 192.168.0. Notice that you must use
single quotes to protect the IP range, and use a mask /255.255.255.0 to identify the range of
IP addresses that are allowed:

mysql> GRANT ALL ON *.* TO rick@‘192.168.0.0/255.255.255.0’ IDENTIFIED BY
‘secretpassword’;
Query OK, 0 rows affected (0.00 sec)

3. Finally, create a login so that rick can log on from any machine in the wiley.com domain
(again notice the single quotes):

mysql> GRANT ALL ON *.* TO rick@‘%.wiley.com’ IDENTIFIED BY ‘secretpassword’;
Query OK, 0 rows affected (0.00 sec)

318

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 318

4. Now look again at the user table to double-check the entries:

mysql> SELECT user, host, password FROM mysql.user;
+------+---------------------------+------------------+
| user | host | password |
+------+---------------------------+------------------+
root	localhost	2dxf8e8c17ade6ed
rick	localhost	3742g6348q8378d9
rick	%.wiley.com	3742g6348q8378d9
rick	192.168.0.0/255.255.255.0	3742g6348q8378d9
+------+---------------------------+------------------+
4 rows in set (0.00 sec)

mysql>

Naturally, you need to adjust the preceding commands and passwords to suit your local configuration.
You will notice the GRANT ALL ON *.* command, which as you probably surmised gave user rick pretty
widespread permissions. That’s fine for a power user but won’t work for creating more restricted users. We
discuss the grant command in more detail in the “Creating Users and Giving Them Permissions” section
in this chapter, where, among other things, we show you how to create a more restricted user.

Now that you have MySQL up and running (if not, see the next section), have made the installation more
secure, and have a non-root user created ready to do some work with, we briefly discuss troubleshooting
after installation and then go back briefly and take a lightning tour through the essentials of MySQL data-
base administration.

Post-Installation Troubleshooting
If the connection failed when you used mysql, check that the server process is running using the system
ps command. If you can’t find it in the list, try launching mysql_safed –log. This should write a file
to MySQL’s log directory with some additional information. You can also try starting the mysqld process
directly; use mysqld --verbose --help for a full list of command-line options.

It’s also possible that the server is running, but simply refusing your connection. If so, the next item to
check will be the presence of a database, in particular the default MySQL permissions database. The
location /var/lib/mysql is commonly used by default for Red Hat distributions, but other distribu-
tions use varying locations. Check the MySQL startup script (for example, in /etc/init.d) and the
configuration file /etc/my.cnf. Alternatively, invoke the program directly, using mysqld --verbose
–help, and look for the variable datadir. Once you find the database directory, verify that it contains
at least a default permissions database (called mysql) and that the server demon is using this location
as specified in my.cnf.

If you’re still not connecting, use the service editor to stop the server, check that no mysqld process is
running, and then restart it and try connecting again. In the unlikely event you are still not getting any-
where, you could try totally uninstalling MySQL and re-installing from scratch. Also very helpful is the
MySQL documentation on the MySQL website (which is always more current than the local manual
pages, plus it has some user-edited hints and suggestions, as well as a forum) to explore some of the
more esoteric possibilities.

319

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 319

MySQL Administration
A handful of the utility programs included with the MySQL distribution facilitate administration. The
most commonly used of these is the mysqladmin program. We cover this utility and the others in the
following section.

Commands
All of the MySQL commands except mysqlshow take at least three standard parameters:

myisamchk
The myisamchk utility is designed to check and repair any data tables using the default MYISAM table
format natively supported by MySQL. Normally, myisamchk should be run as the mysql user created
at installation from the directory in which the tables reside. In order to check a database, do su mysql,
change into the directory name corresponding to the name of the database; and run myisamchk with one
or more of the options suggested by the following table. For example,

myisamchk –e -r *.MYI

The most common command options for myisamchk are shown in the following table:

Command option Description

-c Check the table for errors.

-e Perform an extended check.

-r Recover (correct) errors found.

Again, we recommend you avoid putting a password on the command line, because
it can be seen by the ps command.

Command Option Parameter Description

-u username By default mysql utilities will attempt to use the
same MySQL username as your current Linux user
name. Use the -u parameter to specify a different
user name.

-p [password] If -p is given but the password is omitted, the pass-
word is prompted for. If the -p parameter is not
present, MySQL commands assume no password
is needed.

-h host Used to connect to a server on a different host (can
always be omitted for local servers).

320

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 320

Again, for more information, you can invoke myisamchk with no parameters and look through the
extensive help messages. This utility has no effect on InnoDB type tables.

mysql
This is the principal, and very powerful, MySQL command-line tool. Almost every administrative or
user-level task can be performed here in one way or another. You can start mysql from the command
line; by adding a final additional parameter, a database name, you can bypass the use <database>
command from within the monitor. For example, to start the monitor as user rick, prompt for a pass-
word (notice the space after -p) and using database foo as the default:

$ mysql -u rick -p foo

Use mysql --help | less to page through a list of other command-line options for the mysql monitor.

If you start MySQL without specifying a database, you can use the use <databasename> option from
within MySQL to select one, as you can see from the list of commands in the next table.

Alternatively, you can run mysql in a non-interactive mode by bundling commands into an input file and
reading it in from the command line. In this case you have to specify the password on the command line:

$ mysql -u rick --password=secretpassword foo < sqlcommands.sql

Once mysql has read and processed your commands, it will return to the command prompt.

While the mysql client is connected to the server, a number of specific commands in addition to the
standard SQL92 set are supported, as shown in the following table:

Command Alternative Short Form Description

help or ? \h or \? Displays a list of commands.

edit \e Edit the command. The editor used is
determined by the environment vari-
able $EDITOR.

exit or quit \q Exit the MySQL client.

go \g Execute the command.

source <filename> \. Execute SQL from the given file.

status \s Display server status information.

system <command> \! Execute a system command.

tee <filename> \T Append a copy of all output to the
given filename.

use <database> \u Use the given database.

321

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 321

A very important command in this set is use. The mysqld server supports the idea of having many different
databases, all served and managed by the same server process. Many other database servers, such as Oracle
and Sybase, use the terminology schema, whereas MySQL more frequently uses database. (The MySQL Query
Browser uses schema, for example). Each database (in MySQL terminology) is a mostly independent set of
tables. This enables you to set up different databases for different purposes, and assign different users to dif-
ferent databases, all while using the same database server to efficiently manage them. Using the use com-
mand, you can, if you have appropriate permissions, switch between different databases.

The special database mysql, which is automatically created with every MySQL installation, is used as a
master repository for data like users and permissions.

SQL92 is the most widely used version of the ANSI SQL standard. Its purpose is to create uniformity
for how SQL databases work, facilitating interoperability and communication among different data-
base products.

mysqladmin
This utility is the principal tool for quick MySQL database administration. In addition to the usual
parameters, the principal commands it supports are:

Invoke mysqladmin without any parameters to see the full list of options from the command prompt.
You’ll want to use | less.

mysqlbug
With a little luck, you’ll never have the opportunity to use this. As the name implies, this tool creates a
bug report for mailing to the maintainers of MySQL. Before sending it off, you may want to edit the gen-
erated file to provide additional information that may be useful to the developers.

Command Description

create <database_name> Create a new database.

drop <database_name> Delete a database.

password <new_password> Change a password (as you saw earlier).

ping Check that the server is running.

reload Reload the grant tables that control permissions.

status Provide the status of the server.

shutdown Shut down the server.

variables Show the variables that control MySQL operation and their
current values.

version Provide the version number of the server and how long it has
been running.

322

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 322

mysqldump
This is an extremely useful utility that allows you to dump a partial or an entire database to a single file
as a set of SQL commands that can be read back into MySQL or even another SQL RDBMS. It takes as a
parameter the standard user and password info as well as database and table names. The additional
options in the following table greatly extend its utility:

By default, mysqldump sends its data to standard output, so you’ll want to redirect this to a file.

This utility is handy for migrating data or quick backups, and thanks to the client server implementation
of MySQL it can even be used for a nice remote backup implementation, by using a mysqldump client
installed on a different machine. As an example here is a command to connect as rick, and dump the data-
base myplaydb:

$ mysqldump -u rick -p myplaydb > myplaydb.dump

The resulting file, which on our system has only a single table in the database, looks like this:

-- MySQL dump 10.11
--
-- Host: localhost Database: myplaydb
-- --
-- Server version 5.0.37

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE=’+00:00’ */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE=’NO_AUTO_VALUE_ON_ZERO’ */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--
-- Table structure for table ’children’
--

Command Description

--add-drop-table Add SQL commands to the output file to drop (delete) any tables
before the commands to create them.

-e Use extended insert syntax. This is nonstandard SQL, but if you are
dumping a large amount of data, this will help your database dump
to reload much more quickly when you try to reload it into MySQL.

-t Dump only the data from tables, not the information to create tables.

-d Dump only the table structure, not the actual data.

323

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 323

DROP TABLE IF EXISTS ’children’;
CREATE TABLE ’children’ (
’childno’ int(11) NOT NULL auto_increment,
’fname’ varchar(30) default NULL,
’age’ int(11) default NULL,
PRIMARY KEY (’childno’)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--
-- Dumping data for table ’children’
--

LOCK TABLES ’children’ WRITE;
/*!40000 ALTER TABLE ’children’ DISABLE KEYS */;
INSERT INTO ’children’ VALUES
(1,’Jenny’,21),(2,’Andrew’,17),(3,’Gavin’,8),(4,’Duncan’,6),(5,’Emma’,4),
(6,’Alex’,15),(7,’Adrian’,9);
/*!40000 ALTER TABLE ’children’ ENABLE KEYS */;
UNLOCK TABLES;
/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;
/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

-- Dump completed on 2007-06-22 20:11:48

mysqlimport
The mysqlimport command is used for bulk loading data into a table. Using mysqlimport, you can read
in large quantities of text data from an input file. The only command-specific parameters required are a
filename and a database; mysqlimport will load the data into a table with the same name as the filename
(excluding any filename extension) into the database. You must ensure that the text file has the same num-
ber of columns of data as there are columns in the table to be populated with data, and that the data types
are compatible. By default, data should be separated with a tab delimiter.

It’s also possible to perform SQL commands from a text file by simply running mysql with input redirected
from a file, as we mentioned earlier.

mysqlshow
This little utility can provide quick information about your MySQL installation and its component
databases:

❑ With no parameters, it lists all available databases.

❑ With a database as a parameter, it lists the tables in that database.

❑ With both a database and a table name, it lists the columns in that table.

❑ With a database, table, and column, it lists the details of the specified column.

324

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 324

Creating Users and Giving Them Permissions
As a MySQL administrator, one of your most common tasks will be user maintenance — adding and
removing users from MySQL and managing their privileges. Since MySQL 3.22, user permissions are
managed with the grant and revoke commands from within the MySQL monitor — a task consider-
ably less daunting than editing the privilege tables directly as was necessary in early versions of MySQL.

grant
The MySQL grant command closely, though not exactly, follows SQL92 syntax. The general format is

grant <privilege> on <object> to <user> [identified by user-password] [with
grant option];

There are several privilege values that can be granted, shown in the following table:

Some the commands have further options. For example, create view gives the user permission to
create views. For a definitive list of permissions consult the MySQL documentation for your version of
MySQL, because this is an area that is being expanded with each new version of MySQL. There are also
several special administration privileges, but these do not concern us here.

The object on which you grant these privileges is identified as

databasename.tablename

and in the best Linux tradition, * is the anything-goes operator, so that *.* means every object in the
every database, and foo.* means every table in the foo database.

Value Description

alter Alter tables and indexes.

create Create databases and tables.

delete Delete data from the database.

drop Remove databases and tables.

index Manage indexes.

insert Add data to the database.

lock tables Allow locking of tables.

select Retrieve data.

update Modify data.

all All the above.

325

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 325

If the specified user already exists, privileges are edited to reflect your changes. If no such user exists,
the user is created with the specified privileges. As you saw earlier, users can be specified as being on
particular host machines. You should specify user and host in the same command to get the full flexibil-
ity of the MySQL permission scheme.

In SQL syntax, the special character % is a wildcard character, much the same as * in a shell environment.
You can, of course, issue separate commands for each desired privilege set; but if, for example, you want
to grant access to user rick from any host in the wiley.com domain, you could describe rick as

rick@‘%.wiley.com‘

Any use of the % wildcard character must be enclosed in quotes to set it off from any literal text.

You can also use IP/Netmask notation (N.N.N.N/M.M.M.M) to set a network address for access control.

Just as you earlier used rick@‘192.168.0.0/255.255.255.0’ to grant access to rick from any local
network computer, you can specify rick@‘192.168.0.1’ to limit rick’s access to a single workstation
or specify rick@‘192.0.0.0/255.0.0.0’ to broaden the scope to include any machine in the 192 class
A network.

As one more example, the command

mysql> GRANT ALL ON foo.* TO rick@‘%‘ IDENTIFIED BY ‘bar’;

will create a user rick, with full permissions on the database foo, to connect from any machine with an
initial password of bar.

If the database foo does not yet exist, then the user rick will now have permissions to create it using
the create database SQL command.

The IDENTIFIED BY clause is optional; but it’s a good idea to be certain that all users have passwords as
soon as they are created.

You need to be extra careful in the unfortunate circumstance where you have user names, host names, or
database names that contain an underscore, because the _ character in SQL is a pattern that matches any
single character in much the same way that % matches a string of characters. Whenever possible, avoid
user names and database names containing an underscore.

Typically, the with grant option is used only to create a secondary administrative user; however, it
can be used to allow a newly created user to confer the privileges granted to her on other users. Always
use the with grant option judiciously.

revoke
Naturally the administrator can not only give, but also take away, privileges. This is done with the with
the revoke command:

revoke <a_privilege> on <an_object> from <a_user>

326

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:56 PM Page 326

using much the same format as the grant command. For example:

mysql> REVOKE INSERT ON foo.* FROM rick@‘%‘;

The revoke command, however, does not delete users. If you want to completely remove a user, don’t
simply modify his privileges, but use revoke to remove his privileges. Then you can completely remove
him from the user table by switching to the internal mysql database, and deleting the appropriate rows
from the user table:

mysql> use mysql
mysql> DELETE FROM user WHERE user = “rick”
mysql> FLUSH PRIVILEGES;

In declining to specify a host, you ensure that you get rid of every instance of the MySQL user, in this
case rick, that you want removed. After doing this, be sure to return to your own database (using the
use command) or you may accidentally continuing working in MySQL’s own internal database.

Understand that delete is not part of the same concept as grant and revoke. It’s SQL syntax that
happens to be necessary as a result of the way MySQL handles permissions. You are directly updating
MySQL permission tables (hence the use mysql command first) to efficiently achieve the changes
you need.

After updating the tables, you must use the FLUSH PRIVILEGES command to tell the MySQL server
it needs to reload its permissions tables, as shown in the examples.

Passwords
If you want to specify passwords for existing users who do not already have them, or you want to
change your own or somebody else’s password, you’ll need to connect to the MySQL server as the root
user and directly update the user information. For example:

mysql> use mysql
mysql> SELECT host, user, password FROM user;

You should get a list like this:

+-----------+----------+------------------+
| host | user | password |
+-----------+----------+------------------+
| localhost | root | 67457e226a1a15bd |
| localhost | foo | |
+-----------+----------+------------------+
2 rows in set (0.00 sec)

If you want to assign the password bar to user foo, you can do so like this:

mysql> UPDATE user SET password = password(‘bar’) WHERE user = ‘foo’;

327

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 327

Display the relevant columns in the user table again, to check:

mysql> SELECT host, user, password FROM user;
+-----------+----------+------------------+
| host | user | password |
+-----------+----------+------------------+
| localhost | root | 65457e236g1a1wbq |
| localhost | foo | 7c9e0a41222752fa |
+-----------+----------+------------------+
2 rows in set (0.00 sec)
mysql>

Sure enough, the user foo now has a password. Remember to return to your original database.

Since MySQL 4.1, the password scheme has been updated from earlier versions. However, you
can still set a password using the old algorithm for backward compatibility with the function
OLD_PASSWORD(‘password to set’) if you need to.

Creating a Database
Your next step is to create a database. Let’s assume you want one called rick. Recall that you’ve already
created a user with the same name. First you’ll give the user rick wide-ranging permissions, so that he
can create new databases. On a development system this is particularly useful, because it allows people
more flexibility.

mysql> GRANT ALL ON *.* TO rick@localhost IDENTIFIED BY ‘secretpassword’;

Now test that privilege set by logging in as rick and creating the database:

$ mysql –u rick -p
Enter password:
...
mysql> CREATE DATABASE rick;
Query OK, 1 row affected (0.01 sec)
mysql>

Now tell MySQL you want to switch to your new database:

mysql> use rick

Now you can populate this database with the tables and information you want. On future logins, you
can specify the database on the end of the command line, bypassing the need for the use command:

$ mysql –u rick -p rick

After entering the password when prompted, you will then automatically change to use the database
rick by default as part of the connection process.

328

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 328

Data Types
So now you have a running MySQL server, a secure login for your user, and a database ready to use.
What’s next? Well, now you need to create some tables with columns to store your data. Before you can
do that, however, you need to know about the data types that MySQL supports.

MySQL data types are fairly standard, so we will just run briefly though the main types here. As always,
the MySQL manual on the MySQL website discusses this in more detail.

Boolean
A Boolean column can be defined using the keyword BOOL. As you would expect, it can hold TRUE and
FALSE values. It may also hold the special database “unknown” value NULL.

Character
A variety of character types are available and are shown in the following table. The first three are stan-
dard and the remaining three specific to MySQL. We suggest you stick to the standard types if practical.

Number
The number types are broken down into integer and floating-point number types, as shown in the fol-
lowing table:

Continued on next page

Definition Type Description

TINYINT Integer An 8-bit data type.

SMALLINT Integer A 16-bit data type.

MEDIUMINT Integer A 24-bit data type.

INT Integer A 32-bit data type. This is a standard type, and a good general-
purpose choice.

Definition Description

CHAR A single character.

CHAR(N) A character string on exactly N characters, which will be padded with space
characters if necessary. Limited to 255 characters.

VARCHAR(N) A variable-length array of N characters. Limited to 255 characters.

TINYTEXT Similar to VARCHAR(N).

MEDIUMTEXT A text string of up to 65,535 characters.

LONGTEXT A text string of up to 232 – 1 characters.

329

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 329

In general, we suggest you stick to INT, DOUBLE, and NUMERIC types, because these are closest to the
standard SQL types. The other types are nonstandard and may not be available in other database sys-
tems if you find you need to move your data at some point in the future.

Temporal
Five temporal data types are available, shown in the following table:

Note that you need to be careful when comparing DATE and DATETIME values as to how the time portion
is handled; you may see unexpected results. Check the MySQL manual for details, because the behavior
varies slightly with different versions of MySQL.

Creating a Table
Now that you have your database server running, know how to assign user permissions, and know how
to create a database and some basic database types, you can move on to creating tables.

A database table is simply a sequence of rows, each of which consists of a fixed set of columns. It’s rather
like a spreadsheet, except that each row must have exactly the same number and type of columns, and
each row must, in some way, be different from all other rows in the table.

Definition Description

DATE Stores dates between January 1, 1000, and December 31, 9999.

TIME Stores times between –838:59:59 and 838:59:59.

TIMESTAMP Stores a timestamp between January 1, 1970, and the year 2037.

DATETIME Stores dates between January 1, 1000, and the last second of
December 31, 9999.

YEAR Stores year values. Be careful with two-digit year values because they are
ambiguous and are automatically converted to four-digit years.

Definition Type Description

BIGINT Integer A 64-bit signed data type.

FLOAT(P) Floating A floating-point number with at least P digits of precision.

DOUBLE(D, N) Floating A signed double-precision floating-point number, with D digits
and N decimal places.

NUMERIC(P, S) Floating A real number with a total of P digits, with S of the digits after
the decimal place. Unlike DOUBLE, this is an exact number, so it
is better for storing currency, but less efficiently processed.

DECIMAL(P, S) Floating A synonym for NUMERIC.

330

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 330

A database can, within reason, contain pretty much an unlimited number of tables. However, few data-
bases need more than 100 tables, and for most small systems 25 or so tables usually suffice.

The full SQL syntax for creating database objects, known as DDL (data definition language), is too com-
plex to go into fully in one chapter; the full details can be found in the documentation section of the
MySQL website.

The basic syntax for creating a table is

CREATE TABLE <table_name> (
column type [NULL | NOT NULL] [AUTO_INCREMENT] [PRIMARY KEY]
[, ...]
[, PRIMARY KEY (column [, ...])]
)

You can discard tables using the DROP TABLE syntax, which is very simple:

DROP TABLE <table_name>

For now, there are just a small number of additional keywords, shown in the following table, you need
to know to get up to speed with creating tables.

Keyword Description

AUTO_INCREMENT This special keyword tells MySQL that, whenever you write a NULL
into this column, it should automatically fill in the column data using an
automatically allocated incrementing number. This is an immensely use-
ful feature; it allows you to use MySQL to automatically assign unique
numbers to rows in your tables, although it can only be used on columns
that are also a primary key. In other databases this functionality is often
provided by a serial type, or is managed more explicitly with a sequence.

NULL A special database value that is normally used to mean “not known,”
but can also be used to mean “not relevant.” For example, if you are fill-
ing in a table with employee details, you might have a column for per-
sonal e-mail address, but perhaps some employees don’t have a personal
e-mail address. In this case, you would store a NULL against the e-mail
address for that employee to show that the information was not relevant
to that particular person. The syntax NOT NULL means that this column
cannot store a NULL value, and it can be useful to prevent columns from
holding NULL values if, for example, the value must always be known,
such as an employee’s last name.

PRIMARY KEY Indicates that the data for this column will be unique and different in
every row in this table. Each table can have just a single primary key.

331

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 331

Try It Out Creating a Table and Adding Data
It’s much easier to see table creation in practice than to look at the base syntax, so you’ll do that now by
creating a table called children that will store a unique number for each child, a first name, and an age.
You’ll make the child number a primary key.

1. The SQL command you need is:

CREATE TABLE children (
childno INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
fname VARCHAR(30),
age INTEGER

);

Notice that, unlike most programming languages, the column name (childno) comes before the
column type (INTEGER).

2. You can also use a syntax that defines the primary key separately from the column; here’s an
interactive session that shows the alternative syntax:

mysql> use rick
Database changed
mysql> CREATE table children (

-> childno INTEGER AUTO_INCREMENT NOT NULL,
-> fname varchar(30),
-> age INTEGER,
-> PRIMARY KEY(childno)
->);

Query OK, 0 rows affected (0.04 sec)
mysql>

Notice how you can write the SQL across several lines, and mysql uses the -> prompt to show
you are on a continuation line. Also notice, as mentioned earlier, you terminate the SQL com-
mand with a semicolon to indicate you have finished and are ready for the database server to
process the request.

If you make a mistake, MySQL should allow you to scroll backward through previous commands,
edit them, and re-enter them by simply pressing Enter.

3. Now you have a table to which you can add some data. You add data with the INSERT SQL
command. Because you defined the childno column as an AUTO_INCREMENT column, you
don’t give any data from that column; you simply allow MySQL to allocate a unique number.

mysql> INSERT INTO children(fname, age) VALUES(“Jenny”, 21);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO children(fname, age) VALUES(“Andrew”, 17);
Query OK, 1 row affected (0.00 sec)

332

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 332

To check that the data was added correctly, you can retrieve the data again. Do this by
SELECTing the data from the table:

mysql> SELECT childno, fname, age FROM children;
+---------+--------+------+
| childno | fname | age |
+---------+--------+------+
| 1 | Jenny | 21 |
| 2 | Andrew | 17 |
+---------+--------+------+
2 rows in set (0.00 sec)

mysql>

Rather than explicitly list the columns you wanted to select, you could just have used an aster-
isk (*) for the columns, which will list all columns in the named table. This is fine for interac-
tive use, but in production code you should always explicitly name the column or columns you
want to select.

How It Works
You started an interactive session to the database server, and switched to the rick database. You then typed
in the SQL to create your table, using as many lines as needed for the command. As soon as you terminated
the SQL command with a ;, MySQL created your table. You then used the INSERT statement to add data to
your new table, allowing the childno column to automatically be allocated numbers. Finally, you used
SELECT to display the data in your table.

We don’t have space in this chapter to go into full details of SQL, much less database design. For more
information see www.mysql.com.

Graphical Tools
Manipulating tables and data on the command line is all well and good, but these days many people
prefer graphical tools.

MySQL has two main graphical tools, the MySQL Administrator and the MySQL Query Browser. The
exact package name for these tools varies depending on the distribution you are using; for example, in
Red Hat distributions look for mysql-gui-tools and mysql-administrator. For Ubuntu you may need to
turn on the “Universe” repository first, and then look for mysql-admin.

MySQL Query Browser
The query browser is a reasonably simple, but effective tool. After installation it can be invoked from the
GUI menu. When it starts you get an initial screen asking for connection details, as shown in Figure 8-4.

If you are running it on the same machine as the server, just use localhost as the server host name.

Once you have connected you get a simple GUI, shown in Figure 8-5, that allows you to run queries in a
GUI shell, giving you all the advantages of graphical editing as well as a graphical way to edit data in the
table, and some help screens with SQL syntax.

333

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 333

Figure 8-4

Figure 8-5

MySQL Administrator
We strongly suggest you look at MySQL Administrator; it’s a powerful, stable, and easy-to-use graphical
interface for MySQL that is available precompiled for both Linux and Windows (even the source code is

334

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 334

available if you want it). It allows you to both administer a MySQL server and execute SQL through a
GUI interface.

When you start MySQL Administrator you get a connection screen very similar to the MySQL Query
Browser connection screen. After entering the details you get the main control page, shown in Figure 8-6.

Figure 8-6

If you want to administer your MySQL server from a Windows client, you can download a Windows ver-
sion of MySQL Administrator from the GUI tools section of the MySQL website. At the time of writing the
download contains the administrator, the query browser, and a database migration utility. The status screen
is shown in Figure 8-7; as you can see it’s almost identical to the Linux version.

Do remember that if you have followed the instructions so far you have secured your MySQL server so
that root can only connect from the localhost, not from any other machines on the network.

Once you have MySQL Administrator running you can look around at the different configuration and
monitoring options. It’s a very easy-to-use tool, but we don’t have the space to go into details in this
single chapter.

Accessing MySQL Data from C
Now that we have the rudiments of MySQL out of the way, let’s explore how to access it from your
application, rather than using the GUI tools or the basic mysql client.

335

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 335

Figure 8-7

MySQL can be accessed from many different languages, including

❑ C

❑ C++

❑ Java

❑ Perl

❑ Python

❑ Eiffel

❑ Tcl

❑ Ruby

❑ PHP

An ODBC driver is also available for accessing MySQL from Windows native applications such as
Access; and there is even an ODBC driver for Linux, although little reason exists to use it.

In this chapter, we limit ourselves to the C interface because that is the primary focus of this book and
because the same libraries facilitate connection by a number of other languages.

336

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 336

Connection Routines
The two steps involved in connecting to a MySQL database from C are:

❑ Initializing a connection handle structure

❑ Physically making the connection

First, use mysql_init to initialize your connection handle:

#include <mysql.h>

MYSQL *mysql_init(MYSQL *);

Normally you pass NULL to the routine, and a pointer to a newly allocated connection handle structure is
returned. If you pass an existing structure, it will be reinitialized. On error, NULL is returned.

So far, you’ve simply allocated and initialized a structure. You still need to offer the parameters for a
connection using mysql_real_connect:

MYSQL *mysql_real_connect(MYSQL *connection,
const char *server_host,
const char *sql_user_name,
const char *sql_password,
const char *db_name,
unsigned int port_number,
const char *unix_socket_name,
unsigned int flags);

The connection pointer has to identify a structure already initialized using mysql_init. The parameters
are fairly self-explanatory; however, it should be noted that the server_host can take a host name or an
IP address. If connecting only to the local machine, you can optimize the connection type by specifying
simply localhost here.

sql_user_name and sql_password are exactly what they sound like. If the login name is NULL, the
login ID of the current Linux user is assumed. If the password is NULL, you will be able to access data
only on the server that’s accessible without a password. The password is encrypted before being sent
across the network.

The port_number and unix_socket_name should be 0 and NULL, respectively, unless you have changed
the defaults in your MySQL installation. They will default to appropriate values.

Finally, the flags parameter allows you to OR together some bit-pattern defines, allowing you to alter
certain features of the protocol being used. None of these flag options are relevant to this introductory
chapter; all are fully documented in the manual.

If you are unable to connect, NULL is returned. Using mysql_error can provide helpful information.

When you are finished with the connection, normally at program termination, call mysql_close like this:

void mysql_close(MYSQL *connection);

337

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 337

This will shut down the connection. If the connection was set up by mysql_init, the structure will be
freed. The pointer will become invalid and cannot be used again. It is wasteful of resources to leave an
unneeded connection open; but there’s additional overhead associated with reopening a connection, so
use your judgment about when to use these options.

The mysql_options routine (which can be called only between mysql_init and mysql_real_connect)
allows you to set some options:

int mysql_options(MYSQL *connection, enum option_to_set,
const char *argument);

Because mysql_options is capable of setting only one option at a time, it must be called once for each
option you would like to set. You can use it as many times as necessary so long as all uses appear between
mysql_init and mysql_real_connect. Not all of the options are of the char type, which must be cast as
const char *. The three most common options are shown in the following table. As always, the extensive
online manual lists them all.

A successful call returns zero. Because this is just for setting flags, failure always means that an invalid
option has been used.

To set the connection timeout to seven seconds, use a fragment of code such as this:

unsigned int timeout = 7;
...
connection = mysql_init(NULL);
ret = mysql_options(connection, MYSQL_OPT_CONNECT_TIMEOUT, (const char *)&timeout);

if (ret) {
/* Handle error */
...

}

connection = mysql_real_connect(connection …

Now that you’ve learned how to set up and close your connection, let’s try a short program just to
test things.

enum Option Actual Argument Type Description

MYSQL_OPT_
CONNECT_TIMEOUT

const unsigned int * The number of seconds to wait
before timing out a connection.

MYSQL_OPT_COMPRESS None, use NULL Use compression on the network
connection.

MYSQL_INIT_COMMAND const char * Command to send each time a con-
nection is established.

338

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 338

Start by setting a new password for the user (rick on localhost, in the following code) and then creating
a database called foo to connect to. This should all be familiar by now, so we will just show the sequence
as it is executed:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> GRANT ALL ON *.* TO rick@localhost IDENTIFIED BY ‘secret’;
Query OK, 0 rows affected (0.01 sec)

mysql> \q
Bye
$ mysql -u rick -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> CREATE DATABASE foo;
Query OK, 1 row affected (0.01 sec)

mysql> \q

You have now created your new database. Rather than type a lot of table creation and population com-
mands directly into the mysql command line, which is somewhat prone to error and not very productive
if you ever need to type it again, you will create a file with the commands you need in it.

This file is create_children.sql:

--
-- Create the table children
--

CREATE TABLE children (
childno int(11) NOT NULL auto_increment,
fname varchar(30),
age int(11),
PRIMARY KEY (childno)

);

--
-- Populate the table ‘children’
--

INSERT INTO children(childno, fname, age) VALUES (1,’Jenny’,21);
INSERT INTO children(childno, fname, age) VALUES (2,’Andrew’,17);
INSERT INTO children(childno, fname, age) VALUES (3,’Gavin’,8);
INSERT INTO children(childno, fname, age) VALUES (4,’Duncan’,6);
INSERT INTO children(childno, fname, age) VALUES (5,’Emma’,4);
INSERT INTO children(childno, fname, age) VALUES (6,’Alex’,15);
INSERT INTO children(childno, fname, age) VALUES (7,’Adrian’,9);

339

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 339

You can now sign back on to MySQL, selecting the database foo, and execute this file. For the sake of
brevity, and as an example in case you want to put this in a script, we will put the password on the
command line:

$ mysql -u rick --password=secret foo
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> \. create_children.sql
Query OK, 0 rows affected (0.01 sec)

Query OK, 1 row affected (0.00 sec)

We have removed the many duplicate lines of output as the rows are created in the database. Now that
you have a user, a database, and a table with some data stored in it, it’s time to see how you can access
the data from code.

This is connect1.c, which connects to a server on the local machine, as user rick with password
secret, to the database called foo:

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”

int main(int argc, char *argv[]) {
MYSQL *conn_ptr;

conn_ptr = mysql_init(NULL);
if (!conn_ptr) {

fprintf(stderr, “mysql_init failed\n”);
return EXIT_FAILURE;

}

conn_ptr = mysql_real_connect(conn_ptr, “localhost”, “rick”, “secret”,
“foo”, 0, NULL, 0);

if (conn_ptr) {
printf(“Connection success\n”);

} else {
printf(“Connection failed\n”);

}

mysql_close(conn_ptr);

return EXIT_SUCCESS;
}

Now compile the program and see how you did. You may need to add both the include path and a
library path, as well as specifying that the file needs linking with the library module mysqlclient.
On some systems you may also need -lz, to link the compression library. On the author’s system, the
required compile line is

$ gcc -I/usr/include/mysql connect1.c -L/usr/lib/mysql -lmysqlclient -o connect1

340

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 340

You may need to check that you have the client packages installed, and the locations they have been
installed, depending on your distribution, and adjust the preceding compile line accordingly.

When you run it, you should get a message saying the connection succeeded:

$./connect1
Connection success
$

In Chapter 9, we show you how to build a makefile to automate this connection.

As you can see, getting a connection to a MySQL database is very easy.

Error Handling
Before we move on to more sophisticated programs, it’s useful to have a look at how MySQL handles
errors. MySQL uses a number of return codes reported by the connection handle structure. The two
must-have routines are

unsigned int mysql_errno(MYSQL *connection);

and

char *mysql_error(MYSQL *connection);

You can retrieve the error code, generally any nonzero value, by calling mysql_errno and passing the
connection structure. Zero is returned if the error code has not been set. Because the code is updated each
time a call is made to the library, you can retrieve the error code only for the last command executed, with
the exception of these two error routines, which do not cause the error code to be updated.

The return value actually is the error code, and these values are defined in either the errmsg.h include
file or mysqld_error.h. Both of these can be found in the MySQL include directory. The first reports
on client-side errors, and the second focuses on server-specific errors.

If you prefer a textual error message, you can call mysql_error, which provides a meaningful text
message instead. The message text is written to some internal static memory space, so you need to
copy it elsewhere if you want to save the error text.

You can add some rudimentary error handling to your code in order to see this all in action. You probably
have already noticed, however, that you are likely to experience a problem because mysql_real_connect
returns a NULL pointer on failure, depriving you of an error code. If you make the connection handle a
variable, you can still get at it should mysql_real_connect fail.

Here is connect2.c, which illustrates how to use the connection structure when it isn’t dynamically
allocated, and also how you might write some basic error-handling code. The changes are highlighted:

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”

341

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 341

int main(int argc, char *argv[]) {
MYSQL my_connection;

mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, “localhost”, “rick”,

“I do not know”, “foo”, 0, NULL, 0)) {
printf(“Connection success\n”);
mysql_close(&my_connection);

} else {
fprintf(stderr, “Connection failed\n”);
if (mysql_errno(&my_connection)) {
fprintf(stderr, “Connection error %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
}

}

return EXIT_SUCCESS;
}

You could have solved your problem quite simply by avoiding overwriting your connection pointer
with the return result if mysql_real_connect failed. Still, this is a nice example of the other way of
using connection structures. You can force an error by choosing an incorrect user or password, and you
will still get an error code similar to that offered by the mysql tool.

$./connect2
Connection failed
Connection error 1045: Access denied for user: ‘rick@localhost’ (Using
password: YES)
$

Executing SQL Statements
Now that you can connect to your database and correctly handle errors, it’s time to put your program to
some real work. The primary API function for executing SQL statements is aptly named:

int mysql_query(MYSQL *connection, const char *query)

Not too difficult, is it? This routine takes the connection structure pointer and hopefully some valid SQL as
a text string (with no terminating semicolon as in the mysql tool). A zero is returned if you are successful.
A second routine, mysql_real_query, can be used if binary data is called for; but in this chapter we use
only mysql_query.

SQL Statements That Return No Data
For the sake of simplicity, let’s start by looking at some SQL statements that do not return any data:
UPDATE, DELETE, and INSERT.

Another important function that we will introduce at this point checks the number of rows affected by
the query:

my_ulonglong mysql_affected_rows(MYSQL *connection);

342

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 342

The first thing you are likely to notice about this function is the very unusual data type returned. An
unsigned type is used for reasons of portability. When you are using printf, it’s recommended that this
be cast as unsigned long with a format of %lu. This function returns the number of rows affected by the
previously issued UPDATE, INSERT, or DELETE query. The return value that MySQL uses may catch you
unprepared if you have worked with other SQL databases. MySQL returns the number of rows modified
by an update, whereas many other databases would consider a record updated simply because it
matches any WHERE clause.

In general for the mysql_ functions, a return of 0 indicates no rows affected and a positive number is the
actual result, typically the number of rows affected by the statement.

First you need to create your children table in the foo database, if you haven’t already. Delete (using the
drop command) any existing table to ensure you have a clean table definition, and to resend any IDs
used in the AUTO_INCREMENT column:

$ mysql -u rick -p foo
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> DROP TABLE children;
Query OK, 0 rows affected (0.58 sec)

mysql> CREATE TABLE children (
-> childno int(11) AUTO_INCREMENT NOT NULL PRIMARY KEY,
-> fname varchar(30),
-> age int
->);

Query OK, 0 rows affected (0.09 sec)
mysql>

So now add some code to connect2.c in order to insert a new row into your table; call this new pro-
gram insert1.c. Observe that the wrapping shown is a physical page limitation; you would not nor-
mally use a line break in your actual SQL statement unless it was a very long statement, when you can
use a \ at the end of the line to allow the SQL to continue onto the next line.

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”

int main(int argc, char *argv[]) {
MYSQL my_connection;
int res;

mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, “localhost”,

“rick”, “secret”, “foo”, 0, NULL, 0)) {
printf(“Connection success\n”);

res = mysql_query(&my_connection, “INSERT INTO children(fname, age)
VALUES(‘Ann’, 3)“);

if (!res) {

343

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 343

printf(“Inserted %lu rows\n”,
(unsigned long)mysql_affected_rows(&my_connection));

} else {
fprintf(stderr, “Insert error %d: %s\n”, mysql_errno(&my_connection),

mysql_error(&my_connection));
}

mysql_close(&my_connection);
} else {

fprintf(stderr, “Connection failed\n”);
if (mysql_errno(&my_connection)) {
fprintf(stderr, “Connection error %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
}

}

return EXIT_SUCCESS;
}

Not surprisingly, one row is inserted.

Now change the code to include an UPDATE, rather than INSERT, and see how affected rows are reported.

mysql_errno(&my_connection), mysql_error(&my_connection));
}

}

res = mysql_query(&my_connection, “UPDATE children SET AGE = 4
WHERE fname = ‘Ann’“);

if (!res) {
printf(“Updated %lu rows\n”,

(unsigned long)mysql_affected_rows(&my_connection));
} else {

fprintf(stderr, “Update error %d: %s\n”, mysql_errno(&my_connection),
mysql_error(&my_connection));

}

Call this program update1.c. It attempts to set the age of all children called Ann to 4.

Now suppose your children table has data in it, like this:

mysql> SELECT * from CHILDREN;
+---------+--------+------+
| childno | fname | age |
+---------+--------+------+
1	Jenny	21
2	Andrew	17
3	Gavin	9
4	Duncan	6
5	Emma	4
6	Alex	15
7	Adrian	9
8	Ann	3

344

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 344

9	Ann	4
10	Ann	3
11	Ann	4
+---------+--------+------+
11 rows in set (0.00 sec)

Notice that there are four children matching the name Ann. If you execute update1, you might reason-
ably expect the number of affected rows to be four, the number of rows mandated by the WHERE clause.
However, if you execute update1 you will see that the program reports a change of only two rows
because those were the only rows that actually required a change to the data. You can opt for more tra-
ditional reporting by using the CLIENT_FOUND_ROWS flag to mysql_real_connect.

if (mysql_real_connect(&my_connection, “localhost”,
“rick”, “secret”, “foo”, 0, NULL, CLIENT_FOUND_ROWS)) {

If you reset the data in your database, and then run the program with this modification, it reports the
number of affected rows as four.

The function mysql_affected_rows has one last oddity, which appears when you delete data from
the database. If you delete data with a WHERE clause, the mysql_affected_rows returns the number of
rows deleted, as you would expect. However, if there is no WHERE clause on a DELETE statement, all rows
in the table will be deleted, but the number of rows affected is reported by the program as zero. This is
because MySQL optimizes the deletion of all rows, rather than performing many single-row deletions.
This behavior is not affected by the CLIENT_FOUND_ROWS option flag.

Discovering What You Inserted
There is a small but crucial aspect of inserting data. Remember we mentioned the AUTO_INCREMENT type
of column, where MySQL automatically assigned IDs for you? This feature is extremely useful, particularly
when you have several users.

Take a look at that table definition again:

CREATE TABLE children (
childno INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
fname VARCHAR(30),
age INTEGER

);

As you can see, the childno column is an AUTO_INCREMENT field. That’s all very well, but once you have
inserted a row, how do you know which number was allocated for the child whose name you just inserted?

You could execute a SELECT statement to retrieve the data, searching on the child’s name, but this is very
inefficient, and not guaranteed to be unique — suppose you had two children with the same name? Or
perhaps multiple users inserting data rapidly, so there might be other rows inserted between your update
and SELECT statement? Because discovering the value of an AUTO_INCREMENT column is such a common
problem, MySQL provides a special solution in the form of the LAST_INSERT_ID() function.

Whenever MySQL inserts a data value into an AUTO_INCREMENT column, it keeps track, on a per-user
basis, of the last value it assigned. User programs can recover this value by simply SELECTing the rather
special function LAST_INSERT_ID(), which acts a little like a pseudo column.

345

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 345

Try It Out Retrieving the ID Generated by AUTO_INCREMENT
You can see how this works by inserting some values into your table, and then using the
LAST_INSERT_ID() function.

mysql> INSERT INTO children(fname, age) VALUES(‘Tom’, 13);
Query OK, 1 row affected (0.06 sec)
mysql> SELECT LAST_INSERT_ID();
+------------------+
| last_insert_id() |
+------------------+
| 14 |
+------------------+
1 row in set (0.01 sec)
mysql> INSERT INTO children(fname, age) VALUES(‘Harry’, 17);
Query OK, 1 row affected (0.02 sec)
mysql> SELECT LAST_INSERT_ID();
+------------------+
| last_insert_id() |
+------------------+
| 15 |
+------------------+
1 row in set (0.00 sec)
mysql>

How It Works
Each time you inserted a row, MySQL allocated a new id column value and kept track of it so you could
retrieve it using LAST_INSERT_ID().

If you want to experiment to see that the number returned is indeed unique to your session, open a differ-
ent session and insert another row. In the original session re-execute the SELECT LAST_INSERT_ID();
statement. You will see the number hasn’t changed because the number returned is the last number
inserted by the current session. However, if you do SELECT * FROM children, you should see that the
other session has indeed inserted data.

Try It Out Using Automatic IDs from a C Program
In this example, you will modify your insert1.c program to see how this works in C. The key changes
are highlighted. Call this modified program insert2.c.

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”

int main(int argc, char *argv[]) {
MYSQL my_connection;
MYSQL_RES *res_ptr;
MYSQL_ROW sqlrow;
int res;

346

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 346

mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, “localhost”,

“rick”, “bar”, “rick”, 0, NULL, 0)) {
printf(“Connection success\n”);

res = mysql_query(&my_connection, “INSERT INTO children(fname, age)
VALUES(‘Robert’, 7)“);

if (!res) {
printf(“Inserted %lu rows\n”, (unsigned

long)mysql_affected_rows(&my_connection));
} else {

fprintf(stderr, “Insert error %d: %s\n”, mysql_errno(&my_connection),
mysql_error(&my_connection));

}

res = mysql_query(&my_connection, “SELECT LAST_INSERT_ID()“);

if (res) {
printf(“SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {

while ((sqlrow = mysql_fetch_row(res_ptr))) {
printf(“We inserted childno %s\n”, sqlrow[0]);

}
mysql_free_result(res_ptr);

}
}

mysql_close(&my_connection);
} else {

fprintf(stderr, “Connection failed\n”);
if (mysql_errno(&my_connection)) {
fprintf(stderr, “Connection error %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
}

}

return EXIT_SUCCESS;
}

Here is the output:

$ gcc -I/usr/include/mysql insert2.c -L/usr/lib/mysql -lmysqlclient -o insert2
$./insert2
Connection success
Inserted 1 rows
We inserted childno 6
$./insert2
Connection success
Inserted 1 rows
We inserted childno 7

347

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 347

How It Works
After you inserted a row, you retrieved the allocated ID using the LAST_INSERT_ID() function just like a
normal SELECT statement. You then used mysql_use_result(), which we explain shortly, to retrieve the
data from the SELECT statement you executed and print it out. Don’t worry too much about the mechan-
ics of retrieving the value just now; all is explained in the next few pages.

Statements That Return Data
The most common use of SQL, of course, is retrieving rather than inserting or updating data. Data is
retrieved with the SELECT statement.

MySQL also supports SHOW, DESCRIBE, and EXPLAIN SQL statements for returning results, but we’re
not going to be considering these here. As usual, the manual contains explanations of these statements.

Retrieving data into your C application will typically involve four steps:

❑ Issue the query.

❑ Retrieve the data.

❑ Process the data.

❑ Tidy up if necessary.

Just as you did with the INSERT and DELETE statements, you’ll use mysql_query to send the SQL. Next
you’ll retrieve the data using either mysql_store_result or mysql_use_result, depending on how you
want the data retrieved. Next you’ll use a sequence of mysql_fetch_row calls to process the data. Finally,
you’ll use mysql_free_result to clear the memory you used for your query.

The difference between mysql_use_result and mysql_store_result basically amounts to whether
you want to get your data back a row at a time, or get the whole result set in one go. The latter is more
appropriate in circumstances where you anticipate a smaller result set.

Functions for All-At-Once Data Retrieval
You can retrieve all the data from a SELECT (or other statement that returns data), in a single call, using
mysql_store_result:

MYSQL_RES *mysql_store_result(MYSQL *connection);

Clearly, you want to use this function after a successful call to mysql_query. The function will store all
the data returned in the client immediately. It returns a pointer to a new structure called a result set
structure, or NULL if the statement failed.

Upon success, you’ll next call mysql_num_rows to get the number of records returned, which we hope
will be a positive number but may be 0 if no rows were returned.

my_ulonglong mysql_num_rows(MYSQL_RES *result);

This takes the result structure returned from mysql_store_result and returns the number of rows in
that result set. Providing mysql_store_result succeeded, mysql_num_rows will always succeed.

348

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 348

This combination of functions is an easy way to retrieve the data you need. At this point, all data is local
to the client and you no longer have to be concerned with the possibility of network or database errors.
By getting the number of rows returned, you’ll facilitate the coding that is to come.

If you happen to be working with a particularly large dataset, it will be better to retrieve smaller, more
manageable chunks of information. This will return control to the application more quickly and is an
unselfish way to use network resources. We explore this idea in more depth later, when we cover
mysql_use_result.

Now that you have the data, you can process it using mysql_fetch_row and move around in the dataset
using mysql_data_seek, mysql_row_seek, and mysql_row_tell. Let’s take a look at these functions:

❑ The mysql_fetch_row function pulls a single row out of the result structure you got using
mysql_store_result and puts it in a row structure. NULL is returned when the data runs out or
if an error occurs. We come back to processing the data in this row structure in the next section.

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result);

❑ The mysql_data_seek function allows you to jump about in the result set, setting the row that
will be returned by the next mysql_fetch row operation. The offset value is a row number,
and it must be in the range from zero to one less than the number of rows in the result set.
Passing zero will cause the first row to be returned on the next call to mysql_fetch_row.

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset);

❑ The function mysql_row_tell returns an offset value, indicating the current position in the
result set. It is not a row number, and you can’t use it with mysql_data_seek.

MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result);

❑ However, you can use it with

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET offset);

which moves the current position in the result set and returns the previous position.

This pair of functions is most useful for moving between known points in the result set. Be careful not
to confuse the offset value used by row_tell and row_seek with the row_number used by
data_seek. Your results will be unpredictable.

❑ When you’ve done everything you need to do with your data, you must explicitly use
mysql_free_result, which allows the MySQL library to clean up after itself.

void mysql_free_result(MYSQL_RES *result);

❑ When you’ve finished with a result set you must always call this function to allow the MySQL
library to tidy up the objects it has allocated.

349

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 349

Retrieving the Data
Now you can write your first data-retrieval application. You want to select all records where age is greater
than 5. You don’t how to process this data yet, so you’ll start by simply retrieving it. The important section,
where you retrieve a result set and loop through the retrieved data, is highlighted. This is select1.c:

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”

MYSQL my_connection;
MYSQL_RES *res_ptr;
MYSQL_ROW sqlrow;

int main(int argc, char *argv[]) {
int res;

mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, “localhost”, “rick”,

“secret”, “foo”, 0, NULL, 0)) {
printf(“Connection success\n”);

res = mysql_query(&my_connection, “SELECT childno, fname,
age FROM children WHERE age > 5”);

if (res) {
printf(“SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {
printf(“Retrieved %lu rows\n”, (unsigned long)mysql_num_rows(res_ptr));
while ((sqlrow = mysql_fetch_row(res_ptr))) {
printf(“Fetched data...\n”);

}
if (mysql_errno(&my_connection)) {
fprintf(stderr, “Retrive error: %s\n”, mysql_error(&my_connection));

}
mysql_free_result(res_ptr); }

}
mysql_close(&my_connection);

} else {
fprintf(stderr, “Connection failed\n”);
if (mysql_errno(&my_connection)) {

fprintf(stderr, “Connection error %d: %s\n”,
mysql_errno(&my_connection), mysql_error(&my_connection));

}
}

return EXIT_SUCCESS;
}

350

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 350

Retrieving the Data One Row at a Time
To retrieve the data row by row, which is what you really want to do, you’ll rely on mysql_use_result
rather than mysql_store_result.

MYSQL_RES *mysql_use_result(MYSQL *connection);

Like the mysql_store_result function, mysql_use_result returns NULL on error; if successful, it
returns a pointer to a result set object. However, it differs in that hasn’t retrieved any data into the result
set that it initialized.

You must use mysql_fetch_row repeatedly until all the data has been retrieved in order to actually
get at the data. If you don’t get all the data from mysql_use_result, subsequent operations by your
program to retrieve data may return corrupt information.

So what’s the impact of calling mysql_use_result versus mysql_store_result? There are sub -
stantial resource management benefits to the former; but it can’t be used with mysql_data_seek,
mysql_row_seek, or mysql_row_tell, and the utility of mysql_num_rows is limited by the fact that
it won’t actually fire until all the data has been retrieved.

You’ve also increased your latency, because each row request has to go across the network and the
results sent back the same way. Another possibility is that the network connection could fail in mid-
operation, leaving you with incomplete data.

None of this diminishes in any way, however, the benefits alluded to earlier: a better-balanced network
load and less storage overhead for possibly very large data sets.

Changing select1.c into select2.c, which will use the mysql_use_result method, is easy, so we
just show the changed section here with shaded lines:

if (res) {
printf(“SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {

while ((sqlrow = mysql_fetch_row(res_ptr))) {
printf(“Fetched data...\n”);

}
if (mysql_errno(&my_connection)) {

printf(“Retrive error: %s\n”, mysql_error(&my_connection));
}
mysql_free_result(res_ptr);

}

}

Observe that you still can’t get a row count until your last result is retrieved. However, by checking for
errors early and often, you’ve made the move to mysql_use_result much easier to apply. Coding in
this way can save a lot of headache on subsequent modifications to the application.

351

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 351

Processing Returned Data
Now that you know how to retrieve the rows, you can look at processing the actual data returned.

MySQL, like most SQL databases, gives back two sorts of data:

❑ The retrieved information from the table, namely the column data

❑ Data about the data, so-called metadata, such as column names and types

Let’s first focus on getting the data itself into a usable form.

The mysql_field_count function provides some basic information about a query result. It takes your
connection object and returns the number of fields (columns) in the result set:

unsigned int mysql_field_count(MYSQL *connection);

In a more generic way, you can use mysql_field_count for other things, such as determining
why a call to mysql_store_result failed. For example, if mysql_store_result returns NULL,
but mysql_field_count returns a positive number, you can hint at a retrieval error. However, if
mysql_field_count returns a 0, there were no columns to retrieve, which would explain the failure
to store the result. It’s reasonable to expect that you will know how many columns are supposed to be
returned by a particular query. This function is most useful, therefore, in generic query-processing
components or any situation where queries are constructed on the fly.

In code written for older versions of MySQL, you may see mysql_num_fields being used. This
could take either a connection structure or a result structure pointer and return the number of columns.

If you lay aside concerns about formatting, then you already know how to print out the data right away.
You’ll add the simple display_row function to your select2.c program.

Notice that you have made the connection, result, and row information returned from mysql_fetch_row
all global to simplify the example. In production code we would not recommend this.

1. Here is a very simple routine for printing out the data:

void display_row() {
unsigned int field_count;

field_count = 0;
while (field_count < mysql_field_count(&my_connection)) {

printf(“%s “, sqlrow[field_count]);
field_count++;

}
printf(“\n”);

}

2. Append it to select2.c and add a declaration and a function call:

void display_row();

int main(int argc, char *argv[]) {
int res;

352

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 352

mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, “localhost”, “rick”,

“bar”, “rick”, 0, NULL, 0)) {
printf(“Connection success\n”);

res = mysql_query(&my_connection, “SELECT childno, fname,
age FROM children WHERE age > 5”);

if (res) {
printf(“SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {

while ((sqlrow = mysql_fetch_row(res_ptr))) {
printf(“Fetched data...\n”);
display_row();

}
}

}

3. Now save the finished product as select3.c. Finally, compile and run select3 as follows:

$ gcc –I/usr/include/mysql select3.c –L/usr/lib/mysql –lmysqlclient –o select3
$./select3
Connection success
Fetched data...
1 Jenny 21
Fetched data...
2 Andrew 17
$

So the program is working, even if its output is not aesthetically pleasing. But you’ve failed to account
for possible NULL values in the result. If you want to print out more neatly formatted (perhaps tabular)
data, you’ll need both the data and the metadata returned by MySQL. You can simultaneously retrieve
both the metadata and the data into a new structure using mysql_fetch_field:

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result);

You need to call this function repeatedly until a NULL is returned, which will signal the end of the data.
Then you can use the pointer to the field structure data to get information about the column. The struc-
ture of MYSQL_FIELD is defined in mysql.h, as shown in the following table.

Continued on next page

Field in MYSQL_FIELD Structure Description

char *name; The name of the column, as a string.

char *table; The name of the table from which the column came. This
tends to be more useful where a query uses multiple tables.
Beware that a calculated value in the result, such as MAX,
will have an empty string for the table name.

353

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 353

Column types are quite extensive. You can find the full list in mysql_com.h and in the documentation.
The common ones are

FIELD_TYPE_DECIMAL
FIELD_TYPE_LONG
FIELD_TYPE_STRING
FIELD_TYPE_VAR_STRING

One particularly useful defined macro is IS_NUM, which returns true if the type of the field is numeric,
like this:

if (IS_NUM(myslq_field_ptr->type)) printf(“Numeric type field\n”);

Before you update your program, we should mention one extra function:

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result,
MYSQL_FIELD_OFFSET offset);

You can use this to override the current field number that is internally incremented for each call to
mysql_fetch_field. If you pass an offset of zero, you’ll jump back to the first column.

Now that you have the information, you need to make your select program show all the additional
data available concerning a given column.

Field in MYSQL_FIELD Structure Description

char *def; If you call the mysql_list_fields (which we are not
covering here), this will contain the default value of
the column.

enum enum_field_types type; Type of the column. See the explanation immediately
following this table.

unsigned int length; The width of the column, as specified when the table
was defined.

unsigned int max_length; If you used mysql_store_result, this contains the
length in bytes of the longest column value retrieved.
It is not set if you used mysql_use_result.

unsigned int flags; Flags tell you about the definition of the column, not about
the data found. The common flags have obvious meanings
and are NOT_NULL_FLAG, PRI_KEY_FLAG, UNSIGNED_FLAG,
AUTO_INCREMENT_FLAG, and BINARY_FLAG. You can find
the full list in the MySQL documentation.

unsigned int decimals; The number of digits after the decimal place. Valid only for
numeric fields.

354

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 354

This is select4.c; we reproduce the entire program here so that you can get a complete example to
look at. Notice that it does not attempt an extensive analysis of the column types; it just demonstrates
the principles required.

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”

MYSQL my_connection;
MYSQL_RES *res_ptr;
MYSQL_ROW sqlrow;

void display_header();
void display_row();

int main(int argc, char *argv[]) {
int res;
int first_row = 1; /* Used to ensure we display the row header exactly once

when data is successfully retrieved */

mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, “localhost”, “rick”,

“secret”, “foo”, 0, NULL, 0)) {
printf(“Connection success\n”);

res = mysql_query(&my_connection, “SELECT childno, fname,
age FROM children WHERE age > 5”);

if (res) {
fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {

while ((sqlrow = mysql_fetch_row(res_ptr))) {
if (first_row) {

display_header();
first_row = 0;

}
display_row();

}
if (mysql_errno(&my_connection)) {
fprintf(stderr, “Retrive error: %s\n”,

mysql_error(&my_connection));
}
mysql_free_result(res_ptr);

}

}
mysql_close(&my_connection);

} else {
fprintf(stderr, “Connection failed\n”);

355

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 355

if (mysql_errno(&my_connection)) {
fprintf(stderr, “Connection error %d: %s\n”,

mysql_errno(&my_connection),
mysql_error(&my_connection));

}
}

return EXIT_SUCCESS;
}

void display_header() {
MYSQL_FIELD *field_ptr;

printf(“Column details:\n”);
while ((field_ptr = mysql_fetch_field(res_ptr)) != NULL) {

printf(“\t Name: %s\n”, field_ptr->name);
printf(“\t Type: “);
if (IS_NUM(field_ptr->type)) {

printf(“Numeric field\n”);
} else {

switch(field_ptr->type) {
case FIELD_TYPE_VAR_STRING:

printf(“VARCHAR\n”);
break;
case FIELD_TYPE_LONG:

printf(“LONG\n”);
break;
default:
printf(“Type is %d, check in mysql_com.h\n”, field_ptr->type);

} /* switch */
} /* else */

printf(“\t Max width %ld\n”, field_ptr->length);
if (field_ptr->flags & AUTO_INCREMENT_FLAG)

printf(“\t Auto increments\n”);
printf(“\n”);

} /* while */
}

void display_row() {
unsigned int field_count;

field_count = 0;
while (field_count < mysql_field_count(&my_connection)) {

if (sqlrow[field_count]) printf(“%s “, sqlrow[field_count]);
else printf(“NULL”);
field_count++;

}
printf(“\n”);

}

356

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 356

When you compile and run this program, the output you get is

$./select4
Connection success
Column details:

Name: childno
Type: Numeric field
Max width 11
Auto increments

Name: fname
Type: VARCHAR
Max width 30

Name: age
Type: Numeric field
Max width 11

Column details:
1 Jenny 21
2 Andrew 17
$

It’s still not very pretty; but it illustrates nicely how you can process both raw data and the metadata that
allows you to work more efficiently with your data.

There are other functions that allow you to retrieve arrays of fields and jump between columns.
Generally all you need are the routines shown here; the interested reader can find more information
in the MySQL manual.

Miscellaneous Functions
There are some additional API functions, shown in the following table, that we recommend you investi-
gate. Generally, what’s been discussed so far is enough for a functional program; however, you should
find this partial listing useful.

Continued on next page

Example API Call Description

char *mysql_get_client_info(void); Returns version information about the library
that the client is using.

char *mysql_get_host_info(MYSQL
*connection);

Returns server connection information.

char *mysql_get_server_info(MYSQL
*connection);

Returns information about the server that you
are currently connected to.

char *mysql_info(MYSQL
*connection);.

Returns information about the most recently exe-
cuted query, but works for only a few query
types — generally INSERT and UPDATE state-
ments. Otherwise returns NULL.

357

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 357

The CD Database Application
You are now going to see how you might create a simple database to store information about your CDs
and then write some code to access that data. To keep things very simple, you will stick to just three
database tables with a very simple relationship among them.

Start by creating a new database to use and then make it the current database:

mysql> create database blpcd;
Query OK, 1 row affected (0.00 sec)

mysql> use blpcd
Connection id: 10
Current database: blpcd

mysql>

Now you’re ready to design and create the tables you need.

This example is slightly more sophisticated than before, in that you’ll separate three distinct elements of
a CD: the artist (or group), the main catalog entry, and the tracks. If you think about a CD collection and
the elements it is comprised of, you realize that each CD is composed of a number of different tracks, but
different CDs are related to each other in many ways: by the performer or group, by the company that
produced it, by the music style portrayed, and so on.

You could make your database quite complex, attempting to store all these different elements in a flexi-
ble way; however, in this example you will restrict yourself to just the two most important relationships.

First, each CD is composed of a variable number of tracks, so you will store the track data in a table sep-
arate from the other CD data. Second, each artist (or band) will often have more than one album, so it
would be useful to store the details of the artist once and then separately retrieve all the CDs the artist
has made. You will not attempt to break down bands into different artists who may themselves have
made solo albums, or deal with compilation CDs — you are trying to keep this simple!

Keep the relationships quite simple as well — each artist (which might be the name of a band) will have
produced one or more CDs and each CD will be composed of one or more tracks. The relationships are
illustrated in Figure 8-8.

Example API Call Description

int mysql_select_db(MYSQL
*connection, const char *dbname);

Changes the default database to the one given as
a parameter, provided that the user has appropri-
ate permissions. On success, zero is returned.

int mysql_shutdown(MYSQL
*connection,
enum mysql_enum_shutdown_level);

If you have appropriate permissions, shuts
down the database server you are connected
to. Currently the shutdown level must be set to
SHUTDOWN_DEFAULT. On success, zero is returned.

358

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 358

Figure 8-8

Creating the Tables
Now you need to determine the actual structure of the tables. Start with the main table — the CD
table — which stores most of the information. You will need to store a CD ID, a catalog number, a title,
and perhaps some of your own notes. You will also need an ID number from the artist table to tell you
which artist made the album.

The artist table is quite simple; just store an artist name and a unique artist ID number. The track table is
also very simple; you just need a CD ID to tell you which CD the track relates to, a track number, and the
title of the track.

The CD table first:

CREATE TABLE cd (
id INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
title VARCHAR(70) NOT NULL,
artist_id INTEGER NOT NULL,
catalogue VARCHAR(30) NOT NULL,
notes VARCHAR(100)

);

This creates a table called cd with the following columns:

❑ An id column, containing an integer that autoincrements and is the primary key for the table

❑ A title up to 70 characters long

❑ artist_id, an integer that you will use in your artist table

❑ A catalogue number of up to 30 characters

❑ Up to 100 characters of notes

Notice that only the notes column may be NULL; all the others must have values.

Artist

CD

Track

359

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 359

Now the artist table:

CREATE TABLE artist (
id INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL

);

Again you have an id column and one other column for the artist name.

Finally, the track table:

CREATE TABLE track (
cd_id INTEGER NOT NULL,
track_id INTEGER NOT NULL,
title VARCHAR(70),
PRIMARY KEY(cd_id, track_id)

);

Notice that this time you declare the primary key rather differently. The track table is unusual in that the
ID for each CD will appear several times, and the ID for any given track, say track one, will also appear
several times for different CDs. However, the combination of the two will always be unique, so declare
your primary key to be a combination of the two columns. This is called a composite key, because it
comprises more than one column taken in combination.

Store this SQL in a file called create_tables.sql, save it in the current directory, and then go ahead
and create a database and then these tables in it. The sample script provided contains additional lines,
commented out by default, to drop these tables if they already exist.

$ mysql -u rick -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> use blpcd;
Database changed
mysql> \. create_tables.sql
Query OK, 0 rows affected (0.04 sec)

Query OK, 0 rows affected (0.10 sec)

Query OK, 0 rows affected (0.00 sec)

mysql>

Notice the use of the \. command to take input from the create_tables.sql file as input.

You could just as well have created the tables by executing the SQL, or simply typing in the data, using
the MySQL Query Browser.

Once you have created your tables you can look at them using MySQL Administrator, as shown in
Figure 8-9, where you are examining the indices tab of the blpcd database (or schema, depending on
your preferred terminology).

360

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 360

By choosing to edit the table (right-click, or double-click the table name from the Tables tab), you can see
more details about the columns. This is shown in Figure 8-10.

Figure 8-9

Figure 8-10

361

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 361

Do you notice the two key symbols against the cd_id and track_id columns in Figure 8-10? This
shows that they are both contributing to the composite primary key. Allowing the track title to be NULL
(notice that NOT NULL is not checked) allows for the uncommon but not unseen occurrence of a CD
track that has no title.

Adding Some Data
Now you need to add some data. The best way of checking any database design is to add some sample
data and check that it all works.

We will just show a sample of the test import data here, as it’s not critical to understanding what is
happening because all the imports are basically similar — they just load different tables. There are
two important points to note here:

❑ The script deletes any existing data to ensure the script starts from a clean position.

❑ Insert values into the ID fields rather than allowing the AUTO_INCREMENT to take place. It’s safer
to do this here because the different inserts need to know which values have been used to ensure
that the data relationships are all correct, so it’s better to force the values, rather than allow the
AUTO_INCREMENT function to automatically allocate values.

This file is called insert_data.sql and can be executed using the \. command you saw before.

--- Delete existing data
delete from track;
delete from cd;
delete from artist;

-- Now the data inserts

--- First the artist (or group) tables
insert into artist(id, name) values(1, ‘Pink Floyd’);
insert into artist(id, name) values(2, ‘Genesis’);
insert into artist(id, name) values(3, ‘Einaudi’);
insert into artist(id, name) values(4, ‘Melanie C’);

--- Then the cd table
insert into cd(id, title, artist_id, catalogue) values(1, ‘Dark Side of the Moon’,
1, ‘B000024D4P’);
insert into cd(id, title, artist_id, catalogue) values(2, ‘Wish You Were Here’, 1,
‘B000024D4S’);
insert into cd(id, title, artist_id, catalogue) values(3, ‘A Trick of the Tail’, 2,
‘B000024EXM’);
insert into cd(id, title, artist_id, catalogue) values(4, ‘Selling England By the
Pound’, 2, ‘B000024E9M’);
insert into cd(id, title, artist_id, catalogue) values(5, ‘I Giorni’, 3,
‘B000071WEV’);
insert into cd(id, title, artist_id, catalogue) values(6, ‘Northern Star’, 4,
‘B00004YMST’);

--- populate the tracks
insert into track(cd_id, track_id, title) values(1, 1, ‘Speak to me’);
insert into track(cd_id, track_id, title) values(1, 2, ‘Breathe’);

362

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 362

and the rest of the tracks for this album, and then the next album:

insert into track(cd_id, track_id, title) values(2, 1, ‘Shine on you crazy
diamond’);
insert into track(cd_id, track_id, title) values(2, 2, ‘Welcome to the machine’);
insert into track(cd_id, track_id, title) values(2, 3, ‘Have a cigar’);
insert into track(cd_id, track_id, title) values(2, 4, ‘Wish you were here’);
insert into track(cd_id, track_id, title) values(2, 5, ‘Shine on you crazy diamond
pt.2’);

and so on . . .

insert into track(cd_id, track_id, title) values(5, 1, ‘Melodia Africana (part
1)‘);
insert into track(cd_id, track_id, title) values(5, 2, ‘I due fiumi’);
insert into track(cd_id, track_id, title) values(5, 3, ‘In un\‘altra vita’);

. . . until the final tracks:

insert into track(cd_id, track_id, title) values(6, 11, ‘Closer’);
insert into track(cd_id, track_id, title) values(6, 12, ‘Feel The Sun’);

Next save this in pop_tables.sql and execute it from the mysql prompt using the \. command,
as before.

Notice that in cd 5 (I Giorni) track 3, the track is In un’altra vita with an apostrophe. To insert this into
the database you must use a backslash (\) to quote the apostrophe.

Now would be a good time to check that your data is looking reasonable. You can use the mysql
command-line client and some SQL to check for this. Start by selecting the first two tracks from every
album in your database:

SELECT artist.name, cd.title AS “CD Title”, track.track_id, track.title AS
“Track” FROM artist, cd, track WHERE artist.id = cd.artist_id AND track.cd_id
= cd.id AND track.track_id < 3

If you try this in MySQL Query Browser, you can see that the data looks fine, as shown in Figure 8-11.

The SQL looks complex, but it’s not so bad if you take it a piece at a time.

Ignoring the AS parts of the SELECT command for a moment, the first part is simply this:

SELECT artist.name, cd.title, track.track_id, track.title

This simply tells which columns you want displayed, using the notation tablename.column name.

The AS parts of the SELECT statement, SELECT artist.name, cd.title AS “CD Title”,
track.track_id, and track.title AS “Track”, simply rename the columns in the displayed
output. Hence the header column for title from the cd table (cd.title) is named “CD Title,” and
the track.track.id column is titled “Track.” This use of AS gives more user-friendly output. You
would almost never use these names when calling SQL from another language, but AS is a useful
clause for working with SQL on the command line.

363

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 363

Figure 8-11

The next section is also straightforward; it tells the server the name of the tables you are using:

FROM artist, cd, track

The WHERE clause is the slightly tricky part:

WHERE artist.id = cd.artist_id AND track.cd_id = cd.id AND track.track_id < 3

The first part tells the server that the ID in the artist’s table is the same number as the artist_id in the
cd column. Remember that you store the artist’s name only once and use an ID to refer to it in the CD
table. The next section, track.cd_id = cd.id, does the same for the tables track and cd, telling the
server that the track table’s cd_id column is the same as the id column in the cd table. The third sec-
tion, track.track_id < 3, cuts down the amount of data returned so that you get only tracks 1 and 2
from each CD. Last, but not least, you join these three conditions together using AND because you want
all three conditions to be true.

Accessing the Application Data from C
You are not going to write a complete application with a GUI in this chapter; rather, you are going to con-
centrate on writing an interface file to allow you to access your data from C in reasonably simple fashion.
A common problem in writing code like this is the unknown number of results that can be returned and
how to pass them between the client code and the code that accesses the database. In this application, to
keep it simple and focus on the database interface — which is the important part of the code — you will

364

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 364

use fixed-size structures. In a real application this may not be acceptable. A common solution, which also
helps the network traffic, is to always retrieve the data one row at a time, as you saw earlier in the chapter
with the functions mysql_use_result and mysql_fetch_row.

Interface Definition
Start with a header file that defines your structures and functions, named app_mysql.h.

First, some structures:

/* A simplistic structure to represent the current CD, excluding the track
information */
struct current_cd_st {
int artist_id;
int cd_id;
char artist_name[100];
char title[100];
char catalogue[100];

};

/* A simplistic track details structure */
struct current_tracks_st {
int cd_id;
char track[20][100];

};

#define MAX_CD_RESULT 10
struct cd_search_st {
int cd_id[MAX_CD_RESULT];

};

Now a pair of functions for connecting and disconnecting from the database:

/* Database backend functions */
int database_start(char *name, char *password);
void database_end();

Now turn to the functions for manipulating the data. Notice that there are no functions for creating
or deleting artists. You will implement this behind the scenes, creating artist entries as required and
then deleting them when they are no longer in use by any album.

/* Functions for adding a CD */
int add_cd(char *artist, char *title, char *catalogue, int *cd_id);
int add_tracks(struct current_tracks_st *tracks);
/* Functions for finding and retrieving a CD */
int find_cds(char *search_str, struct cd_search_st *results);
int get_cd(int cd_id, struct current_cd_st *dest);
int get_cd_tracks(int cd_id, struct current_tracks_st *dest);
/* Function for deleting items */
int delete_cd(int cd_id);

The search function is fairly general: You pass a string and it searches for that string in the artist, title, or
catalogue entries.

365

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 365

Test Application Interface
Before you implement your interface, you’re going to write some code to use it. This might seem a little
odd, but often it is a good way of understanding how the interface should behave in detail, before you
settle down to implement it.

This is app_test.c. First some includes and structs:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include “app_mysql.h”

int main() {
struct current_cd_st cd;
struct cd_search_st cd_res;
struct current_tracks_st ct;
int cd_id;
int res, i;

The first thing your application must always do is initialize a database connection, providing a valid
user name and password (be sure to substitute your own):

database_start(“rick”, “secret”);

Then you test adding a CD:

res = add_cd(“Mahler”, “Symphony No 1”, “4596102”, &cd_id);
printf(“Result of adding a cd was %d, cd_id is %d\n”, res, cd_id);

memset(&ct, 0, sizeof(ct));
ct.cd_id = cd_id;
strcpy(ct.track[0], “Langsam Schleppend”);
strcpy(ct.track[1], “Kraftig bewegt”);
strcpy(ct.track[2], “Feierlich und gemessen”);
strcpy(ct.track[3], “Sturmisch bewegt”);
add_tracks(&ct);

Now search for the CD and retrieve information from the first CD found:

res = find_cds(“Symphony”, &cd_res);
printf(“Found %d cds, first has ID %d\n”, res, cd_res.cd_id[0]);

res = get_cd(cd_res.cd_id[0], &cd);
printf(“get_cd returned %d\n”, res);

memset(&ct, 0, sizeof(ct));
res = get_cd_tracks(cd_res.cd_id[0], &ct);
printf(“get_cd_tracks returned %d\n”, res);
printf(“Title: %s\n”, cd.title);
i = 0;
while (i < res) {

366

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 366

printf(“\ttrack %d is %s\n”, i, ct.track[i]);
i++;

}

Finally, delete the CD:

res = delete_cd(cd_res.cd_id[0]);
printf(“Delete_cd returned %d\n”, res);

Then disconnect and exit:

database_end();

return EXIT_SUCCESS;

}

Implementing the Interface
Now comes the harder part: implementing the interface you specified. This is all in the file app_mysql.c.

Start with some basic includes, the global connection structure you will need, and a flag, dbconnected,
that you will use to ensure applications don’t try to access data unless they have a connection. You also
use an internal function, get_artist_id, to improve the structure of your code.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include “mysql.h”
#include “app_mysql.h”

static MYSQL my_connection;
static int dbconnected = 0;

static int get_artist_id(char *artist);

Getting a connection to the database is very simple, as you saw earlier in the chapter, and disconnecting
again even easier:

int database_start(char *name, char *pwd) {

if (dbconnected) return 1;

mysql_init(&my_connection);
if (!mysql_real_connect(&my_connection, “localhost”, name, pwd, “blpcd”, 0,

NULL, 0)) {
fprintf(stderr, “Database connection failure: %d, %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
return 0;

}
dbconnected = 1;
return 1;

367

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 367

} /* database start */

void database_end() {
if (dbconnected) mysql_close(&my_connection);
dbconnected = 0;

} /* database_end */

Now the real work begins, with the function add_cd. You need some declarations first as well as a sanity
check to ensure that you’re connected to the database. You will see this in all the externally accessible
functions you write.

Remember we said that the code would take care of artist names automatically:

int add_cd(char *artist, char *title, char *catalogue, int *cd_id) {

MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

int res;
char is[250];
char es[250];
int artist_id = -1;
int new_cd_id = -1;

if (!dbconnected) return 0;

The next thing is to check if the artist already exists; if not, you create one. This is all taken care of in the
function get_artist_id, which you will see shortly.

artist_id = get_artist_id(artist);

Now having got an artist_id, you can insert the main CD record. Notice the use of
mysql_escape_string to protect any special characters in the title of the CD.

mysql_escape_string(es, title, strlen(title));
sprintf(is, “INSERT INTO cd(title, artist_id, catalogue)

VALUES(‘%s’, %d, ‘%s’)“, es, artist_id, catalogue);
res = mysql_query(&my_connection, is);
if (res) {
fprintf(stderr, “Insert error %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
return 0;

}

When you come to add the tracks for this CD, you will need to know the ID that was used when the
CD record was inserted. You made the field an auto-increment field, so the database has automatically
assigned an ID, but you need to explicitly retrieve the value. You can do this with the special function
LAST_INSERT_ID, as you saw earlier in the chapter:

res = mysql_query(&my_connection, “SELECT LAST_INSERT_ID()“);
if (res) {
printf(“SELECT error: %s\n”, mysql_error(&my_connection));

368

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 368

return 0;
} else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {
if ((mysqlrow = mysql_fetch_row(res_ptr))) {
sscanf(mysqlrow[0], “%d”, &new_cd_id);
}
mysql_free_result(res_ptr);

}

You don’t need to worry about other clients inserting CDs at the same time and the IDs becoming
messed up; MySQL keeps track of the ID assigned on a per-client connection basis, so even if another
application inserted a CD before you retrieved the ID, you would still get the ID corresponding to your
row, not the row inserted by the other application.

Last, but not least, set the ID of the newly added row and return success or failure:

*cd_id = new_cd_id;
if (new_cd_id != -1) return 1;
return 0;

}
} /* add_cd */

Now take a look at the implementation of get_artist_id; the process is very similar to inserting a
CD record:

/* Find or create an artist_id for the given string */
static int get_artist_id(char *artist) {
MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

int res;
char qs[250];
char is[250];
char es[250];
int artist_id = -1;

/* Does it already exist? */
mysql_escape_string(es, artist, strlen(artist));
sprintf(qs, “SELECT id FROM artist WHERE name = ‘%s’“, es);

res = mysql_query(&my_connection, qs);
if (res) {
fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {
if (mysql_num_rows(res_ptr) > 0) {

if (mysqlrow = mysql_fetch_row(res_ptr)) {
sscanf(mysqlrow[0], “%d”, &artist_id);

}
}
mysql_free_result(res_ptr);

369

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 369

}
}
if (artist_id != -1) return artist_id;

sprintf(is, “INSERT INTO artist(name) VALUES(‘%s’)“, es);
res = mysql_query(&my_connection, is);
if (res) {
fprintf(stderr, “Insert error %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
return 0;

}
res = mysql_query(&my_connection, “SELECT LAST_INSERT_ID()“);
if (res) {
printf(“SELECT error: %s\n”, mysql_error(&my_connection));
return 0;

} else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {
if ((mysqlrow = mysql_fetch_row(res_ptr))) {

sscanf(mysqlrow[0], “%d”, &artist_id);
}
mysql_free_result(res_ptr);

}
}
return artist_id;

} /* get_artist_id */

Now move on to adding the track information for your CD. Again you protect against special characters
in the track titles:

int add_tracks(struct current_tracks_st *tracks) {

int res;
char is[250];
char es[250];
int i;

if (!dbconnected) return 0;

i = 0;
while (tracks->track[i][0]) {
mysql_escape_string(es, tracks->track[i], strlen(tracks->track[i]));
sprintf(is, “INSERT INTO track(cd_id, track_id, title)

VALUES(%d, %d, ‘%s’)“, tracks->cd_id, i + 1, es);
res = mysql_query(&my_connection, is);
if (res) {
fprintf(stderr, “Insert error %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
return 0;

}
i++;

}
return 1;

} /* add_tracks */

370

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 370

Now move on to retrieving information about a CD, given a CD ID value. You will use a database join
to retrieve the artist ID at the same time you retrieve the CD information. This is generally good prac-
tice: Databases are good at knowing how to perform complex queries efficiently, so never write applica-
tion code to do work that you could simply have asked the database to do by passing it SQL. Chances
are that you can save yourself effort by not writing extra code, and have your application execute more
efficiently by allowing the database to do as much of the hard work as possible.

int get_cd(int cd_id, struct current_cd_st *dest) {
MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

int res;
char qs[250];

if (!dbconnected) return 0;
memset(dest, 0, sizeof(*dest));
dest->artist_id = -1;

sprintf(qs, “SELECT artist.id, cd.id, artist.name, cd.title, cd.catalogue \
FROM artist, cd WHERE artist.id = cd.artist_id and cd.id = %d”, cd_id);

res = mysql_query(&my_connection, qs);
if (res) {
fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {
if (mysql_num_rows(res_ptr) > 0) {

if (mysqlrow = mysql_fetch_row(res_ptr)) {
sscanf(mysqlrow[0], “%d”, &dest->artist_id);
sscanf(mysqlrow[1], “%d”, &dest->cd_id);
strcpy(dest->artist_name, mysqlrow[2]);
strcpy(dest->title, mysqlrow[3]);
strcpy(dest->catalogue, mysqlrow[4]);

}
}
mysql_free_result(res_ptr);

}
}
if (dest->artist_id != -1) return 1;
return 0;

} /* get_cd */

Next you implement the retrieval of track information. Notice that you specify an ORDER BY clause in
your SQL to ensure that tracks are returned in a sensible order. Again, this allows the database to do the
work, which it will do much more efficiently than if you retrieved the rows in any order and then wrote
your own code to sort them.

int get_cd_tracks(int cd_id, struct current_tracks_st *dest) {
MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

int res;
char qs[250];
int i = 0, num_tracks = 0;

371

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 371

if (!dbconnected) return 0;
memset(dest, 0, sizeof(*dest));
dest->cd_id = -1;

sprintf(qs, “SELECT track_id, title FROM track WHERE track.cd_id = %d \
ORDER BY track_id”, cd_id);

res = mysql_query(&my_connection, qs);
if (res) {
fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {
if ((num_tracks = mysql_num_rows(res_ptr)) > 0) {

while (mysqlrow = mysql_fetch_row(res_ptr)) {
strcpy(dest->track[i], mysqlrow[1]);
i++;

}
dest->cd_id = cd_id;
}
mysql_free_result(res_ptr);

}
}
return num_tracks;

} /* get_cd_tracks */

So far, you have added and retrieved information about CDs; now it’s time to search for CDs. You kept
the interface simple by limiting the number of results that could be returned, but you still want your
function to tell you how many rows there were, even if that’s more results than you can retrieve.

int find_cds(char *search_str, struct cd_search_st *dest) {
MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

int res;
char qs[500];
int i = 0;
char ss[250];
int num_rows = 0;

if (!dbconnected) return 0;

Now clear the result structure and protect against special characters in the query string:

memset(dest, -1, sizeof(*dest));
mysql_escape_string(ss, search_str, strlen(search_str));

Next you build a query string. Notice the need to use rather a lot of % characters; this is because % is both
the character you need to insert in the SQL to match any string and also a special character to sprintf.

sprintf(qs, “SELECT DISTINCT artist.id, cd.id FROM artist, cd WHERE artist.id =
cd.artist_id and (artist.name LIKE ‘%%%s%%‘ OR cd.title LIKE ‘%%%s%%‘ OR
cd.catalogue LIKE ‘%%%s%%‘)“, ss, ss, ss);

372

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 372

Now you can execute the query:

res = mysql_query(&my_connection, qs);
if (res) {
fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {
num_rows = mysql_num_rows(res_ptr);
if (num_rows > 0) {

while ((mysqlrow = mysql_fetch_row(res_ptr)) && i < MAX_CD_RESULT) {
sscanf(mysqlrow[1], “%d”, &dest->cd_id[i]);
i++;

}
}
mysql_free_result(res_ptr);

}
}
return num_rows;

} /* find_cds */

Last, but not least, you implement a way of deleting CDs. In line with the policy of managing artist entries
silently, you will delete the artist for this CD if no other CDs exist that have the same artist string. Curiously,
SQL has no way of expressing deletes from multiple tables, so you must delete from each table in turn.

int delete_cd(int cd_id) {

int res;
char qs[250];
int artist_id, num_rows;
MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

if (!dbconnected) return 0;

artist_id = -1;
sprintf(qs, “SELECT artist_id FROM cd WHERE artist_id =

(SELECT artist_id FROM cd WHERE id = ‘%d’)“, cd_id);
res = mysql_query(&my_connection, qs);
if (res) {
fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {
num_rows = mysql_num_rows(res_ptr);
if (num_rows == 1) {
/* Artist not used by any other CDs */
mysqlrow = mysql_fetch_row(res_ptr);
sscanf(mysqlrow[0], “%d”, &artist_id);

}
mysql_free_result(res_ptr);

}
}

373

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 373

sprintf(qs, “DELETE FROM track WHERE cd_id = ‘%d’“, cd_id);
res = mysql_query(&my_connection, qs);
if (res) {
fprintf(stderr, “Delete error (track) %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
return 0;

}

sprintf(qs, “DELETE FROM cd WHERE id = ‘%d’“, cd_id);
res = mysql_query(&my_connection, qs);
if (res) {
fprintf(stderr, “Delete error (cd) %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
return 0;

}

if (artist_id != -1) {
/* artist entry is now unrelated to any CDs, delete it */
sprintf(qs, “DELETE FROM artist WHERE id = ‘%d’“, artist_id);
res = mysql_query(&my_connection, qs);
if (res) {
fprintf(stderr, “Delete error (artist) %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
}

}

return 1;

} /* delete_cd */

That completes the code.

For the sake of completeness, add a Makefile to make your life easier. You may need to adjust the
include path depending on how MySQL is installed on your system.

all: app

app: app_mysql.c app_test.c app_mysql.h
gcc -o app -I/usr/include/mysql app_mysql.c app_test.c

–lmysqlclient -L/usr/lib/mysql

In later chapters, you will see this interface being used with a real GUI. For now, if you want to watch
the database changing as the code executes, we suggest you step through the code in the gdb debugger
in one window while watching the database data change in another. If you use the MySQL Query
Browser, remember that you will need to refresh the data displays to see the data change.

374

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 374

Summary
In this chapter, we’ve looked briefly at MySQL. More experienced users will discover many advanced
features we have not had time to discuss in this chapter, such as foreign key constraints and triggers.

You’ve learned the basics of installing MySQL and looked at the basic administration of a MySQL data-
base using the client utilities. We examined its C API, one of several languages that can be used with
MySQL. You’ve also learned some SQL in the process.

We hope this chapter has encouraged you to try using a SQL-based database for your data, and also to
find out more about these powerful database management tools.

As a reminder, the main resource for MySQL is the MySQL home page at www.mysql.com.

375

Chapter 8: MySQL

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 375

47627c08.qxd:WroxPro 9/29/07 3:57 PM Page 376

9
Development Tools

This chapter looks at some of the tools available for developing programs on Linux systems, some of
which are also available for UNIX. In addition to the obvious necessities of compilers and debuggers,
Linux provides a set of tools, each of which does a single job, and allows the developer to combine
these tools in new and innovative ways. This is part of the UNIX philosophy Linux has inherited.
Here, you look at a few of the more important tools and see some examples of their being used to
solve problems. These tools include:

❑ The make command and makefiles

❑ Source code control using RCS and CVS

❑ Writing a manual page

❑ Distributing software using patch and tar

❑ Development environments

Problems of Multiple Source Files
When they’re writing small programs, many people simply rebuild their application after edits by
recompiling all the files. However, with larger programs, some problems with this simple approach
become apparent. The time for the edit-compile-test cycle will grow. Even the most patient pro-
grammer will want to avoid recompiling all the files when only one file has been changed.

A potentially much more difficult problem arises when multiple header files are created and
included in different source files. Suppose you have header files a.h, b.h, and c.h, and C source
files main.c, 2.c, and 3.c. (We hope that you choose better names than these for real projects!)
You could have the following situation:

/* main.c */
#include “a.h”
...
/* 2.c */

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 377

#include “a.h”
#include “b.h”
...
/* 3.c */
#include “b.h”
#include “c.h”
...

If the programmer changes c.h, the files main.c and 2.c don’t need to be recompiled, because they
don’t depend on this header file. The file 3.c does depend on c.h and should therefore be recompiled if
c.h is changed. However, if b.h was changed and the programmer forgot to recompile 2.c, the result-
ing program might no longer function correctly.

The make utility can solve both of these problems by ensuring that all the files affected by changes are
recompiled when necessary.

The make command is not used only to compile programs. It can be used whenever you produce output
files from several input files. Other uses include document processing (such as with troff or TeX).

The make Command and Makefiles
Although, as you will see, the make command has a lot of built-in knowledge, it can’t know how to build
your application all by itself. You must provide a file that tells make how your application is constructed.
This file is called the makefile.

The makefile most often resides in the same directory as the other source files for the project. You can
have many different makefiles on your machine at any one time. Indeed, if you have a large project, you
may choose to manage it using separate makefiles for different parts of the project.

The combination of the make command and a makefile provides a very powerful tool for managing projects.
It’s often used not only to control the compilation of source code, but also to prepare manual pages and to
install the application into a target directory.

The Syntax of Makefiles
A makefile consists of a set of dependencies and rules. A dependency has a target (a file to be created)
and a set of source files upon which it is dependent. The rules describe how to create the target from the
dependent files. Typically, the target is a single executable file.

The makefile is read by the make command, which determines the target file or files that are to be made
and then compares the dates and times of the source files to decide which rules need to be invoked to con-
struct the target. Often, other intermediate targets have to be created before the final target can be made.
The make command uses the makefile to determine the order in which the targets have to be made and
the correct sequence of rules to invoke.

378

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 378

Options and Parameters to make
The make program itself has several options. The three most commonly used are

❑ -k, which tells make to keep going when an error is found, rather than stopping as soon as the
first problem is detected. You can use this, for example, to find out in one go which source files
fail to compile.

❑ -n, which tells make to print out what it would have done without actually doing it.

❑ -f <filename>, which allows you to tell make which file to use as its makefile. If you don’t
use this option, the standard version of make looks first for a file called makefile in the current
directory. If that doesn’t exist, it looks for a file called Makefile. However if you are using GNU
Make, which you probably are on Linux, that version of make looks for GNUmakefile first,
before searching for makefile and then Makefile. By convention, many Linux programmers
use Makefile; this allows the makefile to appear first in a directory listing of a directory filled
with lowercase-named files. We suggest you don’t use the name GNUmakefile, because it is
specific to the GNU implementation of make.

To tell make to build a particular target, which is usually an executable file, you can pass the target name
to make as a parameter. If you don’t, make will try to make the first target listed in the makefile. Many pro-
grammers specify all as the first target in their makefile and then list the other targets as being dependen-
cies for all. This convention makes it clear which target the makefile should attempt to build by default
when no target is specified. We suggest you stick to this convention.

Dependencies
The dependencies specify how each file in the final application relates to the source files. In the program-
ming example shown earlier in the chapter, you might specify dependencies that say your final applica-
tion requires (depends on) main.o, 2.o, and 3.o; and likewise for main.o (main.c and a.h); 2.o (2.c,
a.h, and b.h); and 3.o (3.c, b.h, and c.h). Thus main.o is affected by changes to main.c and a.h,
and it needs to be re-created by recompiling main.c if either of these two files changes.

In a makefile, you write these rules by writing the name of the target, a colon, spaces or tabs, and then
a space- or tab-separated list of files that are used to create the target file. The dependency list for the
earlier example is

myapp: main.o 2.o 3.o
main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h

This says that myapp depends on main.o, 2.o, and 3.o, main.o depends on main.c and a.h, and so on.

This set of dependencies gives a hierarchy showing how the source files relate to one other. You can see
quite easily that, if b.h changes, you need to revise both 2.o and 3.o, and because 2.o and 3.o will
have changed, you also need to rebuild myapp.

379

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 379

If you want to make several files, you can use the phony target all. Suppose your application consisted
of both the binary file myapp and a manual page, myapp.1. You could specify this with the line

all: myapp myapp.1

Again, if you don’t specify an all target, make simply creates the first target it finds in the makefile.

Rules
The second part of the makefile specifies the rules that describe how to create a target. In the example in the
previous section, what command should be used after the make command has determined that 2.o needs
rebuilding? It may be that simply using gcc -c 2.c is sufficient (and, as you’ll see later, make does indeed
know many default rules), but what if you needed to specify an include directory, or set the symbolic
information option for later debugging? You can do this by specifying explicit rules in the makefile.

At this point, we have to clue you in to a very strange and unfortunate syntax of makefiles: the difference
between a space and a tab. All rules must be on lines that start with a tab; a space won’t do. Because sev-
eral spaces and a tab look much the same and because almost everywhere else in Linux programming
there’s little distinction between spaces and tabs, this can cause problems. Also, a space at the end of a line
in the makefile may cause a make command to fail. However, it’s an accident of history and there are far
too many makefiles in existence to contemplate changing it now, so take care! Fortunately, it’s usually
reasonably obvious when the make command isn’t working because a tab is missing.

Try It Out A Simple Makefile
Most rules consist of a simple command that could have been typed on the command line. For the
example, you create your first makefile, Makefile1:

myapp: main.o 2.o 3.o
gcc -o myapp main.o 2.o 3.o

main.o: main.c a.h
gcc -c main.c

2.o: 2.c a.h b.h
gcc -c 2.c

3.o: 3.c b.h c.h
gcc -c 3.c

You invoke the make command with the -f option because your makefile doesn’t have either of the
usual default names of makefile or Makefile. If you invoke this code in a directory containing no
source code, you get this message:

$ make -f Makefile1
make: *** No rule to make target ‘main.c’, needed by ‘main.o’. Stop.
$

The make command has assumed that the first target in the makefile, myapp, is the file that you want to
create. It has then looked at the other dependencies and, in particular, has determined that a file called
main.c is needed. Because you haven’t created this file yet and the makefile does not say how it might be

380

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 380

created, make has reported an error. So now create the source files and try again. Because you’re not inter-
ested in the result, these files can be very simple. The header files are actually empty, so you can create
them with touch:

$ touch a.h
$ touch b.h
$ touch c.h

main.c contains main, which calls function_two and function_three. The other two files define
function_two and function_three. The source files have #include lines for the appropriate head-
ers, so they appear to be dependent on the contents of the included headers. It’s not much of an applica-
tion, but here are the listings:

/* main.c */
#include <stdlib.h>
#include “a.h”

extern void function_two();
extern void function_three();

int main()
{

function_two();
function_three();
exit (EXIT_SUCCESS);

}

/* 2.c */
#include “a.h”
#include “b.h”

void function_two() {
}

/* 3.c */
#include “b.h”
#include “c.h”

void function_three() {
}

Now try make again:

$ make -f Makefile1
gcc -c main.c
gcc -c 2.c
gcc -c 3.c
gcc -o myapp main.o 2.o 3.o
$

This is a successful make.

381

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 381

How It Works
The make command has processed the dependencies section of the makefile and determined the files
that need to be created and in which order. Even though you listed how to create myapp first, make has
determined the correct order for creating the files. It has then invoked the appropriate commands you
gave it in the rules section for creating those files. The make command displays the commands as it exe-
cutes them. You can now test your makefile to see whether it handles changes to the file b.h correctly:

$ touch b.h
$ make -f Makefile1
gcc -c 2.c
gcc -c 3.c
gcc -o myapp main.o 2.o 3.o
$

The make command has read your makefile, determined the minimum number of commands required
to rebuild myapp, and carried them out in the correct order. Now see what happens if you delete an
object file:

$ rm 2.o
$ make -f Makefile1
gcc -c 2.c
gcc -o myapp main.o 2.o 3.o
$

Again, make correctly determines the actions required.

Comments in a Makefile
A comment in a makefile starts with # and continues to the end of the line. As in C source files, com-
ments in a makefile can help both the author and others to understand what was intended when the file
was written.

Macros in a Makefile
Even if this was all there was to make and makefiles, they would be powerful tools for managing multi-
ple source file projects. However, they would also tend to be large and inflexible for projects consisting
of a very large number of files. Makefiles therefore allow you to use macros so that you can write them
in a more generalized form.

You define a macro in a makefile by writing MACRONAME=value, then accessing the value of
MACRONAME by writing either $(MACRONAME) or ${MACRONAME}. Some versions of make may also
accept $MACRONAME. You can set the value of a macro to blank (which expands to nothing) by leaving
the rest of the line after the = blank.

Macros are often used in makefiles for options to the compiler. Often, while an application is being
developed, it will be compiled with no optimization, but with debugging information included. For a
release version the opposite is usually needed: a small binary with no debugging information that runs
as fast as possible.

382

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 382

Another problem with Makefile1 is that it assumes the compiler is called gcc. On other UNIX systems,
you might be using cc or c89. If you ever wanted to take your makefile to a different version of UNIX,
or even if you obtained a different compiler to use on your existing system, you would have to change
several lines of your makefile to make it work. Macros are a good way of collecting all these system-
dependent parts, making it easy to change them.

Macros are normally defined inside the makefile itself, but they can be specified by calling make with the
macro definition, for example, make CC=c89. Command-line definitions like this override defines in
the makefile. When used outside makefiles, macro definitions must be passed as a single argument, so
either avoid spaces or use quotes like this: make “CC = c89 “.

Try It Out A Makefile with Macros
Here’s a revised version of the makefile, Makefile2, using some macros:

all: myapp

Which compiler
CC = gcc

Where are include files kept
INCLUDE = .

Options for development
CFLAGS = -g -Wall –ansi

Options for release
CFLAGS = -O -Wall –ansi

myapp: main.o 2.o 3.o
$(CC) -o myapp main.o 2.o 3.o

main.o: main.c a.h
$(CC) -I$(INCLUDE) $(CFLAGS) -c main.c

2.o: 2.c a.h b.h
$(CC) -I$(INCLUDE) $(CFLAGS) -c 2.c

3.o: 3.c b.h c.h
$(CC) -I$(INCLUDE) $(CFLAGS) -c 3.c

If you delete your old installation and create a new one with this new makefile, you get

$ rm *.o myapp
$ make -f Makefile2
gcc -I. -g -Wall -ansi -c main.c
gcc -I. -g -Wall -ansi -c 2.c
gcc -I. -g -Wall -ansi -c 3.c
gcc -o myapp main.o 2.o 3.o
$

383

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 383

How It Works
The make program replaces macro references $(CC), $(CFLAGS), and $(INCLUDE) with the appropriate
definitions, rather like the C compiler does with #define. Now if you want to change the compile com-
mand, you need to change only a single line of the makefile.

In fact, make has several special internal macros that you can use to make makefiles even more succinct.
We list the more common ones in the following table; you will see them in use in later examples. Each of
these macros is only expanded just before it’s used, so the meaning of the macro may vary as the make-
file progresses. In fact, these macros would be of very little use if they didn’t work this way.

There are two other useful special characters you may see in a makefile, preceding a command:

❑ - tells make to ignore any errors. For example, if you wanted to make a directory but wished to
ignore any errors, perhaps because the directory might already exist, you just precede mkdir
with a minus sign. You will see - in use a bit later in this chapter.

❑ @ tells make not to print the command to standard output before executing it. This character is
handy if you want to use echo to display some instructions.

Multiple Targets
It’s often useful to make more than a single target file, or to collect several groups of commands into
a single place. You can extend your makefile to do this. In the following example, you add a clean
option that removes unwanted objects and an install option that moves the finished application to a
different directory.

Try It Out Multiple Targets
Here’s the next version of the makefile, Makefile3:

all: myapp

Which compiler
CC = gcc

Where to install
INSTDIR = /usr/local/bin

Macro Definition

$? List of prerequisites (files the target depends on) changed more recently
than the current target

$@ Name of the current target

$< Name of the current prerequisite

$* Name of the current prerequisite, without any suffix

384

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 384

Where are include files kept
INCLUDE = .

Options for development
CFLAGS = -g -Wall –ansi

Options for release
CFLAGS = -O -Wall –ansi

myapp: main.o 2.o 3.o
$(CC) -o myapp main.o 2.o 3.o

main.o: main.c a.h
$(CC) -I$(INCLUDE) $(CFLAGS) -c main.c

2.o: 2.c a.h b.h
$(CC) -I$(INCLUDE) $(CFLAGS) -c 2.c

3.o: 3.c b.h c.h
$(CC) -I$(INCLUDE) $(CFLAGS) -c 3.c

clean:
-rm main.o 2.o 3.o

install: myapp
@if [-d $(INSTDIR)]; \

then \
cp myapp $(INSTDIR);\
chmod a+x $(INSTDIR)/myapp;\
chmod og-w $(INSTDIR)/myapp;\
echo “Installed in $(INSTDIR)“;\

else \
echo “Sorry, $(INSTDIR) does not exist”;\

fi

There are several things to notice in this makefile. First, the special target all still specifies only myapp
as a target. Thus, when you execute make without specifying a target, the default behavior is to build the
target myapp.

The next important point concerns the two additional targets, clean and install. The clean target
uses the rm command to remove the objects. The command starts with -, which tells make to ignore the
result of the command, so make clean will succeed even if there are no objects and the rm command
returns an error. The rules for making the target “clean” don’t specify clean as depending on anything;
the rest of the line after clean: is blank. Thus the target is always considered out of date, and its rule is
always executed if clean is specified as a target.

The install target is dependent on myapp, so make knows that it must create myapp before carrying out
other commands for making install. The rules for making install consist of some shell script com-
mands. Because make invokes a shell for executing rules and uses a new shell for each rule, you must
add backslashes so that all the script commands are on one logical line and are all passed together to a
single invocation of the shell for execution. This command starts with an @ sign, which tells make not to
print the command on standard output before executing the rule.

385

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 385

The install target executes several commands one after the other to install the application in its final
resting place. It does not check that each command succeeds before executing the next. If it was very
important that subsequent commands executed only if the previous one had succeeded, you could have
written the commands joined by &&, like this:

@if [-d $(INSTDIR)]; \
then \
cp myapp $(INSTDIR) &&\
chmod a+x $(INSTDIR)/myapp && \
chmod og-w $(INSTDIR/myapp && \
echo “Installed in $(INSTDIR)“ ;\

else \
echo “Sorry, $(INSTDIR) does not exist” ; false ; \

fi

As you may remember from Chapter 2, this is an “and” command to the shell and has the effect that
each subsequent command gets executed only if the previous one succeeded. Here you don’t care too
much about whether ensuring previous commands succeeded, so you can stick to the simpler form.

You may not have permission as an ordinary user to install new commands in /usr/local/bin. You
can either change the makefile to use a different install directory, change permissions on this directory,
or change user (with the su command) to root before invoking make install.

$ rm *.o myapp
$ make -f Makefile3
gcc -I. -g -Wall -ansi -c main.c
gcc -I. -g -Wall -ansi -c 2.c
gcc -I. -g -Wall -ansi -c 3.c
gcc -o myapp main.o 2.o 3.o
$ make -f Makefile3
make: Nothing to be done for ‘all’.
$ rm myapp
$ make -f Makefile3 install
gcc -o myapp main.o 2.o 3.o
Installed in /usr/local/bin
$ make -f Makefile3 clean
rm main.o 2.o 3.o
$

How It Works
First you delete myapp and all the objects. The make command on its own uses the target all, which
causes myapp to be built. Next you run make again, but because myapp is up to date, make does nothing.
You then delete the file myapp and do a make install. This re-creates the binary and copies it to the
install directory. Finally, you run make clean, which deletes the objects.

386

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 386

Built-in Rules
So far, you’ve specified in the makefile exactly how to perform each step of the process. In fact, make has
a large number of built-in rules that can significantly simplify makefiles, particularly if you have many
source files. To check this, create foo.c, a traditional Hello World program:

#include <stdlib.h>
#include <stdio.h>

int main()
{

printf(“Hello World\n”);
exit(EXIT_SUCCESS);

}

Without specifying a makefile, try to compile it using make:

$ make foo
cc foo.c -o foo
$

As you can see, make knows how to invoke the compiler, although, in this case, it chose cc rather than
gcc (on Linux this is okay, because cc is usually a link to gcc). Sometimes, these built-in rules are referred
to as inference rules. The default rules use macros, so by specifying some new values for the macros you
can change the default behavior.

$ rm foo
$ make CC=gcc CFLAGS=”-Wall -g” foo
gcc -Wall -g foo.c -o foo
$

You can ask make to print its built-in rules with the -p option. There are far too many built-in rules to list
them all here, but here’s a short extract from the output of make -p for the GNU version of make, showing
part of the rules:

OUTPUT_OPTION = -o $@
COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
%.o: %.c
commands to execute (built-in):

$(COMPILE.c) $(OUTPUT_OPTION) $<

You can now simplify your makefile to take account of these built-in rules by taking out the rules for
making objects and just specifying the dependencies, so the relevant section of the makefile reads simply

main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h

You can find this version in the downloadable code as Makefile4.

387

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 387

Suffix and Pattern Rules
The built-in rules that you’ve seen work by using suffixes (similar to Windows and MS-DOS filename
extensions), so that when it’s given a file with one ending, make knows which rule can be used to create
a file with a different ending. The most common rule here is the one used to create a file ending in .o
from a file ending in .c. The rule is to use the compiler to compile but not to link the source file.

Sometimes you need to be able to create new rules. The authors used to work on source files that needed
to be compiled by several different compilers: two under MS-DOS and gcc under Linux. To keep one of
the MS-DOS compilers happy, the source files, which were C++ rather than C, needed to be named with
a suffix of .cpp. Unfortunately, the version of make being used with Linux at the time didn’t have a
built-in rule for compiling .cpp files. (It did have a rule for .cc, a more common C++ file extension
under UNIX.)

Thus either a rule had to be specified for each individual source file, or we needed to teach make a new
rule for creating objects from files with the extension .cpp. Given that there were rather a large number
of source files in this project, specifying a new rule saved a lot of typing and also made adding new
source files to the project much easier.

To add a new suffix rule, you first add a line to the makefile telling make about the new suffix; you can
then write a rule using this new suffix. make uses the special syntax

.<old_suffix>.<new_suffix>:

to define a general rule for creating files with the new suffix from files with the same base name but the
old suffix.

Here’s a fragment of the makefile with a new general rule for compiling .cpp files to .o files:

.SUFFIXES: .cpp

.cpp.o:
$(CC) -xc++ $(CFLAGS) -I$(INCLUDE) -c $<

The special dependency .cpp.o: tells make that the rules that follow are for translating from a file with
a suffix of .cpp to a file with a suffix of .o. You use special macro names when writing this dependency
because you don’t yet know the actual names of the files that you’ll be translating. To understand this
rule, you simply need to remember that $< is expanded to the starting filename (with the old suffix).
Notice that you tell make how to get only from a .cpp to a .o file; make already knows how to get from
an object file to a binary executable file.

When you invoke make, it uses your new rule to get from bar.cpp to bar.o, then uses its built-in rules
to get from the .o to an executable file. The extra -xc++ flag is to tell gcc that this is a C++ source file.

These days make knows how to deal with C++ source files with .cpp extensions, but the technique is a
useful one when transforming from one kind of file to another.

More recent versions of make include an alternative syntax for achieving the same effect, and more besides.
For example, pattern rules use % as a wildcard syntax for matching filenames rather than relying on file-
name extensions alone.

388

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 388

The pattern rule equivalent for the preceding .cpp rule example would be

%.cpp: %o
$(CC) -xc++ $(CFLAGS) -I$(INCLUDE) -c $<

Managing Libraries with make
When you’re working on larger projects, it’s often convenient to manage several compilation products
using a library. Libraries are files, conventionally with the extension .a (for archive), that contain a collec-
tion of object files. The make command has a special syntax for dealing with libraries that makes them
very easy to manage.

The syntax is lib(file.o), which means the object file file.o, as stored in the library lib.a. The make
command has a built-in rule for managing libraries that is usually equivalent to something like this:

.c.a:
$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o

The macros $(AR) and $(ARFLAGS) normally default to the command ar and the options rv, respec-
tively. The rather terse syntax tells make that to get from a .c file to an .a library it must apply two rules:

❑ The first rule says that it must compile the source file and generate an object.

❑ The second rule says to use the ar command to revise the library, adding the new object file.

So, if you have a library fud, containing the file bas.o, in the first rule $< is replaced by bas.c. In the
second rule $@ is replaced by the library fud.a and $* is replaced by the name bas.

Try It Out Managing a Library
In practice, the rules for managing libraries are quite simple to use. Here you change your application so
that the files 2.o and 3.o are kept in a library called mylib.a. The makefile needs very few changes,
and Makefile5 looks like this:

all: myapp

Which compiler
CC = gcc

Where to install
INSTDIR = /usr/local/bin

Where are include files kept
INCLUDE = .

Options for development
CFLAGS = -g -Wall –ansi

Options for release
CFLAGS = -O -Wall –ansi

389

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 389

Local Libraries
MYLIB = mylib.a

myapp: main.o $(MYLIB)
$(CC) -o myapp main.o $(MYLIB)

$(MYLIB): $(MYLIB)(2.o) $(MYLIB)(3.o)
main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h

clean:
-rm main.o 2.o 3.o $(MYLIB)

install: myapp
@if [-d $(INSTDIR)]; \
then \
cp myapp $(INSTDIR);\
chmod a+x $(INSTDIR)/myapp;\
chmod og-w $(INSTDIR)/myapp;\
echo “Installed in $(INSTDIR)“;\

else \
echo “Sorry, $(INSTDIR) does not exist”;\

fi

Notice how we allow the default rules to do most of the work. Now test your new version of the makefile:

$ rm -f myapp *.o mylib.a
$ make -f Makefile5
gcc -g -Wall -ansi -c -o main.o main.c
gcc -g -Wall -ansi -c -o 2.o 2.c
ar rv mylib.a 2.o
a - 2.o
gcc -g -Wall -ansi -c -o 3.o 3.c
ar rv mylib.a 3.o
a - 3.o
gcc -o myapp main.o mylib.a
$ touch c.h
$ make -f Makefile5
gcc -g -Wall -ansi -c -o 3.o 3.c
ar rv mylib.a 3.o
r - 3.o
gcc -o myapp main.o mylib.a
$

How It Works
You first delete all the objects and the library and allow make to build myapp, which it does by compiling
and creating the library before linking main.o with the library to create myapp. You then test the depend-
ency rule for 3.o, which tells make that, if c.h changes, then 3.c must be recompiled. It does this cor-
rectly, compiling 3.c and updating the library before re-linking to create a new myapp executable file.

390

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 390

Advanced Topic: Makefiles and Subdirectories
If you’re working on a large project, it’s sometimes convenient to split some files that compose a library
away from the main files and store them in a subdirectory. There are two ways of doing this with make.

First, you can have a second makefile in the subdirectory to compile the files, store them in a library,
and then copy the library up a level into the main directory. The main makefile in the higher-level direc-
tory then has a rule for making the library, which invokes the second makefile like this:

mylib.a:
(cd mylibdirectory;$(MAKE))

This says that you must always try to make mylib.a. When make invokes the rule for building the
library, it changes into the subdirectory mylibdirectory and then invokes a new make command to
manage the library. Because a new shell is invoked for this, the program using the makefile doesn’t exe-
cute the cd. However, the shell invoked to carry out the rule to build the library is in a different direc-
tory. The brackets ensure that it’s all processed by a single shell.

The second way is to use some additional macros in a single makefile. The extra macros are generated
by appending a D for directory or an F for filename to those macros we’ve already discussed. You could
then override the built-in .c.o suffix rule with

.c.o:
$(CC) $(CFLAGS) -c $(@D)/$(<F) -o $(@D)/$(@F)

for compiling files in a subdirectory and leaving the objects in the subdirectory. You then update the
library in the current directory with a dependency and rule something like this:

mylib.a: mydir/2.o mydir/3.o
ar -rv mylib.a $?

You need to decide which approach you prefer for your own project. Many projects simply avoid hav-
ing subdirectories, but this can lead to a source directory with a ridiculous number of files in it. As you
can see from the preceding brief overview, you can use make with subdirectories with only slightly
increased complexity.

GNU make and gcc
If you’re using GNU make and the GNU gcc compiler, there are two interesting extra options:

❑ The first is the -jN (“jobs”) option to make. This allows make to execute N commands at the
same time. Where several different parts of the project can be compiled independently, make
will invoke several rules simultaneously. Depending on your system configuration, this can give
a significant improvement in the time to recompile. If you have many source files, it may be
worth trying this option. In general, smaller numbers such as -j3 are a good starting point. If
you share your computer with other users, use this option with care. Other users may not
appreciate your starting large numbers of processes every time you compile!

❑ The other useful addition is the -MM option to gcc. This produces a dependency list in a form
suitable for make. On a project with a significant number of source files, each including different

391

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 391

combinations of header files, it can be quite difficult (but very important) to get the dependen-
cies correct. If you make every source file depend on every header file, sometimes you’ll com-
pile files unnecessarily. If, on the other hand, you omit some dependencies, the problem is even
worse because you’re now failing to compile files that need recompiling.

Try It Out gcc -MM
In this Try It Out, you use the -MM option to gcc to generate a dependency list for your example project:

$ gcc -MM main.c 2.c 3.c
main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h
$

How It Works
The gcc compiler simply scans the source files looking for includes and outputs the required depend-
ency lines in a format ready for insertion into a makefile. All you have to do is save the output into a
temporary file and then insert it into the makefile for a perfect set of dependency rules. There are no
excuses for getting your dependencies wrong if you have a copy of gcc!

If you really feel confident about makefiles, you might try using the makedepend tool, which performs
a function similar to the -MM option but actually appends the dependencies at the end of the specified
makefile.

Before we leave the topic of makefiles, it’s perhaps worth pointing out that you don’t have to confine your-
self to using makefiles to compile code or create libraries. You can use them to automate any task where
there is a sequence of commands that get you from some sort of input file to an output file. A typical “non
compiler” use might be for calling awk or sed to process some files, or even generating manual pages. You
can automate just about any file manipulation, just as long as make can work out, from the date and time
information on the files, which ones have changed.

Another possibility for controlling your builds, or indeed other automation of tasks, is ANT. This is a
Java-based tool that uses XML-based configuration files. This tool isn’t commonly used for automating
the build of C files on Linux, so we will not discuss it further here. You can find more details of ANT at
http://ant.apache.org/.

Source Code Control
If you move beyond simple projects, particularly if more than one person is working on the project, it
becomes important to manage changes to source files properly to avoid conflicting changes and to track
changes that have been made.

392

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 392

There are several widely used UNIX systems for managing source files:

❑ SCCS (Source Code Control System)

❑ RCS (Revision Control System)

❑ CVS (Concurrent Version System)

❑ Subversion

SCCS was the original source code control system introduced by AT&T in the System V versions of UNIX,
and is now part of the X/Open standard. RCS was developed later as a free replacement for SCCS, and is
distributed by the Free Software foundation. RCS is functionally very similar to SCCS, but has a more
intuitive interface and some additional options, so SCCS has mostly been superceded by RCS.

The RCS utilities are a common option in Linux distributions or you can download them, along with
their sources, from the Free Software Foundation at http://directory.fsf.org/rcs.html.

CVS, which is more advanced than SCCS or RCS, is the tool of choice for collaborative, Internet-based devel-
opments. You can find it on most Linux distributions, or at http://www.nongnu.org/cvs/. It has two sig-
nificant advantages over RCS: it can be used over a network, and also allows concurrent development.

Subversion is the new kid on the block, designed to one day replace CVS. Its homepage is
http://www.subversion.org.

In this chapter, we focus on RCS and CVS; RCS because it is easy to use for a one-person project and
integrates well with make, and CVS because it is the commonest form of source code control used for
collaborative projects. We also briefly compare the RCS commands with the SCCS commands because of
SCCS’s status as a POSIX standard and compare some CVS user commands with those in Subversion.

RCS
The Revision Control System (RCS) comprises a number of commands for managing source files. It
works by tracking a source file as it’s changed by maintaining a single file with a list of changes in suffi-
cient detail to re-create any previous version. It also allows you to store comments associated with every
change, which can be very useful if you’re looking back through the history of changes to a file.

As a project progresses, you can log each major change or bug fix you make to a source file separately
and store comments against each change. This can be very useful for reviewing the changes made to a
file, checking where bugs were fixed and occasionally, perhaps, where bugs were introduced!

Because the RCS saves only the changes between versions, it’s also very space efficient. The system also
allows you to retrieve previous revisions in case of an accidental deletion.

The rcs Command
To illustrate, start with an initial version of the file you want to manage. In this case, let’s use important.c,
which starts life as a copy of foo.c with the following comment at the beginning:

/*
This is an important file for managing this project.
It implements the canonical “Hello World” program.

*/

393

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 393

The first task is to initialize RCS control over the file, using the rcs command. The command rcs -i ini-
tializes the RCS control file.

$ rcs -i important.c
RCS file: important.c,v
enter description, terminated with single ‘.’ or end of file:
NOTE: This is NOT the log message!
>> This is an important demonstration file
>> .
done
$

You’re allowed multiple comment lines. Terminate the prompting with a single period (.) on a line by
itself, or by typing the end-of-file character, usually Ctrl+D.

After this command, rcs has created a new read-only file with a ,v extension:

$ ls -l
-rw-r--r-- 1 neil users 225 2007-07-09 07:52 important.c
-r--r--r-- 1 neil users 105 2007-07-09 07:52 important.c,v
$

If you prefer to keep your RCS files in a separate directory, simply create a subdirectory called RCS before
you use rcs for the first time. All the rcs commands will automatically use the RCS subdirectory for
RCS files.

The ci Command
You can now check in your file, using the ci command to store the current version:

$ ci important.c
important.c,v <-- important.c
initial revision: 1.1
done
$

If you had forgotten to do rcs -i first, RCS would have asked for a description of the file. If you now
look at the directory, you’ll see that important.c has been deleted:

$ ls -l
-r--r--r-- 1 neil users 443 2007-07-07 07:54 important.c,v
$

The file contents and control information are all are stored in the RCS file: important.c,v.

The co Command
If you want to change the file, you must first “check out” the file. If you just want to read the file, you
can use co to re-create the current version of the file and change the permissions to make it read-only. If
you want to edit it, you must lock the file with co -l. The reason for this is that, in a team project, it’s
important to ensure that only one person at a time is modifying a given file, which is why only one copy

394

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 394

of a given version of a file has write permission. When a file is checked out with write permission, the
RCS file becomes locked. Lock a copy of the file

$ co -l important.c
important.c,v --> important.c
revision 1.1 (locked)
done
$

and look at the directory:

$ ls -l
-rw-r--r-- 1 neil users 225 2007-07-09 07:55 important.c
-r--r--r-- 1 neil users 453 2007-07-09 07:55 important.c,v
$

There’s now a file for you to edit to put in your new changes. Now do some edits, store the new version,
and use the ci command again to store the changes. The output section of important.c is now

printf(“Hello World\n”);
printf(“This is an extra line added later\n”);

You use ci like this:

$ ci important.c
important.c,v <-- important.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single ‘.’ or end of file:
>> Added an extra line to be printed out.
>> .
done
$

To check in the file and retain the lock so that the user can continue to work on it, you should call ci
with its -l option. The file is automatically checked out again to the same user.

You’ve now stored the revised version of the file. If you look at the directory, you see that important.c
has again been removed:

$ ls -l
-r--r--r-- 1 neil users 635 2007-07-09 07:55 important.c,v
$

The rlog Command
It’s often useful to look at a summary of changes to a file. You can do this with the rlog command:

$ rlog important.c

RCS file: important.c,v
Working file: important.c
head: 1.2
branch:
locks: strict

395

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 395

access list:
symbolic names:
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:
This is an important demonstration file

revision 1.2
date: 2007/07/09 06:57:33; author: neil; state: Exp; lines: +1 -0
Added an extra line to be printed out.

revision 1.1
date: 2007/07/09 06:54:36; author: neil; state: Exp;
Initial revision
===
$

The first part gives a description of the file and the options that rcs is using. The rlog command then
lists the revisions of the file, most recent first, along with the text you entered when you checked in the
revision. lines: +1 –0 in revision 1.2 tells you that one line was added and none were deleted.

Note that file modification times are stored without daylight savings adjustments to avoid any issues
when the clocks change.

If you now want the first version of the file back, you can ask co for it by specifying the revision
you require:

$ co -r1.1 important.c
important.c,v --> important.c
revision 1.1
done
$

ci also has a -r option, which forces the version number to a specified value. For example,

ci -r2 important.c

would check in important.c as version 2.1. Both RCS and SCCS default to using 1 as the first minor
version number.

The rcsdiff Command
If you just want to know what was changed between two revisions, you can use the rcsdiff command:

$ rcsdiff -r1.1 -r1.2 important.c
===
RCS file: important.c,v
retrieving revision 1.1
retrieving revision 1.2
diff -r1.1 -r1.2
11a12
> printf(“This is an extra line added later\n”);
$

396

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 396

The output tells you that a single line was inserted after the original line 11.

Identifying Revisions
The RCS system can use some special strings (macros) inside the source file to help track the changes. The
most common two macros are $RCSfile$ and Id. The macro $RCSfile$ is expanded to the name of
the file and Id expands to a string identifying the revision. Consult the manual pages for a full list of the
special strings supported. The macros are expanded whenever a file revision is checked out and updated
automatically when a revision is checked in.

Let’s change the file for a third time and add some of these macros:

$ co -l important.c
important.c,v --> important.c
revision 1.2 (locked)
done
$

Edit the file so it now looks like this:

#include <stdlib.h>
#include <stdio.h>

/*
This is an important file for managing this project.
It implements the canonical “Hello World” program.
Filename: $RCSfile$

*/

static char *RCSinfo = “Id”;

int main() {
printf(“Hello World\n”);
printf(“This is an extra line added later\n”);
printf(“This file is under RCS control. Its ID is\n%s\n”, RCSinfo);
exit(EXIT_SUCCESS);

}

Now check in this revision and see how RCS manages the special strings:

$ ci important.c
important.c,v <-- important.c
new revision: 1.3; previous revision: 1.2
enter log message, terminated with single ‘.’ or end of file:
>> Added $RCSfile$ and Id strings
>> .
done
$

If you look in the directory, you find only the RCS file:

$ ls -l
-r--r--r-- 1 neil users 907 2007-07-09 08:07 important.c,v
$

397

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 397

If you check out (with the co command) and examine the current version of the source file, you can see
the macros that have been expanded.

#include <stdlib.h>
#include <stdio.h>

/*
This is an important file for managing this project.
It implements the canonical “Hello World” program.
Filename: $RCSfile: important.c,v $

*/

static char *RCSinfo = “$Id: important.c,v 1.3 2007/07/09 07:07:08 neil Exp $”;

int main() {
printf(“Hello World\n”);
printf(“This is an extra line added later\n”);
printf(“This file is under RCS control. Its ID is\n%s\n”, RCSinfo);
exit(EXIT_SUCCESS);

}

Try It Out GNU make with RCS
GNU make already has some built-in rules for managing RCS files. In this example you see how make
deals with a missing source file.

$ rm -f important.c
$ make important
co important.c,v important.c
important.c,v --> important.c
revision 1.3
done
cc -c important.c -o important.o
cc important.o -o important
rm important.o important.c
$

How It Works
make has a default rule that to make a file with no extension you can compile a file of the same name but
with a .c extension. A second default rule allows make to create important.c from important.c,v by
using RCS. Because no file called important.c exists, make has created the .c file by checking out the
latest revision with co. After compiling, it tidied up by deleting the file important.c.

The ident Command
You can use the ident command to find the version of a file that contains a Id string. Because you
stored the string in a variable, it also appears in the resulting executable. You may find that if you include

398

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 398

special strings but never access them in the code, some compilers will optimize them away. You can nor-
mally get around this problem by adding some dummy accesses to the string, although as compilers get
better this is becoming more difficult!

Here is a simple example to show how you can use the ident command to double-check the RCS source
version of a file used to build an executable.

Try It Out ident
$./important
Hello World
This is an extra line added later
This file is under RCS control. Its ID is
$Id: important.c,v 1.3 2007/07/09 07:07:08 neil Exp $
$ ident important
important:

$Id: important.c,v 1.3 2007/07/09 07 :07 :08 neil Exp $
$

How It Works
By executing the program, you show the string has been incorporated into the executable. Then you
show how the ident command can extract Id strings from an executable file.

This technique of using RCS and Id strings that appear in executables can be a very powerful tool for
checking which version of a file a customer is reporting a problem in. You can also use RCS (or SCCS) as
part of a project-tracking facility to track problems being reported and how they are fixed. If you’re selling
software, or even giving it away, it’s very important to know what was changed between different releases.

If you’d like more information, the rcsintro page in the manual gives a thorough introduction to the
RCS system, in addition to the standard RCS pages. There are also manual pages for the individual com-
mands ci, co, and so on.

SCCS
SCCS offers facilities very similar to RCS. The advantage of SCCS is that it’s specified in X/Open, so all
branded versions of UNIX should support it. On a more practical level, RCS is very portable and can
be freely distributed. So if you have a UNIX-like system, whether it’s X/Open-conformant or not, you
should be able to obtain and install RCS for it. For this reason we don’t describe SCCS further here,
except to provide a brief command comparison for those moving between the two systems.

Comparing RCS and SCCS
It’s difficult to provide a direct comparison of commands between the two systems, so the following
table should only be considered as a quick pointer. The commands listed here don’t take the same

399

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 399

options to perform the same tasks. If you have to use SCCS, you’ll need to find the appropriate options,
but at least you’ll know where to start looking.

In addition to those listed previously, the SCCS sccs command has some crossover with the rcs and
co commands in RCS. For example, sccs edit and sccs create are equivalent to co -l, and rcs -i,
respectively.

CVS
An alternative to using RCS to manage changes to files is CVS, which stands for Concurrent Versions
System. CVS has become extremely popular, probably because it has one distinct advantage over RCS:
It’s practical to use CVS over the Internet, not just on a shared local directory like RCS. CVS also allows
for parallel development; that is, many programmers can work on the same file at once, whereas RCS
allows only one user to work on one particular file at a time. CVS commands resemble RCS commands,
because CVS was initially developed as a front end to RCS.

Because it can work across a network in a flexible way, CVS is suitable for use if the only network link-
ing the developers is the Internet. Many Linux and GNU projects are using CVS to help the different
developers coordinate their work. In general, the way that you use CVS on a remote set of files is almost
identical to how you would use it on a local set.

In this chapter, we look briefly at the basics of CVS, so that you can get started with local repositories and
understand how to get a copy of the latest sources of a project when the CVS server is on the Internet. More
information is in the CVS manual, written by Per Cederqvist et al., available at http://ximbiot.com/
cvs/manual/, where you will also find FAQ files and various other helpful files.

First you need to create a repository where CVS will store both its control files and the master copies of
files that it is managing. A repository has a tree structure, so you can use a single repository to store not
just a whole directory structure for a single project, but many projects in the same repository. However,
you can use separate repositories for separate unrelated projects as well. In the following sections you’ll
see how to tell CVS which repository to use.

Using CVS Locally
Start by creating a repository. To keep it simple, this will be a local repository, and because you will be
using only one, a convenient place to put it is somewhere in /usr/local. On most Linux distributions
all normal users are members of the group users, so use this as the group of the repository so that all
users can access it.

RCS SCCS

rcs admin

ci delta

co get

rcsdiff sccsdiff

ident what

400

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 400

As superuser, create a directory for the repository:

mkdir /usr/local/repository
chgrp users /usr/local/repository
chmod g+w /usr/local/repository

As a normal user again, initialize it as a CVS repository. You will need to have obtained write access to
/usr/local/repository to do this, if you are not in the normal users group.

$ cvs -d /usr/local/repository init

The -d option tells CVS where you want the repository to be created.

Now that the repository has been created, you can store your initial versions of the project in CVS.
However, at this point you can save yourself some typing. All cvs commands have two ways of looking
for the CVS directory. First, they look for a -d <path> on the command line (as you used with the init
command); if the –d option is not present, it looks for an environment variable CVSROOT. Rather than use
the -d option all the time, you will set up this environment variable. This is the command to use if you
use bash as your shell:

$ export CVSROOT=/usr/local/repository

First you change to the directory where the project is; then you tell CVS to import all the files in the
directory. As far as CVS is concerned, a project is any collection of related files and directories. Typically
this will include all the files necessary to create an application. The term import means to bring files
under CVS control and copy them into the CVS repository. For this example you have a directory called
cvs-sp (for CVS simple project) containing two files, hello.c and Makefile:

$ cd cvs-sp
$ ls –l
-rw-r--r-- 1 neil users 68 2003-02-15 11:07 Makefile
-rw-r--r-- 1 neil users 109 2003-02-15 11:04 hello.c

The CVS import command is cvs import and is used like this:

$ cvs import -m”Initial version of Simple Project” wrox/chap9-cvs wrox start

This bit of magic tells CVS to import all the files in the current directory (cvs-sp) and gives it a log message.

The wrox/chap9-cvs argument tells CVS where, relative to the root of the CVS tree, to store the new
project. Remember that CVS can store multiple projects in the same repository if you want. The option
wrox is a vendor tag used to identify the supplier of the initial version of files being imported, and
start is a release tag. Release tags can be used to identify, as a group, sets of related files, such as those
that make up a particular release of an application. CVS responds with

N wrox/chap9-cvs/hello.c
N wrox/chap9-cvs/Makefile

No conflicts created by this import

telling you that it imported two files correctly.

401

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 401

Now is a good time to check that you can retrieve your files from CVS. You can create a junk directory
and check your files back out again to make sure all is well.

$ mkdir junk
$ cd junk
$ cvs checkout wrox/chap9-cvs
U wrox/chap9-cvs/Makefile
U wrox/chap9-cvs/hello.c

You give CVS the same path as when you checked the files in. CVS creates a directory wrox/chap9-cvs
in the current directory and puts the files there.

Now you are ready to make some changes to your project. Edit hello.c in wrox/chap9-cvs and make
a minor change by adding a line:

printf(“Have a nice day\n”);

Then recompile and run the program to check all is well.

$ make
cc hello.c –o hello
$./hello
Hello World
Have a nice day
$

You can ask CVS what has been changed in the project. You don’t have to tell CVS which file you are
interested in; it can work on a whole directory at a time:

$ cvs diff

CVS responds with

cvs diff: Diffing .
Index: hello.c
===
RCS file: /usr/local/repository/wrox/chap9-cvs/hello.c,v
retrieving revision 1.1.1.1
diff -r1.1.1.1 hello.c
6a7
> printf(“Have a nice day\n”);

You are happy with the change, so you want to commit it to CVS.

When you commit a change with CVS, it will start an editor to allow you to enter a log message. You
may want to set the environment variable CVSEDITOR to force a particular editor before you run the
commit command.

$ cvs commit

402

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 402

CVS responds by telling you what it is checking in:

cvs commit: Examining .
Checking in hello.c;
/usr/local/repository/wrox/chap9-cvs/hello.c,v <-- hello.c
new revision: 1.2; previous revision: 1.1
done

Now you can ask CVS about changes to the project since you first checked it in. Ask for a set of differ-
ences since revision 1.1 (the initial version) on project wrox/chap9-cvs.

$ cvs rdiff -r1.1 wrox/chap9-cvs

CVS tells you the details:

cvs rdiff: Diffing wrox/chap9-cvs
Index: wrox/chap9-cvs/hello.c
diff -c wrox/chap9-cvs/hello.c:1.1 wrox/chap9-cvs/hello.c:1.2
*** wrox/chap9-cvs/hello.c:1.1 Mon Jul 9 09:37:13 2007
--- wrox/chap9-cvs/hello.c Mon Jul 9 09:44:36 2007

*** 4,8 ****
--- 4,9 ----
int main()
{

printf(“Hello World\n”);
+ printf(“Have a nice day\n”);

exit (EXIT_SUCCESS);
}

Suppose you have had a copy of code out of CVS for a while in a local directory and want to refresh files
in your local directory that others have changed but that you have not edited. CVS can do this for you
using the update command. Move to the top part of the path, in this case to the directory containing
wrox, and execute the following command:

$ cvs update -Pd wrox/chap9-cvs

CVS will refresh files for you, extracting from the repository files that others have changed but that you
have not and putting them in your local directory. Of course, some of the changes might be incompatible
with your changes, but that is a problem you will have to work on. CVS is good, but it can’t perform magic!

You can see by now that using CVS is very like using RCS. However, there is one very important differ-
ence that we haven’t mentioned yet — the ability to operate over a network without using a mounted
file system.

Accessing CVS over a Network
You told CVS where the repository was by either using a -d option to each command or setting the
CVSROOT environment variable. If you want to operate over a network, you simply use a more advanced
syntax for this parameter. For example, at the time of writing, the GNOME (GNU Network Object Model
Environment, a popular open source graphical desktop system) development sources are all accessible on
the Internet using CVS. You need only specify where the appropriate CVS repository is by pre-pending
some network information to the front of the path specifier.

403

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 403

As another example, you can point CVS at the web standards body W3C CVS repository by setting CVS-
ROOT to :pserver:anonymous@dev.w3.org:/sources/public. This tells CVS that the repository is
using password authentication (pserver), and is on the server dev.w3.org.

Before you can access the sources, you need to do a login, like this:

$ export CVSROOT=:pserver:anonymous@dev.w3.org:/sources/public
$ cvs login

Enter anonymous when prompted for the password.

You are now ready to use cvs commands, much as though you were working on a local repository, with
one minor exception — add the -z3 option to all cvs commands to force compression, saving network
bandwidth.

If you want to fetch the W3C HTML validator sources, for example, the command is

$ cvs -z3 checkout validator

If you want to set your own repository to be accessible over the network, you need to start a CVS server
on your machine. You can do this by starting it via either xinetd or inetd depending on your Linux
system configuration. For xinetd, edit the file /etc/xinetd.d/cvs to reflect the CVS repository loca-
tion and use the system configuration tool to enable and start the cvs service. For inetd, simply add a
line to /etc/inetd.conf and restart inetd. The line you need is

2401 stream tcp nowait root /usr/bin/cvs cvs –b /usr/bin –-allow-root =
/usr/local/repository pserver

This instructs inetd to automatically start a CVS session to clients connecting on port 2401, the standard
CVS server port. For more information on starting network services via inetd, see the manual pages for
inetd and inetd.conf.

To use CVS against your repository using network access you have to set your CVSROOT appropriately.
For example,

$ export CVSROOT=:pserver:neil@localhost:/usr/local/repository

In this brief section, we have barely had room to scratch the surface of the facilities of CVS. If you want to
use CVS seriously, we strongly urge you to set up a local repository to experiment on, get the extensive
CVS documentation, and have fun! Remember, this is Open Source, so if you ever get seriously stuck
about what the code is doing, or (unlikely, but possible!) think you have found a bug, you can always
get the source code and have a look for yourself. The CVS home page is at http://ximbiot.com/
cvs/cvshome/.

CVS Front Ends
Many graphical front ends are available for accessing CVS repositories. Probably the best collection for
multiple operating systems is available from http://www.wincvs.org/. There are clients for Windows,
Macintosh, and of course, Linux.

404

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 404

A CVS front end typically allows a repository to be created and managed, including remote access to
network-based repositories.

Figure 9-1 shows the history of our simple application being displayed by WinCVS on a Windows net-
work client.

Figure 9-1

Subversion
Subversion is intended to be a version control system that is a compelling replacement for CVS in the
open source community. It is designed as a “better CVS” according to the Subversion home page at
http://subversion.tigris.org/ and therefore has most of CVS’s features, and the interface works
in a similar way.

Subversion is certainly gaining in popularity, especially amongst community-developed projects where
many developers work together to develop an application over the Internet. Most Subversion users con-
nect to a network-based repository set up by the managers of the development project. It is not used as
much to control individual or small group projects, where CVS is still the tool of choice.

405

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 405

The following table offers a comparison of equivalent important commands in CVS and Subversion.

For complete documentation on Subversion see the online book, “Version Control with Subversion” at
http://svnbook.red-bean.com/.

Writing a Manual Page
If you’re writing a new command as part of a task, you should create a manual page to go with it. As you’ve
probably noticed, the layout of most manual pages follows a closely set pattern, which is of this form:

❑ Header

❑ Name

❑ Synopsis

❑ Description

❑ Options

❑ Files

❑ See also

❑ Bugs

You can leave out sections that aren’t relevant. An “Author” section also often appears toward the bottom
of Linux manual pages.

UNIX manual pages are formatted with a utility called nroff, or on most Linux systems the GNU pro-
ject’s equivalent, groff. Both of these are developments of an earlier roff, or run-off, command. The
input to nroff or groff is plain text, except that at first glance the syntax looks impenetrably difficult.

CVS Subversion

cvs –d /usr/local/repository init svnadmin create /usr/local/
repository

cvs import wrox/chap9-cvs svn import cvs-sp file:///usr/local/
repository/trunk

cvs checkout wrox/chap9-cvs svn checkout file:///usr/local/
repository/trunk cvs-sp

cvs diff svn diff

cvs rdiff svn diff tag1 tag2

cvs update svn status -u

cvs commit svn commit

406

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 406

Don’t panic! As with UNIX programming, where the easiest way of writing a new program is to start
with an existing program and adapt it, so it is with manual pages.

It’s beyond the scope of this book to explain in detail the many options, commands, and macros that
the groff (or nroff) command can use. Rather, we present a simple template that you can borrow and
adapt for your own pages.

Here’s the source of a simple manual page for the myapp application, in the file myapp.1:

.TH MYAPP 1

.SH NAME
Myapp \- A simple demonstration application that does very little.
.SH SYNOPSIS
.B myapp
[\-option ...]
.SH DESCRIPTION
.PP
\fImyapp\fP is a complete application that does nothing useful.
.PP
It was written for demonstration purposes.
.SH OPTIONS
.PP
It doesn’t have any, but let’s pretend, to make this template complete:
.TP
.BI \-option
If there was an option, it would not be -option.
.SH RESOURCES
.PP
myapp uses almost no resources.
.SH DIAGNOSTICS
The program shouldn’t output anything, so if you find it doing so there’s
probably something wrong. The return value is zero.
.SH SEE ALSO
The only other program we know with this little functionality is the
ubiquitous hello world application.
.SH COPYRIGHT
myapp is Copyright (c) 2007 Wiley Publishing, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 021111307 USA.
.SH BUGS
There probably are some, but we don’t know what they are yet.
.SH AUTHORS
Neil Matthew and Rick Stones

407

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 407

As you can see, macros are introduced with a period (.) at the start of the line and tend to be abbreviated.
The 1 at the end of the top line is the section of the manual in which the command appears. Because com-
mands appear in section 1, that is where we place our new application.

You should be able to generate your own manual pages by modifying this one and inspecting the source
for others. You might also take a look at the Linux Man Page mini-HowTo, written by Jens Schweikhardt
as part of the Linux Documentation Project archives at http://www.tldp.org/.

Now that you have the source to the manual page, you can process it with groff. The groff command
commonly produces ASCII text (-Tascii) or PostScript (-Tps) output. Tell groff it’s a manual page
using the -man option, which causes special manual page macro definitions to be loaded:

$ groff -Tascii -man myapp.1

This gives the output

MYAPP(1) MYAPP(1)
NAME

Myapp - A simple demonstration application that does very
little.

SYNOPSIS
myapp [-option ...]

DESCRIPTION
myapp is a complete application that does nothing useful.

It was written for demonstration purposes.

OPTIONS
It doesn’t have any, but let’s pretend, to make this tem-
plate complete:

-option
If there was an option, it would not be -option.

RESOURCES
myapp uses almost no resources.

DIAGNOSTICS
The program shouldn’t output anything, so if you find it
doing so there’s probably something wrong. The return
value is zero.

SEE ALSO
The only other program we know with this little func-
tionality is the ubiquitous Hello World application.

COPYRIGHT
myapp is Copyright (c) 2007 Wiley Publishing, Inc.
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation;

408

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 408

either version 2 of the License, or (at your option) any
later version.
This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details.

1

MYAPP(1) MYAPP(1)

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

BUGS
There probably are some, but we don’t know what they are
yet.

AUTHORS
Neil Matthew and Rick Stones

Now that you’ve tested the manual page, you need to install the source for it. The man command that shows
manual pages uses the MANPATH environment variable to search for manual pages. You can either put the
new page in a directory for local manual pages or store it directly in the system /usr/man/man1 directory.

The first time someone asks for this manual page, the man command will automatically format and
display it. Some versions of man can automatically generate and store preformatted (and possibly
compressed) ASCII text versions of manual pages to speed up subsequent requests for the same page.

Distributing Software
The main problem with program distribution is ensuring that all the files are included and are of exactly
the right version. Fortunately, the Internet programming community has evolved a very robust set of
methods that go a long way toward removing the problems. These methods include:

❑ Packaging all component files into a single package file using standard tools available on all
Linux machines

❑ Controlled version numbering of packages

❑ A file-naming convention that includes the version number in the package file so that users can
easily see which version they are dealing with

❑ Use of subdirectories in the package to ensure that, when files are extracted from the package
file, they are placed in a separate directory so there’s no confusion about what’s included in the
package and what isn’t

The evolution of these methods has meant that programs can be easily and reliably distributed. The ease
with which a program can be installed is another matter, because that depends on the program and the
system on which it’s being installed, but at least you can be sure that you have the right component files.

409

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 409

The patch Program
When programs are distributed, it’s almost inevitable that users will discover bugs or that the author
will want to issue enhancements and updates. When authors distribute programs as binaries, they often
simply ship new binaries. Sometimes (all too often), vendors simply release a new version of the program,
often with an obscure revision reference and little information about what has changed.

On the other hand, distributing your software as source code is an excellent idea because it allows people
to see how you have implemented things and how you have used features. It also allows people to check
exactly what programs are doing and to reuse parts of the source code (providing they comply with the
licensing agreement).

However, with the source of the Linux kernel weighing in at tens of megabytes of compressed source
code, shipping an updated set of kernel sources would involve considerable resources, when, in fact,
probably only a small percentage of the source has changed between each release.

Fortunately, there is a utility program for solving this problem: patch. It was written by Larry Wall, who
also wrote the Perl programming language. The patch command allows you to distribute just the differ-
ences between the two versions so that anyone with version 1 of a file and a difference file for version 1
to version 2 can use the patch command to generate version 2 for themselves.

If you start with version 1 of a file,

This is file one
line 2
line 3
there is no line 4, this is line 5
line 6

and then produce version 2,

This is file two
line 2
line 3
line 4
line 5
line 6
a new line 8

you can create a difference listing with the diff command:

$ diff file1.c file2.c > diffs

The diffs file contains

1c1
< This is file one
--
> This is file two
4c4,5
< there is no line 4, this is line 5
--
> line 4

410

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 410

> line 5
5a7
> a new line 8

This is actually a set of editor commands for changing one file into another. Suppose you have file1.c
and the diffs file. You can update your file using patch as follows:

$ patch file1.c diffs
Hmm... Looks like a normal diff to me...
Patching file file1.c using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 4.
Hunk #3 succeeded at 7.
done
$

The patch command has now changed file1.c to be the same as file2.c.

patch has an extra trick: the ability to unpatch. Suppose you decide you don’t like the changes and want
your original file1.c back. No problem; just use patch again, using the -R (reverse patch) option:

$ patch -R file1.c diffs
Hmm... Looks like a normal diff to me...
Patching file file1.c using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 4.
Hunk #3 succeeded at 6.
done
$

file1.c is returned to its original state.

The patch command has several other options, but is generally very good at deciding from its input
what you’re trying to do and then simply “doing the right thing.” If patch ever fails, it creates a file
with the .rej extension containing the parts that couldn’t be patched.

When you’re dealing with software patches, it’s a good idea to use the diff -c option, which produces
a “context diff.” This provides a number of lines before and after each change so that patch can verify
that the context matches before applying the patch. The patch is also easier to read.

If you find and fix a bug in a program, it’s easier, more precise, and more polite to send the author a
patch rather than just a description of the fix.

Other Distribution Utilities
Linux programs and sources are commonly distributed in a file whose name contains the version num-
ber, with an extension of .tar.gz or .tgz. These are gzipped TAR (tape archive) files, also known as
“tarballs.” If you’re using normal tar, you must process these files in two steps. The following code
creates a gzipped TAR file of your application:

$ tar cvf myapp-1.0.tar main.c 2.c 3.c *.h myapp.1 Makefile5
main.c

411

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 411

2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile5
$

You now have a TAR file:

$ ls -l *.tar
-rw-r--r-- 1 neil users 10240 2007-07-09 11:23 myapp-1.0.tar
$

You can make this smaller using the compression program gzip:

$ gzip myapp-1.0.tar
$ ls -l *.gz
-rw-r--r-- 1 neil users 1648 2007-07-09 11:23 myapp-1.0.tar.gz
$

As you can see, the result is a very impressive reduction in size. This .tar.gz may then be renamed to a
simple .tgz extension:

$ mv myapp-1.0.tar.gz myapp_v1.tgz

This practice of renaming files to end with a dot and three characters seems to be a concession to Windows
software, which, unlike Linux and UNIX, is heavily dependent on the correct extension being present. To
get your files back, decompress and extract them from the tar file again:

$ mv myapp_v1.tgz myapp-1.0.tar.gz
$ gzip -d myapp-1.0.tar.gz
$ tar xvf myapp-1.0.tar
main.c
2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile5
$

With GNU’s version of tar, things are even easier — you can create the compressed archive in a
single step:

$ tar zcvf myapp_v1.tgz main.c 2.c 3.c *.h myapp.1 Makefile5
main.c
2.c
3.c
a.h
b.h
c.h

412

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 412

myapp.1
Makefile5
$

You can also decompress it just as easily:

$ tar zxvf myapp_v1.tgz
main.c
2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile5
$

If you want to list the contents of the archive without extracting them, you should call the tar program
with the slightly different option tar ztvf.

We’ve been using tar for the preceding examples without describing the options any more than absolutely
necessary. We’ll now take a quick look at the command and a few of its more popular options. As you can
see from the examples, the basic syntax is

tar [options] [list of files]

The first item in the list is the target, and although we’ve been dealing with files, it could just as well be
a device. The other items in the list are added to a new or existing archive, depending on the options.
The list can also include directories, in which case all subdirectories are included in the file by default.
If you’re extracting files, there’s no need to specify names because full paths are preserved by tar.

In this section, we’ve used combinations of six different options:

❑ c: Creates a new archive.

❑ f: Specifies that the target is a file rather than a device.

❑ t: Lists the contents of an archive without actually extracting them.

❑ v (verbose): tar displays messages as it goes.

❑ x: Extracts file from an archive.

❑ z: Filters the archive through gzip from within GNU tar.

There are many more options to tar that allow finer control over the operation of the command and the
archives it creates. Refer to the tar manual pages for more information.

RPM Packages
The RPM Package Manager, or RPM (don’t you just love recursive abbreviations?), started life as the
packaging format for Red Hat Linux (and was originally known as the Red Hat Package Manager). Since

413

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 413

then, RPM has grown to be the accepted package format for many other Linux distributions, including
SUSE Linux. RPM has also been adopted as the official package file format by the Linux Standards Base,
or LSB, at www.linuxbase.org.

The main advantages of RPM include:

❑ It is widely used. Many Linux distributions can at least install RPM packages or use RPM as its
native packaging format. RPM has been ported to a number of other operating systems as well.

❑ It allows you to install packages with a single command. You can also install packages automat-
ically, because RPM was designed for unattended usage. You can remove a package or upgrade
a package with a single command as well.

❑ You have only a single file to deal with. An RPM package is stored in a single file, making it
much easier to transport a package from one system to another.

❑ RPM automatically handles dependency checks. The RPM system includes a database of all
the packages you have installed, along with what each package provides to your system and
information about each package’s requirements.

❑ RPM packages are designed to be built from pristine sources, allowing you to reproduce a
build. RPM supports Linux tools such as patch for applying changes to program source code
during the build process.

Working with RPM Package Files
Each RPM package is stored in a file with an rpm extension. Package files usually follow a naming
convention with the following structure:

name-version-release.architecture.rpm

With this structure, the name holds a generic name for the package, such as mysql for the MySQL database,
or make for the make build tool. The version holds the version number of the software, such as version
5.0.41 of MySQL. The release holds a number that specifies which release of the RPM of that version of the
software is contained in the file. This is important because RPM packages are built by a set of instructions
(covered in the “Creating an RPM Spec File” section a bit later in this chapter). The release number allows
you to track changes to the build instructions.

The architecture holds a specifier for the program architecture, such as i386 for an Intel-based system.
For compiled programs this is very important, because an executable created for a SPARC processor
will likely not run on an Intel processor, for example. The architecture can be generic, such as sparc
for a SPARC processor, or specific, such as sparcv9 for a v9 SPARC or athlon for an AMD Athlon
chip. Unless you override it, the RPM system will prevent you from installing packages built for a dif-
ferent architecture.

The architecture can also hold special values of noarch for packages that are not specific to a particular
architecture, such as documentation files, Java programs, or Perl modules, and src for a source RPM.
Source RPMs contain the files and build instructions to build a binary RPM package. Most RPM pack-
ages you will find for downloading are prebuilt for a particular architecture, which adds to the conven-
ience. You can find thousands of Linux programs prebuilt and ready to install as RPM packages. This
saves you the hassle of compiling.

414

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 414

In addition, some packages are so dependent on particular versions that it is far easier to download the
prebuilt package than it is to test all the components by hand. For example, 802.11b wireless networking
packages at one time came prebuilt for specific kernel patch levels for specific distributions of Linux,
such as kernel-wlan-ng-modules-rh9.18-0.2.0-7-athlon.rpm, which contained kernel modules
for Red Hat 9.0 with a 2.4.20-18 kernel on an AMD Athlon processor system.

Installing RPM Packages
To install an RPM package, run the rpm command. The format is simple:

rpm -Uhv name-version-release.architecture.rpm

For example,

$ rpm -Uhv MySQL-server-5.0.41-0.glibc23.i386.rpm

This command installs (or upgrades if needed) the MySQL database server package, for an Intel x86
architecture system.

The rpm command provides for most user interactions with the RPM system. You can query if a package
is installed with a command such as the following:

$ rpm -qa xinetd
xinetd-2.3.14-40

Building RPM Packages
To build an RPM package, run the rpmbuild command. The process is relatively straightforward. You
need to

❑ Gather the software you want to package.

❑ Create the spec file that describes how to build the package.

❑ Build the package with the rpmbuild command.

Because RPM creation can be very complex, we will stick to a simple example in this chapter, one that
should be enough to distribute a reasonable application as source or binary. We will leave to the inter-
ested reader the more esoteric options and support for packages derived via patches. Check out the
manual page for the rpm program, or the RPM HOWTO (usually found in /usr/share/doc) for more
information. Also, check out the Red Hat RPM Guide by Eric Foster-Johnson (Red Hat Press/Wiley) also
available online at http://docs.fedoraproject.org/drafts/rpm-guide-en/.

The following sections follow the preceding three steps for our trivial application, myapp.

Gathering the Software
The first step in building an RPM package is gathering the software you want to package. In most cases, you
will have the application source code, a build file such as a makefile, and perhaps an online manual page.

415

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 415

The easiest way to gather this software together is to bundle these files into a tarball. Name the tarball
with the application name and version number, such as myapp-1.0.tar.gz.

You can modify your earlier makefile, Makefile6, to add a new target to bundle the files into a tarball.
The final version of the makefile, simply called Makefile, follows:

all: myapp

Which compiler
CC = gcc

Where are include files kept
INCLUDE = .

Options for development
CFLAGS = -g -Wall –ansi

Options for release
CFLAGS = -O -Wall –ansi

Local Libraries
MYLIB = mylib.a

myapp: main.o $(MYLIB)
$(CC) -o myapp main.o $(MYLIB)

$(MYLIB): $(MYLIB)(2.o) $(MYLIB)(3.o)
main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h

clean:
-rm main.o 2.o 3.o $(MYLIB)

dist: myapp-1.0.tar.gz

myapp-1.0.tar.gz: myapp myapp.1
-rm -rf myapp-1.0
mkdir myapp-1.0
cp *.c *.h *.1 Makefile myapp-1.0
tar zcvf $@ myapp-1.0

The myapp-1.0.tar.gz target in the makefile builds a tarball of the sources for our trivial example
application. This code added a dist target that calls the same commands for simplicity. Run the follow-
ing command to make the bundle:

$ make dist

You then need to copy the file myapp-1.0.tar.gz to the RPM SOURCES directory, typically /usr/src/
redhat/SOURCES on a Red Hat Linux system and /usr/src/packages/SOURCES on SUSE Linux.
For example,

$ cp myapp-1.0.tar.gz /usr/src/redhat/SOURCES

416

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 416

The RPM system expects the sources to be located in the SOURCES directory as a tarball. (There are other
options; this is the simplest.) SOURCES is just one of the directories expected by the RPM system.

The RPM system expects the five directories in the following table:

The RPMS directory usually has a number of architecture-specific subdirectories, such as the following
(on an Intel x86 architecture system):

$ ls RPMS
athlon
i386
i486
i586
i686
noarch

By default, Red Hat Linux systems expect RPMs to be built in the /usr/src/redhat directory.

This directory is specific to Red Hat Linux. Other Linux distributions will use other directories, such as
/usr/src/packages.

Once you have gathered the sources for your RPM package, the next step is to create a spec file, the file
that describes to the rpmbuild command exactly how to build your package.

Creating an RPM Spec File
Creating a spec file can be daunting, given that the RPM system supports thousands of options.
Luckily, the RPM system provides reasonable defaults for most options. You can follow the simple
example in this section, which should suffice for most packages you will build. In addition, you can
copy commands from other spec files.

Good sources for spec file examples are other RPM packages. Look at source RPMs, which are stored
in files ending in .src.rpm. Install these RPMs and look through the spec files. You should find
more complicated examples than you will ever need. Interesting spec files include those for anonftp,
telnet, vnc, and sendmail.

RPM Directory Usage

BUILD The rpmbuild command builds software in this directory.

RPMS The rpmbuild command stores the binary RPMs it creates in
this directory.

SOURCES You should put the sources for the application in this directory.

SPECS You should place the spec file for each RPM you plan to make in
this directory, although this is not necessary.

SRPMS The rpmbuild command places source RPMs in this directory.

417

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 417

In addition, the designers of the RPM system wisely decided not to try to replace common build tools
such as make or configure. The RPM system contains many shorthand features to take advantage of
makefiles and configure scripts.

In this example, you create a spec file for the simple myapp application. Name your spec file myapp.spec.
Start the spec file with a set of definitions of the name, version number, and other information about your
package. For example,

Vendor: Wrox Press
Distribution: Any
Name: myapp
Version: 1.0
Release: 1
Packager: neil@provider.com
License: Copyright 2007 Wiley Publishing, Inc.
Group: Applications/Media

This section of an RPM spec file is often called a preamble. In this preamble, the most important settings
are the Name, Version, and Release. This example sets the name to myapp, the version number to 1.0,
and the release of the RPM package at 1, your first attempt at making an RPM package.

The Group setting is used to help graphical installation programs sort the thousands of Linux applica-
tions by type. The Distribution is important if you build a package just for one Linux distribution,
such as Red Hat or SUSE Linux.

Adding comments to your spec file is a good idea. Like shell scripts and makefiles, the rpmbuild com-
mand treats any line starting with a # character as a comment. For example,

This line is a comment.

To help users decide whether to install your package, provide a Summary and a %description (note the
inconsistency in the RPM syntax, with a percent sign before description). For example, you can describe
your package as follows:

Summary: Trivial application

%description
MyApp Trivial Application
A trivial application used to demonstrate development tools.
This version pretends it requires MySQL at or above 3.23.
Authors: Neil Matthew and Richard Stones

The %description section can take up multiple lines (and normally should).

The spec file can contain dependency information, both what your package provides and what your
package depends on. (You can also define what the source package depends on, such as special header
files necessary for compiling.)

The Provides setting defines what capabilities your system provides. For example,

Provides: goodness

418

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 418

This example states that the package provides the imaginary capability called goodness. The RPM system
will also automatically add a Provides entry for the name of the package, myapp in this case. The Provides
settings are useful for multiple packages that may provide the same thing. For example, the Apache Web
server package provides the capability webserver. Other packages, such as Thy, may also provide the same
capability. (To help deal with conflicting packages, RPM allows you to specify Conflicts and Obsoletes
information as well.)

The most important dependency information, though, is the Requires settings. You can state all the
packages your package requires for operation. For example, a Web server requires networking and
security packages. In the example, you define a requirement for the MySQL database, at version 3.23
or higher. The syntax for this follows:

Requires: mysql >= 3.23

If you only want to require the MySQL database, at any version, you can use a setting like the following:

Requires: mysql

RPM will prevent users from installing packages if the required packages are not also installed. (Users
can override this behavior, though.)

The RPM system will automatically add dependencies such as /bin/sh for shell scripts, the Perl inter-
preter for Perl scripts, and any shared libraries (.so files) your application calls. Each release of the RPM
system adds more smarts to the automatic dependency checks.

After you have defined the requirements, you need to define the sources that make up your application.
For most applications, you can simply copy the following setting:

source: %{name}-%{version}.tar.gz

The %{name} syntax refers to an RPM macro, in this case, the name of the package. Because you previously
set the name to myapp, the rpmbuild command will expand %{name} to myapp, and similarly expand
%{version} to 1.0, making for a file named myapp-1.0.tar.gz. The rpmbuild command will look for
this file in the SOURCES directory described previously.

The example sets up a Buildroot, which defines a staging area to test the installation. You can copy the
following for your packages:

Buildroot: %{_tmppath}/%{name}-%{version}-root

Once a Buildroot is set up, install your applications to the Buildroot directory. You can use the handy
variable $RPM_BUILD_ROOT, which is defined for all the shell scripts in the spec file.

After defining all these settings about the package, the next step is to define how to build the package.
There are four main sections for building: %prep, %build, %install, and %clean.

As the name implies, the %prep section is for preparing to build. In most cases, you can run the %setup
macro, shown here with a -q parameter to set it to quiet mode:

%prep
%setup -q

419

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 419

The %build section builds your application. In most cases, you can use a simple make command.
For example,

%build
make

This is one way that the RPM system takes advantage of the work you’ve already done in creating
your makefile.

The %install section installs your application, any manual pages, and any support files. You can often
use the RPM macro %makeinstall, which calls the install target of the makefile. In this case, though,
you can manually install the files to show more RPM macros:

%install
mkdir -p $RPM_BUILD_ROOT%{_bindir}
mkdir -p $RPM_BUILD_ROOT%{_mandir}
install -m755 myapp $RPM_BUILD_ROOT%{_bindir}/myapp
install -m755 myapp.1 $RPM_BUILD_ROOT%{_mandir}/myapp.1

This example creates the directories for the files, if needed, and then installs the myapp executable and
myapp.1 manual page. The $RPM_BUILD_ROOT environment variable holds the Buildroot location set
previously. The %{_bindir} and %{_mandir} macros expand to the current binary directory and man-
ual page directory, respectively.

If you use a configure script to create the makefile, all the various directories get set properly into
your makefile. In most cases, you will not need to set up all the installation commands manually in the
spec file as shown in the previous example.

The %clean target cleans up the files created by the rpmbuild command. For example,

%clean
rm -rf $RPM_BUILD_ROOT

After specifying how to build the package, you need to define all the files that will be installed. RPM
is very rigid on this; it has to be rigid so that it can properly track every file from every package. The
%files section names the files to include in the package. In this case, you have only two files to distrib-
ute in the binary package: the myapp executable and myapp.1 manual page. For example,

%files
%{_bindir}/myapp
%{_mandir}/myapp.1

The RPM system can run scripts before and after your package is installed. For example, if your package
is a demon process, you probably need to modify the system initialization scripts to start your demon.
Do that with a %post script. A simple example that merely sends an e-mail message follows:

%post
mail root -s “myapp installed - please register” </dev/null

Look for examples in server RPM spec files.

420

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 420

The complete spec file for your trivial application follows:

#
spec file for package myapp (Version 1.0)
#
Vendor: Wrox Press
Distribution: Any
Name: myapp
Version: 1.0
Release: 1
Packager: neil@provider.com
License: Copyright 2007 Wiley Publishing, Inc.
Group: Applications/Media

Provides: goodness
Requires: mysql >= 3.23

Buildroot: %{_tmppath}/%{name}-%{version}-root
source: %{name}-%{version}.tar.gz

Summary: Trivial application

%description
MyApp Trivial Application
A trivial application used to demonstrate development tools.
This version pretends it requires MySQL at or above 3.23.
Authors: Neil Matthew and Richard Stones

%prep
%setup -q

%build
make

%install
mkdir -p $RPM_BUILD_ROOT%{_bindir}
mkdir -p $RPM_BUILD_ROOT%{_mandir}
install -m755 myapp $RPM_BUILD_ROOT%{_bindir}/myapp
install -m755 myapp.1 $RPM_BUILD_ROOT%{_mandir}/myapp.1

%clean
rm -rf $RPM_BUILD_ROOT

%post
mail root -s “myapp installed - please register” </dev/null

%files
%{_bindir}/myapp
%{_mandir}/myapp.1

You are now ready to build the RPM package.

421

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 421

Building an RPM Package with rpmbuild
Build packages with the rpmbuild command, which uses the following syntax:

rpmbuild -bBuildStage spec_file

The -b option tells rpmbuild to build an RPM. The extra BuildStage option is a special code that tells
the rpmbuild command how far to go when building. We list the options in the following table.

To build both a binary and a source RPM, use the -ba option. The source RPM allows you to re-create
the binary RPM.

Copy the RPM spec file to the correct SOURCES directory alongside the application source:

$ cp myapp.spec /usr/src/redhat/SOURCES

The following shows the output from building the package on a SUSE Linux installation where packages
are built from /usr/src/packages/SOURCES:

$ rpmbuild -ba myapp.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.47290
+ umask 022
+ cd /usr/src/packages/BUILD
+ cd /usr/src/packages/BUILD
+ rm -rf myapp-1.0
+ /usr/bin/gzip -dc /usr/src/packages/SOURCES/myapp-1.0.tar.gz
+ tar -xf -
+ STATUS=0
+ ‘[‘ 0 -ne 0 ‘]‘
+ cd myapp-1.0
++ /usr/bin/id -u
+ ‘[‘ 1000 = 0 ‘]‘
++ /usr/bin/id -u
+ ‘[‘ 1000 = 0 ‘]‘
+ /bin/chmod -Rf a+rX,u+w,g-w,o-w .

Option Usage

-ba Build all, both a binary and source RPM.

-bb Build a binary RPM.

-bc Build (compile) the program but do not make the full RPM.

-bp Prepare for building a binary RPM.

-bi Create a binary RPM and install it.

-bl Check the listing of files for the RPM.

-bs Build a source RPM only.

422

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 422

+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.99663
+ umask 022
+ cd /usr/src/packages/BUILD
+ /bin/rm -rf /var/tmp/myapp-1.0-root
++ dirname /var/tmp/myapp-1.0-root
+ /bin/mkdir -p /var/tmp
+ /bin/mkdir /var/tmp/myapp-1.0-root
+ cd myapp-1.0
+ make
gcc -g -Wall -ansi -c -o main.o main.c
gcc -g -Wall -ansi -c -o 2.o 2.c
ar rv mylib.a 2.o
ar: creating mylib.a
a - 2.o
gcc -g -Wall -ansi -c -o 3.o 3.c
ar rv mylib.a 3.o
a - 3.o
gcc -o myapp main.o mylib.a
+ exit 0
Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.47320
+ umask 022
+ cd /usr/src/packages/BUILD
+ cd myapp-1.0
+ mkdir -p /var/tmp/myapp-1.0-root/usr/bin
+ mkdir -p /var/tmp/myapp-1.0-root/usr/share/man
+ install -m755 myapp /var/tmp/myapp-1.0-root/usr/bin/myapp
+ install -m755 myapp.1 /var/tmp/myapp-1.0-root/usr/share/man/myapp.1
+ RPM_BUILD_ROOT=/var/tmp/myapp-1.0-root
+ export RPM_BUILD_ROOT
+ test -x /usr/sbin/Check -a 1000 = 0 -o

-x /usr/sbin/Check -a ‘!’ -z /var/tmp/myapp-1.0-root
+ echo ‘I call /usr/sbin/Check...’
I call /usr/sbin/Check...
+ /usr/sbin/Check
-rwxr-xr-x 1 neil users 926 2007-07-09 13:35

/var/tmp/myapp-1.0-root//usr/share/man/myapp.1.gz
Checking permissions and ownerships - using the permissions files

/tmp/Check.perms.O17506
setting /var/tmp/myapp-1.0-root/ to root:root 0755. (wrong owner/group neil:users)
setting /var/tmp/myapp-1.0-root/usr to root:root 0755. (wrong owner/group
neil:users)
+ /usr/lib/rpm/brp-compress
+ /usr/lib/rpm/brp-symlink
Processing files: myapp-1.0-1
Finding Provides: /usr/lib/rpm/find-provides myapp
Finding Requires: /usr/lib/rpm/find-requires myapp
Finding Supplements: /usr/lib/rpm/find-supplements myapp
Provides: goodness
Requires(interp): /bin/sh
Requires(rpmlib): rpmlib(PayloadFilesHavePrefix) <= 4.0-1

rpmlib(CompressedFileNames) <= 3.0.4-1
Requires(post): /bin/sh
Requires: mysql >= 3.23 libc.so.6 libc.so.6(GLIBC_2.0)

423

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 423

Checking for unpackaged file(s): /usr/lib/rpm/check-files /var/tmp/myapp-1.0-root
Wrote: /usr/src/packages/SRPMS/myapp-1.0-1.src.rpm
Wrote: /usr/src/packages/RPMS/i586/myapp-1.0-1.i586.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.10065
+ umask 022
+ cd /usr/src/packages/BUILD
+ cd myapp-1.0
+ rm -rf /var/tmp/myapp-1.0-root
+ exit 0

When the build is complete, you should see two packages: the binary RPM in the RPMS directory, under
an architecture subdirectory such as RPMS/i586, and a source RPM in SRPMS.

The binary RPM filename will appear something like the following:

myapp-1.0-1.i586.rpm

The architecture on your system may be different.

The source RPM filename will appear as follows:

myapp-1.0-1.src.rpm

Other Package Formats
Although RPM is a popular way of distributing applications in a way that allows users to control installing
and uninstalling packages, there are competing packages out there. Some software is still distributed as
gzipped tar files (tgz). Typically the installation steps consist of unpacking the archive into a temporary
directory and running a script to perform the actual installation.

The Debian and Debian-based Linux distributions (and some others) support another package format,
similar in functionality to RPM, called dpkg. The dpkg utility on Debian unpacks and installs package
files that usually have a .deb extension. If you need to distribute an application using .deb file pack-
ages, it is possible to convert an RPM package to dpkg format using a utility called Alien. You can find
more details on Alien at http://kitenet.net/programs/alien/.

Development Environments
Almost all of the tools we have looked at so far in this chapter are essentially command-line tools.
Developers that have experience with Windows will no doubt have some experience with integrated

You need to install packages as the superuser. You do not have to build packages as
root, so long as you have write access to the RPM directories, typically /usr/src/
redhat. Normally, you should not create RPM packages as root, because a spec file
could have commands that may damage your system.

424

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 424

development environments, or IDEs for short. IDEs are graphical environments that typically bring
together some or all of the tools needed to create, debug, and run an application. Usually, they provide
at least an editor, a file browser, and a method of running the application and capturing the output.
More complete environments add support for generating source code files from templates for certain
types of applications, integration with a source code control system, and automatic documentation.

In the following sections, we explore one such IDE, KDevelop, and mention a few of the other IDEs
available for Linux today. These environments are under active development, with the most advanced
of them beginning to rival the quality of commercial offerings.

KDevelop
KDevelop is an IDE for C and C++ programs. It includes particular support for the creation of applications
to run under the K Desktop Environment (KDE), one of the two main graphical user interfaces on Linux
today. It can also be used for other project types, including simple C programs.

KDevelop is free software released under the terms of the GNU General Public License (GPL) and is avail-
able with many Linux distributions. You can download the latest version from http://www.kdevelop
.org. Projects created with KDevelop by default follow the standard for GNU projects. For example, they
will use the autoconf utility to generate makefiles that are tailored to the environment for which they are
being built. This means that the project is ready to be distributed as source code that stands a good chance
of being able to be compiled on other systems.

KDevelop projects also contain templates for documentation, the GPL license text, and generic installation
instructions. The number of files that are generated when making a new KDevelop project can be daunting,
but should be familiar to anyone who has downloaded and compiled a typical GPL application.

There is support with KDevelop for CVS and Subversion source code control, and applications can
be both edited and debugged without leaving the environment. Figures 9-2 and 9-3 show the default
KDevelop C application (yet another Hello World! program) being edited and executed.

Other Environments
Many other editors and IDEs, both free and commercial, are available for Linux or under development.
A few of the most interesting are listed in the following table.

Environment Type Product URL

Eclipse Java-based tool platform and IDE http://www.eclipse.org

Anjuta An IDE for GNOME http://anjuta.sourceforge.net/

QtEZ An IDE for KDE http://projects.uid0.sk/qtez/

SlickEdit A commercial multi-language
code editor

http://www.slickedit.com/

425

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 425

Figure 9-2

Figure 9-3

426

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 426

Summary
In this chapter, you’ve seen just a few of the Linux tools that make development and distribution of pro-
grams manageable. First, and perhaps most important, you used make and makefiles to manage multiple
source files. You then looked at source code control with RCS and CVS, which lets you track changes as
you develop your code. You then explored program distribution with patch, tar with gzip, and RPM
packages. Finally, you took a look at one of the tools that make the edit-run-debug cycle of development
a little easier, the KDevelop IDE.

427

Chapter 9: Development Tools

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 427

47627c09.qxd:WroxPro 9/29/07 3:30 PM Page 428

10
Debugging

According to the Software Engineering Institute and the IEEE, every significant piece of software
will initially contain defects, typically around two per 100 lines of code. These mistakes lead to
programs and libraries that don’t perform as required, often causing a program to behave differ-
ently than it’s supposed to. Bug tracking, identification, and removal can consume a large amount
of a programmer’s time during software development.

In this chapter, we look at software defects and consider some tools and techniques for tracking
down specific instances of erroneous behavior. This isn’t the same as testing (the task of verifying
the program’s operation in all possible conditions), although testing and debugging are, of course,
related, and many bugs are discovered during the testing process.

Topics we cover include

❑ Types of errors

❑ General debugging techniques

❑ Debugging with GDB and other tools

❑ Assertions

❑ Memory use debugging

Types of Errors
A bug usually arises from one of a small number of causes, each of which suggests a specific
method of detection and removal:

❑ Specification errors: If a program is incorrectly specified, it will inevitably fail to perform
as required. Even the best programmer in the world can sometimes write the wrong pro-
gram. Before you start programming (or designing), make sure that you know and under-
stand clearly what your program needs to do. You can detect and remove many (if not all)
specification errors by reviewing the requirements and agreeing that they are correct with
those who will use the program.

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 429

❑ Design errors: Programs of any size need to be designed before they’re created. It’s not usually
enough to sit down at a computer keyboard, type source code directly, and expect the program
to work the first time. Take time to think about how you will construct the program, what data
structures you’ll need, and how they will be used. Try to work out the details in advance,
because it can save many rewrites later on.

❑ Coding errors: Of course, everyone makes typing errors. Creating the source code from your
design is an imperfect process. This is where many bugs will creep in. When you’re faced with
a bug in a program, don’t overlook the possibility of simply rereading the source code or asking
someone else to. It’s surprising just how many bugs you can detect and remove by talking
through the implementation with someone else.

Languages with compilers, such as C, have an advantage here in that syntax errors can be caught at com-
pile time, whereas interpreted languages such as the Linux shell might detect syntax errors only when you
try to run the program. If the problem is with error-handling code, it might not be easy to spot in testing.

❑ Try executing the core of the program on paper, a process sometimes called dry running. For the
most important routines, write down the values of inputs and calculate the outputs step by step.
You don’t always have to use a computer to debug, and sometimes it can be the computer caus-
ing the problems. Even the people who write libraries, compilers, and operating systems make
mistakes! On the other hand, don’t be too quick to blame the tools; it is more likely that there’s a
bug in a new program than in the compiler.

General Debugging Techniques
There are several distinct approaches to debugging and testing a typical Linux program. You generally
run the program and see what happens. If it doesn’t work, you need to decide what to do about it. You
can change the program and try again (code inspection, trial and error), you can try to gain more infor-
mation about what’s happening inside the program (instrumentation), or you can inspect the program
operation directly (controlled execution). The five stages of debugging are

❑ Testing: Finding out what defects or bugs exist

❑ Stabilization: Making the bugs reproducable

❑ Localization: Identifying the line(s) of code responsible

❑ Correction: Fixing the code

❑ Verification: Making sure the fix works

A Program with Bugs
Let’s look at an example program that contains bugs. During the course of this chapter, you’ll try to debug
it. The program was written during the development of a larger software system. Its purpose is to test a
single function, sort, which is intended to implement a bubble sort algorithm on an array of structures
of type item. The items are sorted in ascending order of the member, key. The program calls sort on a
sample array to test it. In the real world you would never seek to use this particular sort of algorithm,
because it’s far too inefficient. We have used it here because it is short, relatively simple to understand,
and also easy to get wrong. In fact, the standard C library has a function that performs the desired task
already called qsort.

430

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 430

Unfortunately, the code is not very readable, there are no comments, and the original programmer isn’t
available. You’ll have to struggle with it on your own, starting from the basic routine debug1.c.

/* 1 */ typedef struct {
/* 2 */ char *data;
/* 3 */ int key;
/* 4 */ } item;
/* 5 */
/* 6 */ item array[] = {
/* 7 */ {“bill”, 3},
/* 8 */ {“neil”, 4},
/* 9 */ {“john”, 2},
/* 10 */ {“rick”, 5},
/* 11 */ {“alex”, 1},
/* 12 */ };
/* 13 */
/* 14 */ sort(a,n)
/* 15 */ item *a;
/* 16 */ {
/* 17 */ int i = 0, j = 0;
/* 18 */ int s = 1;
/* 19 */
/* 20 */ for(; i < n && s != 0; i++) {
/* 21 */ s = 0;
/* 22 */ for(j = 0; j < n; j++) {
/* 23 */ if(a[j].key > a[j+1].key) {
/* 24 */ item t = a[j];
/* 25 */ a[j] = a[j+1];
/* 26 */ a[j+1] = t;
/* 27 */ s++;
/* 28 */ }
/* 29 */ }
/* 30 */ n--;
/* 31 */ }
/* 32 */ }
/* 33 */
/* 34 */ main()
/* 35 */ {
/* 36 */ sort(array,5);
/* 37 */ }

Now try to compile this program:

$ cc -o debug1 debug1.c

It compiles successfully, with no reported errors or warnings.

Before you run this program, add some code to print out the result. Otherwise, you won’t know whether
the program has worked. You will add some additional lines to display the array after it’s been sorted.
Call the new version debug2.c.

/* 33 */ #include <stdio.h>
/* 34 */ main()
/* 35 */ {

431

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 431

/* 36 */ int i;
/* 37 */ sort(array,5);
/* 38 */ for(i = 0; i < 5; i++)
/* 39 */ printf(“array[%d] = {%s, %d}\n”,
/* 40 */ i, array[i].data, array[i].key);
/* 41 */ }

This additional code isn’t strictly part of the programmer’s remit. We’ve had you put it in just for testing.
You’ll have to be very careful that you don’t introduce further bugs in your test code. Now compile
again and, this time, run the program.

$ cc -o debug2 debug2.c
$./debug2

What happens when you do this will depend on your flavor of Linux (or UNIX) and on how it’s set up.
On one of the authors’ systems, we got

array[0] = {john, 2}
array[1] = {alex, 1}
array[2] = {(null), -1}
array[3] = {bill, 3}
array[4] = {neil, 4}

But on the other author’s system (running a different Linux kernel), we got

Segmentation fault

On your Linux system, you may see either of these outputs or a different result entirely. We expected to see

array[0] = {alex, 1}
array[1] = {john, 2}
array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

Clearly there’s a serious problem with this code. If it runs at all, it’s failing to sort the array correctly, and
if it’s being terminated with a segmentation fault, the operating system is sending a signal to the program
saying that it has detected an illegal memory access and is prematurely terminating the program to pre-
vent memory from being corrupted.

The ability of the operating system to detect illegal memory access depends on its hardware configura-
tion and some subtleties of its memory management implementation. On most systems, the memory
allocated to the program by the operating system is larger than the memory actually being used. If the
illegal memory access occurs in this region of memory, the hardware may not be able to detect the illegal
access. This is why not all versions of Linux and UNIX will generate a segmentation violation.

Some library functions, such as printf, will also prevent illegal accesses in some special circum-
stances, such as using a null pointer.

When you’re tracking down array access problems, it’s often a good idea to increase the size of array ele-
ments, because this increases the size of the error. If you read a single byte beyond the end of an array of

432

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 432

bytes, you may get away with it, because the memory allocated to the program will be rounded up to an
operating system–specific boundary, possibly as much as 8K.

If you increase the array element size, in this case by changing the item member data to be an array
of 4,096 characters, any access to a nonexistent array element will probably be to a memory location
beyond that allocated. Each element of the array is 4K in size, so the memory you use incorrectly will
be 0–4K off the end.

If we do this, calling the result debug3.c, we get a segmentation fault on both the authors’ flavors
of Linux:

/* 2 */ char data[4096];
$ cc -o debug3 debug3.c
$./debug3
Segmentation fault

It’s possible that some flavors of Linux or UNIX still won’t produce a segmentation fault. When the
ANSI C standard states that the behavior is undefined, it truly does allow the program to do anything.
It certainly looks like we have written a non-conforming C program here, and a non-conforming C pro-
gram may exhibit very strange behavior! As you will see, the fault does turn out to fall into the category
of undefined behavior.

Code Inspection
As we mentioned earlier, it’s often a good idea to reread your program when it fails to run as expected.
For the purposes of this chapter, let’s assume that the code has been reviewed and that obvious faults
have been dealt with.

Code inspection is also a term for the more formal process of a group of developers tracing through a few
hundred lines of code in detail, but the scale really doesn’t matter; it’s still code inspection and it’s still a
very useful technique.

There are tools that you can use to help with code reviews, the compiler being an obvious one. It will tell
you if you have any syntax errors in your program.

gcc -Wall -pedantic –ansi

They enable many warnings and additional checks for conformance to C standards. We recommend that
you get into the habit of using these options, Wall especially. It can generate helpful information when
tracking down program faults.

We’ll mention other tools, lint and splint, a little later. Like the compiler, they analyze source code
and report on code that might be incorrect.

Some compilers also have options to raise warnings on dubious practices, such as
failing to initialize variables and using assignments in conditions. For example, the
GNU compiler can be run with these options:

433

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 433

Instrumentation
Instrumentation is the adding of code to a program for the purpose of collecting more information about
the behavior of the program as it runs. It’s very common to add printf calls, as in the example, to print
out the values of variables at different stages in a program’s execution. You could usefully add several
printf calls, but you should be aware that the process entails an additional edit and compile whenever
the program is changed, and of course, you will need to remove the code when the bugs are fixed.

There are two instrumentation techniques that can help here. The first uses the C preprocessor to selec-
tively include instrumentation code so that you only need to recompile the program to include or
exclude debugging code. You can do this quite simply with constructs such as

#ifdef DEBUG
printf(“variable x has value = %d\n”, x);

#endif

You can compile the program with the compiler flag -DDEBUG to define the DEBUG symbol and include
the extra code or without to exclude it. You can make more sophisticated use of a numeric debug macro,
like this:

#define BASIC_DEBUG 1
#define EXTRA_DEBUG 2
#define SUPER_DEBUG 4

#if (DEBUG & EXTRA_DEBUG)
printf...

#endif

In this case, you must always define the DEBUG macro, but you can set it to represent a set of debug
information, or a level of detail. The compiler flag -DDEBUG=5 would, in this case, enable BASIC_DEBUG
and SUPER_DEBUG, but not EXTRA_DEBUG. The flag -DDEBUG=0 would disable all debug information.
Alternatively, including the following lines eliminates the need to specify DEBUG on the command line
in the case where no debugging is required:

#ifndef DEBUG
#define DEBUG 0
#endif

Several macros defined by the C preprocessor can help with debug information. These are macros that
expand to give information about the current compilation:

Macro Description

__LINE__ A decimal constant representing the current line number

__FILE__ A string representing the current filename

__DATE__ A string of the form “mmm dd yyyy”, the current date

__TIME__ A string of the form “hh:mm:ss”, the current time

434

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 434

Note that these symbols are prefixed and suffixed by two underscores. This is common for standard pre-
processor symbols, and you should take care to avoid choosing symbols that might clash. The term cur-
rent in the preceding descriptions refers to the point at which the preprocessing is being performed, that
is, the time and date the compiler was run and the file processed.

Try It Out Debug Information
Here’s a program, cinfo.c, that prints information about its compilation date and time if debugging is
enabled:

#include <stdio.h>
#include <stdlib.h>

int main()
{
#ifdef DEBUG

printf(“Compiled: “ __DATE__ “ at “ __TIME__ “\n”);
printf(“This is line %d of file %s\n”, __LINE__, __FILE__);

#endif
printf(“hello world\n”);
exit(0);

}

When you compile this program with debug enabled (using -DDEBUG), you see the compilation
information:

$ cc -o cinfo -DDEBUG cinfo.c
$./cinfo
Compiled: Jun 30 2007 at 22:58:43
This is line 8 of file cinfo.c
hello world
$

How It Works
The C preprocessor part of the compiler keeps track of the current line and file when it’s compiling. It substi-
tutes the current (compile time) values of these variables whenever it encounters the symbols __LINE__ and
__FILE__. The date and time of compilation are made available similarly. Because __DATE__ and __TIME__
are strings, you can concatenate them with format strings for printf because ANSI C specifies that adjacent
strings be treated as one.

Debugging without Recompiling
Before we move on, it’s worth mentioning that there’s a way of using the printf function to help with
debugging without using the #ifdef DEBUG technique, which requires a program to be recompiled
before it can be used.

435

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 435

The method is to add a global variable as a debug flag, allow a -d option at the command line, which
allows the user to switch debugging on even after the program has been released, and add a debug log-
ging function. Now you can intersperse things like this in the program code:

if (debug) {
sprintf(msg, ...)
write_debug(msg)

}

You should write debug output to stderr, or, if this isn’t practical because of the nature of the program,
use the logging facilities provided by the syslog function.

If you add traces like this to solve problems during development, just leave the code in there. Provided you
use a small amount of care, this can be quite safe. The benefit comes when the program has been released;
if users encounter a problem, they can run it with debugging on and diagnose the errors for you. Instead of
reporting that the program gave the message segmentation fault, they can also report exactly what the
program was doing at the time, not just what the user was doing. The difference can be immense.

There is obviously a downside to this approach: the program is larger than it needs to be. In most cases,
this is more an apparent problem than a real one. The program could be 20 percent or 30 percent larger,
but in most cases this doesn’t have any real impact on performance. Poor performance comes from
increasing size by orders of magnitude, not by a small factor.

Controlled Execution
Let’s get back to the example program. You have a bug. You can modify the program by adding addi-
tional code to print out the values of variables as the program runs, or you can use a debugger to control
the program’s execution and view its state as execution proceeds.

A number of debuggers are available on commercial UNIX systems, depending on the vendor.
Common ones are adb, sdb, idebug, and dbx. The more sophisticated ones allow you to look at the
state of the program in some detail at a source-code level. This is the case with the GNU debugger, gdb,
which can be used with Linux and many UNIX variants. There also exist “front ends” to gdb, which
make it more user-friendly; xxgdb, KDbg, and ddd are such programs. Some IDEs, such as the ones you
saw in Chapter 9, also provide debugging facilities or a front end to gdb. The Emacs editor even has a
facility (gdb-mode) that allows you to run gdb on your program, set breakpoints, and see which line in
the source code is being executed.

To prepare a program for debugging, you need to compile it with one or more special compiler options.
These options instruct the compiler to include extra debugging information into the program. This infor-
mation includes symbols and line numbers — information the debugger can use to show the user where
in the source code execution has reached.

The -g flag is the usual one used to compile a program for debugging. You must use it for compiling
each source file that needs to be debugged and also for the linker, so that special versions of the standard
C library can be used to provide debug support in library functions. The compiler program will pass the
flag to the linker automatically. Debugging can be used with libraries that aren’t compiled for the purpose,
but with less flexibility.

436

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 436

Debug information can make the executable many (up to ten) times larger. Even though the executable
may be larger (and take up more disk space) the amount of memory the program needs to run is effec-
tively the same. It is usually a good idea to remove debug information before you release your pro-
grams, but only after they have been debugged.

You can remove debug information from an executable file without recompiling by running
strip <file>.

Debugging with gdb
You’ll use the GNU debugger, gdb, to debug this program. It’s a very capable debugger that is freely
available and can be used on many UNIX platforms. It’s also the default debugger on Linux systems.
gdb has been ported to many other platforms and can be used to debug embedded real-time systems.

Starting gdb
Recompile the example program for debugging and start gdb:

$ cc -g -o debug3 debug3.c
$ gdb debug3
GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “i586-suse-linux”...
Using host libthread_db library “/lib/libthread_db.so.1”.
(gdb)

gdb has extensive online help and the complete manual is available as a set of files that can be viewed
with the info program, or from within Emacs.

(gdb) help
List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

Type “help” followed by a class name for a list of commands in that class.
Type “help all” for the list of all commands.

437

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 437

Type “help” followed by command name for full documentation.
Type “apropos word” to search for commands related to “word”.
Command name abbreviations are allowed if unambiguous.
(gdb)

gdb is itself a text-based application, but it does provide a few shortcuts to help with repetitive tasks.
Many versions have command-line editing with a history so that you can scroll back and execute the
same command again (try using the cursor keys). All versions support an “empty command”; hitting
Enter executes the last command again. This is especially useful when stepping through a program line
by line with the step or next commands.

To exit gdb, use the quit command.

Running a Program
You can execute the program with the run command. Any arguments that you give to the run command
are passed to the program as its arguments. In this case, you don’t need any arguments.

We’ll assume here that your system, like both the authors’, is now generating a segmentation fault. If it
isn’t, read on. You’ll find out what to do when one of your own programs does generate a segmentation
violation. If you’re not getting a segmentation violation, but want to work though this example as you
read the book, you can pick up the program again at debug4.c, when the first of the memory access
problems has been fixed.

(gdb) run
Starting program: /home/neil/BLP4e/chapter10/debug3

Program received signal SIGSEGV, Segmentation fault.
0x0804846f in sort (a=0x804a040, n=5) at debug3.c:23
23 /* 23 */ if(a[j].key > a[j+1].key) {
(gdb)

The program runs incorrectly as before. When the program faults, gdb shows the reason and the loca-
tion. You can now investigate the underlying cause of the problem.

Depending on your kernel, C library, and compiler version, you may see the program fault at a slightly
different place, for example, on line 25, when array items are exchanged, rather than line 23, when array
item keys are compared. If this is the case, you’ll see something like

Program received signal SIGSEGV, Segmentation fault.
0x8000613 in sort (a=0x8001764, n=5) at debug3.c:25
25 /* 25 */ a[j] = a[j+1];

You should still be able to follow the gdb sample session that follows.

Stack Trace
The program has been halted in the sort function at line 23 of the source file debug3.c. If you hadn’t
compiled the program with additional debug information (cc -g), you wouldn’t be able to see where
the program had failed, nor would you be able to use variable names to examine data.

438

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 438

You can see how you got to this position by using the backtrace command:

(gdb) backtrace
#0 0x0804846f in sort (a=0x804a040, n=5) at debug3.c:23
#1 0x08048583 in main () at debug3.c:37
(gdb)

This is a very simple program, and the trace is short because you haven’t called many functions from within
other functions. You can see that sort was called from main at line 37 of the same file, debug3.c. Usually,
the problem is much more complex and you use backtrace to discover the route you took to the error posi-
tion. This can be very useful when debugging functions that are called from many different places.

The backtrace command may be abbreviated bt, and, for compatibility with other debuggers, the
where command has the same function.

Examining Variables
The information printed by gdb when it stopped the program and in the stack trace shows you the values
of function arguments.

The sort function was called with a parameter, a, that has the value 0x804a040. This is the address
of the array. It will typically be different on different systems, depending on the compiler used and the
operating system.

The offending line, 23, is a comparison of one array element with another:

/* 23 */ if(a[j].key > a[j+1].key) {

You can use the debugger to examine the contents of function parameters, local variables, and global
data. The print command shows the contents of variables and other expressions:

(gdb) print j
$1 = 4

Here you can see that the local variable j has the value 4. Any values reported by gdb commands like
this are kept for future use in pseudo variables. Here the variable $1 is assigned the value 4 in case you
need it later. Subsequent commands will store their results as $2, $3, and so on.

The fact that j has the value 4 means that the program has attempted to execute the statement

if(a[4].key > a[4+1].key)

The array that you have passed to sort, array, has only five elements, which will be indexed 0 through 4.
So this statement reads from the nonexistent array[5]. The loop variable j has taken an incorrect value.

If your program faulted at line 25, your system detected a read past the end of the array only when it got
to exchanging elements, executing

/* 25 */ a[j] = a[j+1];

439

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 439

which, with j set to 4, results in

a[4] = a[4+1];

You can take a look at the elements of the passed array by using an expression with print. With gdb,
you can use almost any legal C expression to print the value of variables, array elements, and pointers.

(gdb) print a[3]
$2 = {data = “alex”, ‘\0’ <repeats 4091 times>, key = 1}
(gdb)

gdb keeps the results of commands in pseudo variables, $<number>. The last result is always $, and the
one before that is $$. This allows one result to be used in another command. For example,

(gdb) print j
$3 = 4
(gdb) print a[$-1].key
$4 = 1

Listing the Program
You can view the source code of the program from within gdb by using the list command. This prints
out a portion of the code around the current position. Subsequent uses of list will print out more. You
can also give list a function name as an argument and it will show the code at that position, or a pair of
line numbers and it will list the code between those line numbers.

(gdb) list
18 /* 18 */ int s = 1;
19 /* 19 */
20 /* 20 */ for(; i < n && s != 0; i++) {
21 /* 21 */ s = 0;
22 /* 22 */ for(j = 0; j < n; j++) {
23 /* 23 */ if(a[j].key > a[j+1].key) {
24 /* 24 */ item t = a[j];
25 /* 25 */ a[j] = a[j+1];
26 /* 26 */ a[j+1] = t;
27 /* 27 */ s++;
(gdb)

You can see that on line 22 the loop is set to execute while the variable j is less than n. In this case, n is 5,
so j will have the final value of 4, which is one too far. A value of 4 causes a comparison of a[4] with
a[5] and possibly a swap. One solution to this particular problem is to correct the loop termination con-
dition to be j < n-1.

Let’s make that change, call the new program debug4.c, recompile, and try again:

/* 22 */ for(j = 0; j < n-1; j++) {
$ cc -g -o debug4 debug4.c
$./debug4
array[0] = {john, 2}
array[1] = {alex, 1}

440

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 440

array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

The program still doesn’t work, because it has printed an incorrectly sorted list. Let’s use gdb to step
through the program as it runs.

Setting Breakpoints
To find out where the program is failing, you need to be able to see what it’s doing as it runs. You can
stop the program at any point by setting breakpoints. These cause the program to stop and return con-
trol to the debugger. You’ll be able to inspect variables and then allow the program to continue.

There are two loops in the sort function. The outer loop, with loop variable i, is run once for each ele-
ment in the array. The inner loop swaps the element with those further down the list. This has the effect
of bubbling up the smaller elements to the top. After each run of the outer loop, the largest element
should have made its way to the bottom. You can confirm this by stopping the program at the outer loop
and examining the state of the array.

A number of commands are used for setting breakpoints. These are listed by gdb with help breakpoint:

(gdb) help breakpoint
Making program stop at certain points.

List of commands:

awatch -- Set a watchpoint for an expression
break -- Set breakpoint at specified line or function
catch -- Set catchpoints to catch events
clear -- Clear breakpoint at specified line or function
commands -- Set commands to be executed when a breakpoint is hit
condition -- Specify breakpoint number N to break only if COND is true
delete -- Delete some breakpoints or auto-display expressions
delete breakpoints -- Delete some breakpoints or auto-display expressions
delete checkpoint -- Delete a fork/checkpoint (experimental)
delete mem -- Delete memory region
delete tracepoints -- Delete specified tracepoints
disable -- Disable some breakpoints
disable breakpoints -- Disable some breakpoints
disable display -- Disable some expressions to be displayed when program stops
disable mem -- Disable memory region
disable tracepoints -- Disable specified tracepoints
enable -- Enable some breakpoints
enable delete -- Enable breakpoints and delete when hit
enable display -- Enable some expressions to be displayed when program stops
enable mem -- Enable memory region
enable once -- Enable breakpoints for one hit
enable tracepoints -- Enable specified tracepoints
hbreak -- Set a hardware assisted breakpoint
ignore -- Set ignore-count of breakpoint number N to COUNT
rbreak -- Set a breakpoint for all functions matching REGEXP
rwatch -- Set a read watchpoint for an expression

441

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 441

tbreak -- Set a temporary breakpoint
tcatch -- Set temporary catchpoints to catch events
thbreak -- Set a temporary hardware assisted breakpoint
watch -- Set a watchpoint for an expression

Type “help” followed by command name for full documentation.
Type “apropos word” to search for commands related to “word”.
Command name abbreviations are allowed if unambiguous.

Set a breakpoint at line 21 and run the program:

$ gdb debug4
(gdb) break 21
Breakpoint 1 at 0x8048427: file debug4.c, line 21.
(gdb) run
Starting program: /home/neil/BLP4e/chapter10/debug4

Breakpoint 1, sort (a=0x804a040, n=5) at debug4.c:21
21 /* 21 */ s = 0;

You can print out the array value and then allow the program to continue with the cont command. This
allows the program to run until it hits the next breakpoint, in this case, until it executes line 21 again.
You can have many breakpoints active at any time.

(gdb) print array[0]
$1 = {data = “bill”, ‘\0’ <repeats 4091 times>, key = 3}

To print a number of consecutive items, you can use the construction @<number> to cause gdb to print a
number of array elements. To print all five elements of array, you can use

(gdb) print array[0]@5
$2 = {{data = “bill”, ‘\0’ <repeats 4091 times>, key = 3}, {

data = “neil”, ‘\0’ <repeats 4091 times>, key = 4}, {
data = “john”, ‘\0’ <repeats 4091 times>, key = 2}, {
data = “rick”, ‘\0’ <repeats 4091 times>, key = 5}, {
data = “alex”, ‘\0’ <repeats 4091 times>, key = 1}}

Note that the output has been tidied up slightly to make it easier to read. Because this is the first time
through the loop, the array is unchanged. When you allow the program to continue, you see successive
alterations to array as execution proceeds:

(gdb) cont
Continuing.

Breakpoint 1, sort (a=0x8049580, n=4) at debug4.c:21
21 /* 21 */ s = 0;

(gdb) print array[0]@5
$3 = {{data = “bill”, ‘\0’ <repeats 4091 times>, key = 3}, {

data = “john”, ‘\0’ <repeats 4091 times>, key = 2}, {
data = “neil”, ‘\0’ <repeats 4091 times>, key = 4}, {
data = “alex”, ‘\0’ <repeats 4091 times>, key = 1}, {
data = “rick”, ‘\0’ <repeats 4091 times>, key = 5}}

(gdb)

442

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 442

You can use the display command to set gdb to display the array automatically whenever the program
stops at a breakpoint:

(gdb) display array[0]@5
1: array[0] @ 5 = {{data = “bill”, ‘\0’ <repeats 4091 times>, key = 3}, {

data = “john”, ‘\0’ <repeats 4091 times>, key = 2}, {
data = “neil”, ‘\0’ <repeats 4091 times>, key = 4}, {
data = “alex”, ‘\0’ <repeats 4091 times>, key = 1}, {
data = “rick”, ‘\0’ <repeats 4091 times>, key = 5}}

Furthermore, you can change the breakpoint so that, instead of stopping the program, it simply displays
the data you have requested and carries on. To do this, use the commands command. This allows you to
specify what debugger commands to execute when a breakpoint is hit. Because you have already specified
a display, you need only set the breakpoint command to continue execution.

(gdb) commands
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just “end”.
> cont
> end

Now when you allow the program to continue, it runs to completion, printing the value of the array
each time around the outer loop.

(gdb) cont
Continuing.

Breakpoint 1, sort (a=0x8049684, n=3) at debug4.c:21
21 /* 21 */ s = 0;
1: array[0] @ 5 = {{data = “john”, ‘\000’ <repeats 4091 times>, key = 2}, {

data = “bill”, ‘\000’ <repeats 4091 times>, key = 3}, {
data = “alex”, ‘\000’ <repeats 4091 times>, key = 1}, {
data = “neil”, ‘\000’ <repeats 4091 times>, key = 4}, {
data = “rick”, ‘\000’ <repeats 4091 times>, key = 5}}

array[0] = {john, 2}
array[1] = {alex, 1}
array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

Program exited with code 025.
(gdb)

gdb reports that the program exits with an unusual exit code. This is because the program itself doesn’t
call exit and doesn’t return a value from main. The exit code is effectively meaningless in this case, and
a meaningful one ought to be provided by a call to exit.

The program doesn’t seem to execute the outer loop as many times as expected. You can see that the
value of the parameter, n, used in the loop termination condition is reducing at each breakpoint. This
means that the loop won’t execute enough times. The culprit is the decrement of n on line 30:

/* 30 */ n--;

443

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 443

This is an attempt to optimize the program by taking advantage of the fact that at the end of each outer
loop the largest element of array will be at the bottom, and so there is less left to sort. But, as you’ve
seen, this interferes with the outer loop and causes problems. The simplest fix (though there are others)
is to delete the offending line. Let’s test whether this change will fix the problem by using the debugger
to apply a patch.

Patching with the Debugger
You’ve already seen that you can use the debugger to set breakpoints and examine the value of variables.
By using a breakpoint with actions, you can try out a fix, called a patch, before changing the source code
and recompiling. In this case, you need to break the program on line 30 and increment the variable n.
Then, when line 30 is executed, the value will be unchanged.

Let’s restart the program from the beginning. First, you must delete your breakpoint and display. You
can see what breakpoints and displays you have enabled using the info command:

(gdb) info display
Auto-display expressions now in effect:
Num Enb Expression
1: y array[0] @ 5
(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x08048427 in sort at debug4.c:21

breakpoint already hit 3 times
cont

You can either disable these or delete them entirely. If you disable them, you retain the option to re-
enable them at a later time if you need to:

(gdb) disable break 1
(gdb) disable display 1
(gdb) break 30
Breakpoint 2 at 0x8048545: file debug4.c, line 30.
(gdb) commands 2
Type commands for when breakpoint 2 is hit, one per line.
End with a line saying just “end”.
>set variable n = n+1
>cont
>end
(gdb) run
Starting program: /home/neil/BLP4e/chapter10/debug4

Breakpoint 2, sort (a=0x804a040, n=5) at debug4.c:30
30 /* 30 */ n--;

Breakpoint 2, sort (a=0x804a040, n=5) at debug4.c:30
30 /* 30 */ n--;

Breakpoint 2, sort (a=0x804a040, n=5) at debug4.c:30
30 /* 30 */ n--;

Breakpoint 2, sort (a=0x804a040, n=5) at debug4.c:30

444

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 444

30 /* 30 */ n--;

Breakpoint 2, sort (a=0x804a040, n=5) at debug4.c:30
30 /* 30 */ n--;
array[0] = {alex, 1}
array[1] = {john, 2}
array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

Program exited with code 025.
(gdb)

The program runs to completion and prints the correct result. You can now make the change and move
on to test it with more data.

Learning More about gdb
The GNU debugger is an exceptionally powerful tool that can provide a lot of information about the
internal state of executing programs. On systems that support a facility called hardware breakpoints, you
can use gdb to monitor changes to variables in real time. Hardware breakpoints are a feature of some
CPUs; these processors are able to stop automatically if certain conditions arise, typically a memory
access in a given region. Alternatively, gdb can watch expressions. This means that, with a performance
penalty, gdb can stop a program when an expression takes a particular value, regardless of where in the
program the calculation took place.

Breakpoints can be set with counts and conditions so that they trigger only after a fixed number of times
or when a condition is met.

gdb is also able to attach itself to programs that are already running. This can be very useful when you’re
debugging client/server systems, because you can debug a misbehaving server process as it runs without
having to stop and restart it. You can compile programs with, for example, gcc -O -g to get the benefit of
optimization and debug information. The downside is that optimization may reorder code a bit, so, as you
single-step through code, you may find yourself jumping around to achieve the same effect as intended by
the original source code.

You can also use gdb to debug programs that have crashed. Linux and UNIX will often produce a core
dump in a file called core when a program fails. This is an image of the program’s memory and will
contain the values of global variables at the time of the failure. You can use gdb to work out where the
program was when it crashed. Check out the gdb manual page for more details.

gdb is available under the terms of the GNU Public License and most UNIX systems can support it. We
strongly recommend that you get to know it.

More Debugging Tools
Apart from out-and-out debuggers such as gdb, Linux systems typically provide a number of other tools
that you can use to aid the debugging process. Some of these provide static information about a program;
others provide a dynamic analysis.

445

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 445

Static analysis provides information from the program source code only. Programs such as ctags,
cxref, and cflow work with the source files and provide useful information about function calling
and location.

Dynamic analysis provides information about how a program behaves during execution. Programs such
as prof and gprof provide information about which functions have been executed and for how long.

Let’s take a look at some of these tools and their output. Not all of these tools will be available on all
systems, although many of them have freely available versions.

Lint: Removing the Fluff from Your Programs
Original UNIX systems provided a utility called lint. It was essentially the front end of a C compiler with
added tests designed to apply some common sense and produce warnings. It would detect cases where
variables were used before being set and where function arguments were not used, among other things.

More modern C compilers can, at a cost to compile-time performance, produce similar warnings. lint
itself has been overtaken by the standardization of C. Because the tool was based on an early C compiler,
it doesn’t cope at all well with ANSI syntax. There are some commercial versions of lint available for
UNIX and at least one on the Internet for Linux, called splint. This used to be known as LClint, part of
a project at MIT to produce tools for formal specifications. A lint-like tool, splint can provide useful
code review comments. You can find splint at http://www.splint.org.

Here’s an early version (debug0.c) of the example program that you debugged earlier:

/* 1 */ typedef struct {
/* 2 */ char *data;
/* 3 */ int key;
/* 4 */ } item;
/* 5 */
/* 6 */ item array[] = {
/* 7 */ {“bill”, 3},
/* 8 */ {“neil”, 4},
/* 9 */ {“john”, 2},
/* 10 */ {“rick”, 5},
/* 11 */ {“alex”, 1},
/* 12 */ };
/* 13 */
/* 14 */ sort(a,n)
/* 15 */ item *a;
/* 16 */ {
/* 17 */ int i = 0, j = 0;
/* 18 */ int s;
/* 19 */
/* 20 */ for(; i < n & s != 0; i++) {
/* 21 */ s = 0;
/* 22 */ for(j = 0; j < n; j++) {
/* 23 */ if(a[j].key > a[j+1].key) {
/* 24 */ item t = a[j];
/* 25 */ a[j] = a[j+1];
/* 26 */ a[j+1] = t;

446

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 446

/* 27 */ s++;
/* 28 */ }
/* 29 */ }
/* 30 */ n--;
/* 31 */ }
/* 32 */ }
/* 33 */
/* 34 */ main()
/* 35 */ {
/* 36 */ sort(array,5);
/* 37 */ }

This version has an additional problem with line 20 where the & operator has been used in place of the
intended &&. The following is an edited sample output from splint running on this version. Notice
how it picks up the problems on line 20 — the fact that you have not initialized the variable s, and that
you may have a problem with the test caused by the incorrect operator.

neil@suse103:~/BLP4e/chapter10> splint -strict debug0.c
Splint 3.1.1 --- 19 Mar 2005

debug0.c:7:18: Read-only string literal storage used as initial value for
unqualified storage: array[0].data = “bill”

A read-only string literal is assigned to a non-observer reference. (Use
-readonlytrans to inhibit warning)

debug0.c:8:18: Read-only string literal storage used as initial value for
unqualified storage: array[1].data = “neil”

debug0.c:9:18: Read-only string literal storage used as initial value for
unqualified storage: array[2].data = “john”

debug0.c:10:18: Read-only string literal storage used as initial value for
unqualified storage: array[3].data = “rick”

debug0.c:11:18: Read-only string literal storage used as initial value for
unqualified storage: array[4].data = “alex”

debug0.c:14:22: Old style function declaration
Function definition is in old style syntax. Standard prototype syntax is
preferred. (Use -oldstyle to inhibit warning)

debug0.c: (in function sort)
debug0.c:20:31: Variable s used before definition
An rvalue is used that may not be initialized to a value on some execution
path. (Use -usedef to inhibit warning)

debug0.c:20:23: Left operand of & is not unsigned value (boolean):
i < n & s != 0

An operand to a bitwise operator is not an unsigned values. This may have
unexpected results depending on the signed representations. (Use
-bitwisesigned to inhibit warning)

debug0.c:20:23: Test expression for for not boolean, type unsigned int:
i < n & s != 0

Test expression type is not boolean or int. (Use -predboolint to inhibit
warning)

debug0.c:25:41: Undocumented modification of a[]: a[j] = a[j + 1]
An externally-visible object is modified by a function with no /*@modifies@*/
comment. The /*@modifies ... @*/ control comment can be used to give a
modifies list for an unspecified function. (Use -modnomods to inhibit
warning)

447

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 447

debug0.c:26:41: Undocumented modification of a[]: a[j + 1] = t
debug0.c:20:23: Operands of & are non-integer (boolean) (in post loop test):

i < n & s != 0
A primitive operation does not type check strictly. (Use -strictops to
inhibit warning)

debug0.c:32:14: Path with no return in function declared to return int
There is a path through a function declared to return a value on which there
is no return statement. This means the execution may fall through without
returning a meaningful result to the caller. (Use -noret to inhibit warning)

debug0.c:34:13: Function main declared without parameter list
A function declaration does not have a parameter list. (Use -noparams to
inhibit warning)

debug0.c: (in function main)
debug0.c:36:22: Undocumented use of global array
A checked global variable is used in the function, but not listed in its
globals clause. By default, only globals specified in .lcl files are checked.
To check all globals, use +allglobals. To check globals selectively use
/*@checked@*/ in the global declaration. (Use -globs to inhibit warning)

debug0.c:36:17: Undetected modification possible from call to unconstrained
function sort: sort

An unconstrained function is called in a function body where modifications
are checked. Since the unconstrained function may modify anything, there may
be undetected modifications in the checked function. (Use -modunconnomods to
inhibit warning)

debug0.c:36:17: Return value (type int) ignored: sort(array, 5)
Result returned by function call is not used. If this is intended, can cast
result to (void) to eliminate message. (Use -retvalint to inhibit warning)

debug0.c:37:14: Path with no return in function declared to return int
debug0.c:6:18: Variable exported but not used outside debug0: array
A declaration is exported, but not used outside this module. Declaration can
use static qualifier. (Use -exportlocal to inhibit warning)

debug0.c:14:13: Function exported but not used outside debug0: sort
debug0.c:15:17: Definition of sort

debug0.c:6:18: Variable array exported but not declared in header file
A variable declaration is exported, but does not appear in a header file.
(Used with exportheader.) (Use -exportheadervar to inhibit warning)

debug0.c:14:13: Function sort exported but not declared in header file
A declaration is exported, but does not appear in a header file. (Use
-exportheader to inhibit warning)
debug0.c:15:17: Definition of sort

Finished checking --- 22 code warnings
$

The utility complains about old-style (non-ANSI) function declarations and inconsistencies between
function return types and the values they do (or do not) return. These don’t affect the operation of the
program, but ought to be addressed.

It has also detected two real bugs in the following code fragment:

/* 18 */ int s;
/* 19 */
/* 20 */ for(; i < n & s != 0; i++) {
/* 21 */ s = 0;

448

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 448

The splint tool has determined (in the highlighted lines of the preceding output) that the variable s is
used on line 20, but hasn’t been initialized and that the operator & has been used in place of the more usual
&&. In this case, the operator precedence alters the meaning of the test and is a problem for the program.

Both of these errors were fixed in a code review before debugging started. Although this example is a little
contrived for the purposes of demonstration, these are errors that regularly crop up in real-world programs.

Function Call Tools
Three utilities — ctags, cxref, and cflow — form part of the X/Open specification and therefore must
be present on UNIX-branded systems with software development capabilities.

These utilities and others mentioned in this chapter may not be present in your Linux distribution.
If they are missing, you might like to search for implementations on the Internet. Good places to start
(for Linux distributions that support the RPM package format) are http://rpmfind.net and
http://rpm.pbone.net. There are also several distribution-specific repositories to try, including
http://ftp.gwdg.de/pub/opensuse/ for openSUSE, http://rpm.livna.org for Fedora,
and http://packages.slackware.it/ for Slackware.

ctags
The ctags program creates an index of functions. For each function, you get a list of the places it’s used,
like the index of a book.

ctags [-a] [-f filename] sourcefile sourcefile ...
ctags -x sourcefile sourcefile ...

By default, ctags creates a file, called tags, in the current directory, which contains, for each function
declared in any of the input source files, lines of the form

announce app_ui.c /^static void announce(void) /

Each line in the file consists of a function name, the file it’s declared in, and a regular expression that can
be used to find the function definition within the file. Some editors such as Emacs can use files of this
kind to help navigate through source code.

Alternatively, by using the -x option to ctags (if available in your version), you can produce lines of a
similar form on the standard output:

find_cat 403 app_ui.c static cdc_entry find_cat(

You can redirect the output to a different file by using the option -f filename and append it to an
existing file by specifying the -a option.

cxref
The cxref program analyzes C source code and produces a cross-reference. It shows where each symbol
(variable, #define, and function) is mentioned in the program. It produces a sorted list with each sym-
bol’s definition location marked with an asterisk, as shown on next page.

449

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 449

SYMBOL FILE FUNCTION LINE

BASENID prog.c -- *12 *96 124 126 146 156 166
BINSIZE prog.c -- *30 197 198 199 206
BUFMAX prog.c -- *44 45 90
BUFSIZ /usr/include/stdio.h -- *4

EOF /usr/include/stdio.h -- *27
argc prog.c -- 36

prog.c main *37 61 81
argv prog.c -- 36

prog.c main *38 61
calldata prog.c -- *5

prog.c main 64 188
calls prog.c -- *19

prog.c main 54

On the author’s machine, the preceding output was generated in the source directory of an application,
with the command

$ cxref *.c *.h

but the exact syntax varies from version to version. Consult the documentation for your system or the
man pages for more information on whether cxref is available and how to use it.

cflow
The cflow program prints a function call tree, a diagram that shows which function calls which others,
and which functions are called by them, and so on. It can be useful to find out the structure of a program
to understand how it operates and to see what impact changes to a function will have. Some versions of
cflow can operate on object files as well as source code. Refer to the manual page for details of operation.

Here’s some sample output taken from a version of cflow (cflow-2.0) that is available on the Internet
and maintained by Marty Leisner:

1 file_ungetc {prcc.c 997}
2 main {prcc.c 70}
3 getopt {}
4 show_all_lists {prcc.c 1070}
5 display_list {prcc.c 1056}
6 printf {}
7 exit {}
8 exit {}
9 usage {prcc.c 59}
10 fprintf {}
11 exit {}

This sample tells you that main calls (among others) show_all_lists and that show_all_lists in
turn calls display_list, which itself calls printf.

One option to this version of cflow is -i, which produces an inverted flow graph. For each function, cflow
lists the other functions that make a call to it. It sounds complicated, but it really isn’t. Here’s a sample.

19 display_list {prcc.c 1056}
20 show_all_lists {prcc.c 1070}

450

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 450

21 exit {}
22 main {prcc.c 70}
23 show_all_lists {prcc.c 1070}
24 usage {prcc.c 59}
...
74 printf {}
75 display_list {prcc.c 1056}
76 maketag {prcc.c 487}
77 show_all_lists {prcc.c 1070}
78 main {prcc.c 70}
...
99 usage {prcc.c 59}
100 main {prcc.c 70}

This shows that the functions that call exit, for example, are main, show_all_lists, and usage.

Execution Profiling with prof/gprof
A technique that is often useful when you’re trying to track down performance problems with a pro-
gram is execution profiling. Normally supported by special compiler options and ancillary programs, a
profile of a program shows where it’s spending its time.

The prof program (and its GNU equivalent, gprof) prints a report from an execution trace file that is
produced when a profiled program is run. A profiled executable is created by specifying the –p flag (for
prof) or -pg flag (for gprof) to the compiler:

$ cc -pg -o program program.c

The program is linked with a special version of the C library and is changed to include monitoring code.
This may vary with specific systems, but is commonly achieved by arranging for the program to be inter-
rupted frequently and the execution location to be recorded. The monitor data is written to a file in the
current directory, mon.out (gmon.out for gprof).

$./program
$ ls -ls

2 -rw-r--r-- 1 neil users 1294 Feb 4 11:48 gmon.out

The prof/gprof program reads this monitoring data and produces a report. Refer to the manual pages
for details on program options. Here is some (abbreviated) gprof output as an example:

cumulative self self total
time seconds seconds calls ms/call ms/call name
18.5 0.10 0.10 8664 0.01 0.03 _doscan [4]
18.5 0.20 0.10 mcount (60)
14.8 0.28 0.08 43320 0.00 0.00 _number [5]
9.3 0.33 0.05 8664 0.01 0.01 _format_arg [6]
7.4 0.37 0.04 112632 0.00 0.00 _ungetc [8]
7.4 0.41 0.04 8757 0.00 0.00 _memccpy [9]
7.4 0.45 0.04 1 40.00 390.02 _main [2]
3.7 0.47 0.02 53 0.38 0.38 _read [12]
3.7 0.49 0.02 w4str [10]
1.9 0.50 0.01 26034 0.00 0.00 _strlen [16]
1.9 0.51 0.01 8664 0.00 0.00 strncmp [17]

451

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 451

Asser tions
Although it’s common to introduce debug code such as printf calls, possibly by conditional compilation,
during the development of a program, it’s sometimes impractical to leave these messages in a delivered
system. However, it’s often the case that problems occur during the program operation that are related to
incorrect assumptions rather than coding errors. These are events that “can’t happen.” For example, a
function may be written with the understanding that its input parameters will be within a certain range.
If it’s passed incorrect data, it might invalidate the whole system.

For these cases, where the internal logic of the system needs to be confirmed, X/Open provides the
assert macro that can be used to test that an assumption is correct and halt the program if not.

#include <assert.h>

void assert(int expression)

The assert macro evaluates the expression and, if it’s nonzero, writes some diagnostic information to
the standard error and calls abort to end the program.

The header file assert.h defines the macro depending on the definition of NDEBUG. If NDEBUG is
defined when the header file is processed, assert is defined to be essentially nothing. This means that
you can turn off assertions at compile time by compiling with -DNDEBUG or by including the line

#define NDEBUG

in each source file before including assert.h.

This method of use is one problem with assert. If you use assert during testing, but turn it off for
production code, your production code could have less safety checking than when you are testing it.
Leaving assertions enabled in production code is not normally an option — would you like your code
to present a customer with the unfriendly error assert failed and a stopped program? You may con-
sider it better to write your own error-trapping routine that still checks the assertion but doesn’t need to
be completely disabled in production code.

You must also be careful that there are no side effects in the assert expression. For example, if you use a
function call with a side effect, the effect won’t happen in the production code if assertions are removed.

Try It Out assert
Here’s a program, assert.c, that defines a function that must take a positive value. It protects against
the possibility of a bad argument by using an assertion.

After including the assert.h header file and a “square root” function that checks that the parameter is
positive, you can then write the main function:

#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <stdlib.h>

452

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 452

double my_sqrt(double x)
{

assert(x >= 0.0);
return sqrt(x);

}

int main()
{

printf(“sqrt +2 = %g\n”, my_sqrt(2.0));
printf(“sqrt -2 = %g\n”, my_sqrt(-2.0));
exit(0);

}

Now when you run the program, you see an assertion violation when you pass an illegal value. The
exact format of the assertion failure message will vary from system to system.

$ cc -o assert assert.c -lm
$./assert
sqrt +2 = 1.41421
assert: assert.c:7: my_sqrt: Assertion `x >= 0.0’ failed.
Aborted
$

How It Works
When you try to call the function my_sqrt with a negative number, the assertion fails. The assert
macro provides the file and line number where the assertion violation occurred, as well as the condition
that failed. The program terminates with an abort trap. This is the result of assert calling abort.

If you recompile the program with -DNDEBUG, the assertion is compiled out and you get a NaN (Not a
Number) value indicating an invalid result when you call the sqrt function from my_sqrt.

$ cc -o assert -DNDEBUG assert.c -lm
$./assert
sqrt +2 = 1.41421
sqrt –2 = nan
$

Some older mathematics library versions will raise an exception on a mathematical error and your pro-
gram will terminate with a message such as Floating point exception instead of returning a NaN.

Memory Debugging
One area that is a rich source of bugs that are difficult to track down is dynamic memory allocation. If
you write a program that uses malloc and free to allocate memory, it’s important that you keep good
track of the blocks you allocate and make sure that you don’t use a block that you’ve freed up.

453

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 453

Typically, memory blocks are allocated by malloc and assigned to pointer variables. If the pointer variable
is changed and there are no other pointers pointing to the memory block, it will become inaccessible. This
is a memory leak and it causes your program to grow in size. If you leak a lot of memory, your system will
eventually slow down and run out of memory.

If you write beyond the end of an allocated block (or before the beginning of a block), you’ll very likely
corrupt the data structures used by the malloc library to keep track of allocations. In this case, at some
future time, a call to malloc, or even free, will cause a segmentation violation and your program will
crash. Tracking down the precise point at which the fault occurred can be very difficult, because it may
have happened a long time before the event that caused the crash.

Unsurprisingly, there are tools, commercial and free, that can help with these two problem types. There
are, for example, many different versions of malloc and free, some of which contain additional code to
check on allocations and deallocations to try to cater for the cases where a block is freed twice and some
other types of misuse.

ElectricFence
The ElectricFence library was developed by Bruce Perens. It is available as an optional component in
some Linux distributions such as Red Hat (Enterprise and Fedora), SUSE and openSUSE, and can be
readily found on the Internet. It attempts to use the virtual memory facilities of Linux to protect the
memory used by malloc and free to halt the program at the point of memory corruption.

Try It Out ElectricFence
Here’s a program, efence.c, that allocates a memory block with malloc and then writes beyond the
end of the block. Check it out and see what happens.

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *ptr = (char *) malloc(1024);
ptr[0] = 0;

/* Now write beyond the block */
ptr[1024] = 0;
exit(0);

}

When you compile and run the program, you see no untoward behavior. However, it’s likely that the
malloc memory area has sustained some corruption and you would eventually run into trouble.

$ cc -o efence efence.c
$./efence
$

454

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 454

However, if you take exactly the same program and link with the ElectricFence library, libefence.a,
you get an immediate response.

$ cc -o efence efence.c -lefence
$./efence

Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>
Segmentation fault
$

Running under the debugger pinpoints the problem:

$ cc -g -o efence efence.c -lefence
$ gdb efence
(gdb) run
Starting program: /home/neil/BLP4e/chapter10/efence

Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 1024 (LWP 1869)]
0x08048512 in main () at efence.c:10
10 ptr[1024] = 0;
(gdb)

How It Works
ElectricFence replaces malloc and associated functions with versions that use virtual memory features
of the computer’s processor to protect against illegal memory access. When such an access occurs, a seg-
mentation violation signal is raised and the program halts.

valgrind
valgrind is a tool that is capable of detecting many of the problems that we have discussed. In particu-
lar, it can detect array access errors and memory leaks. It may not be included with your Linux distribu-
tion, but you can find it at http://valgrind.org.

Programs do not even need to be recompiled to use valgrind, and you can even debug the memory
accesses of a running program. It is well worth a look; it has been used on major developments, includ-
ing KDE version 3.

Try It Out valgrind
Here’s a program, checker.c, that allocates some memory, reads a location beyond the limit of that
memory, writes beyond the end of it, and then makes it inaccessible:

#include <stdio.h>
#include <stdlib.h>

455

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 455

int main()
{

char *ptr = (char *) malloc(1024);
char ch;

/* Uninitialized read */
ch = ptr[1024];

/* Write beyond the block */
ptr[1024] = 0;

/* Orphan the block */
ptr = 0;
exit(0);

}

To use valgrind, you simply have to run the valgrind command passing options that you would like
to check, followed by the program to run with its arguments (if any).

When you run your program with valgrind, you see many problems diagnosed:

$ valgrind --leak-check=yes -v ./checker
==4780== Memcheck, a memory error detector.
==4780== Copyright (C) 2002-2007, and GNU GPL’d, by Julian Seward et al.
==4780== Using LibVEX rev 1732, a library for dynamic binary translation.
==4780== Copyright (C) 2004-2007, and GNU GPL’d, by OpenWorks LLP.
==4780== Using valgrind-3.2.3, a dynamic binary instrumentation framework.
==4780== Copyright (C) 2000-2007, and GNU GPL’d, by Julian Seward et al.
==4780==
--4780-- Command line
--4780-- ./checker
--4780-- Startup, with flags:
--4780-- --leak-check=yes
--4780-- -v
--4780-- Contents of /proc/version:
--4780-- Linux version 2.6.20.2-2-default (geeko@buildhost) (gcc version 4.1.3
20070218 (prerelease) (SUSE Linux)) #1 SMP Fri Mar 9 21:54:10 UTC 2007
--4780-- Arch and hwcaps: X86, x86-sse1-sse2
--4780-- Page sizes: currently 4096, max supported 4096
--4780-- Valgrind library directory: /usr/lib/valgrind
--4780-- Reading syms from /lib/ld-2.5.so (0x4000000)
--4780-- Reading syms from /home/neil/BLP4e/chapter10/checker (0x8048000)
--4780-- Reading syms from /usr/lib/valgrind/x86-linux/memcheck (0x38000000)
--4780-- object doesn’t have a symbol table
--4780-- object doesn’t have a dynamic symbol table
--4780-- Reading suppressions file: /usr/lib/valgrind/default.supp
--4780-- REDIR: 0x40158B0 (index) redirected to 0x38027EDB (???)
--4780-- Reading syms from /usr/lib/valgrind/x86-linux/vgpreload_core.so
(0x401E000)
--4780-- object doesn’t have a symbol table
--4780-- Reading syms from /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so
(0x4021000)
--4780-- object doesn’t have a symbol table

456

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 456

==4780== WARNING: new redirection conflicts with existing -- ignoring it
--4780-- new: 0x040158B0 (index) R-> 0x04024490 index
--4780-- REDIR: 0x4015A50 (strlen) redirected to 0x4024540 (strlen)
--4780-- Reading syms from /lib/libc-2.5.so (0x4043000)
--4780-- REDIR: 0x40ADFF0 (rindex) redirected to 0x4024370 (rindex)
--4780-- REDIR: 0x40AAF00 (malloc) redirected to 0x4023700 (malloc)
==4780== Invalid read of size 1
==4780== at 0x804842C: main (checker.c:10)
==4780== Address 0x4170428 is 0 bytes after a block of size 1,024 alloc’d
==4780== at 0x4023785: malloc (in /usr/lib/valgrind/x86-
linux/vgpreload_memcheck.so)
==4780== by 0x8048420: main (checker.c:6)
==4780==
==4780== Invalid write of size 1
==4780== at 0x804843A: main (checker.c:13)
==4780== Address 0x4170428 is 0 bytes after a block of size 1,024 alloc’d
==4780== at 0x4023785: malloc (in /usr/lib/valgrind/x86-
linux/vgpreload_memcheck.so)
==4780== by 0x8048420: main (checker.c:6)
--4780-- REDIR: 0x40A8BB0 (free) redirected to 0x402331A (free)
--4780-- REDIR: 0x40AEE70 (memset) redirected to 0x40248A0 (memset)
==4780==
==4780== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 3 from 1)
==4780==
==4780== 1 errors in context 1 of 2:
==4780== Invalid write of size 1
==4780== at 0x804843A: main (checker.c:13)
==4780== Address 0x4170428 is 0 bytes after a block of size 1,024 alloc’d
==4780== at 0x4023785: malloc (in /usr/lib/valgrind/x86-
linux/vgpreload_memcheck.so)
==4780== by 0x8048420: main (checker.c:6)
==4780==
==4780== 1 errors in context 2 of 2:
==4780== Invalid read of size 1
==4780== at 0x804842C: main (checker.c:10)
==4780== Address 0x4170428 is 0 bytes after a block of size 1,024 alloc’d
==4780== at 0x4023785: malloc (in /usr/lib/valgrind/x86-
linux/vgpreload_memcheck.so)
==4780== by 0x8048420: main (checker.c:6)
--4780--
--4780-- supp: 3 dl-hack3
==4780==
==4780== IN SUMMARY: 2 errors from 2 contexts (suppressed: 3 from 1)
==4780==
==4780== malloc/free: in use at exit: 1,024 bytes in 1 blocks.
==4780== malloc/free: 1 allocs, 0 frees, 1,024 bytes allocated.
==4780==
==4780== searching for pointers to 1 not-freed blocks.
==4780== checked 65,444 bytes.
==4780==
==4780==
==4780== 1,024 bytes in 1 blocks are definitely lost in loss record 1 of 1
==4780== at 0x4023785: malloc (in /usr/lib/valgrind/x86-
linux/vgpreload_memcheck.so)

457

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 457

==4780== by 0x8048420: main (checker.c:6)
==4780==
==4780== LEAK SUMMARY:
==4780== definitely lost: 1,024 bytes in 1 blocks.
==4780== possibly lost: 0 bytes in 0 blocks.
==4780== still reachable: 0 bytes in 0 blocks.
==4780== suppressed: 0 bytes in 0 blocks.
--4780-- memcheck: sanity checks: 0 cheap, 1 expensive
--4780-- memcheck: auxmaps: 0 auxmap entries (0k, 0M) in use
--4780-- memcheck: auxmaps: 0 searches, 0 comparisons
--4780-- memcheck: SMs: n_issued = 9 (144k, 0M)
--4780-- memcheck: SMs: n_deissued = 0 (0k, 0M)
--4780-- memcheck: SMs: max_noaccess = 65535 (1048560k, 1023M)
--4780-- memcheck: SMs: max_undefined = 0 (0k, 0M)
--4780-- memcheck: SMs: max_defined = 19 (304k, 0M)
--4780-- memcheck: SMs: max_non_DSM = 9 (144k, 0M)
--4780-- memcheck: max sec V bit nodes: 0 (0k, 0M)
--4780-- memcheck: set_sec_vbits8 calls: 0 (new: 0, updates: 0)
--4780-- memcheck: max shadow mem size: 448k, 0M
--4780-- translate: fast SP updates identified: 1,456 (90.3%)
--4780-- translate: generic_known SP updates identified: 79 (4.9%)
--4780-- translate: generic_unknown SP updates identified: 76 (4.7%)
--4780-- tt/tc: 3,341 tt lookups requiring 3,360 probes
--4780-- tt/tc: 3,341 fast-cache updates, 3 flushes
--4780-- transtab: new 1,553 (33,037 -> 538,097; ratio 162:10) [0 scs]
--4780-- transtab: dumped 0 (0 -> ??)
--4780-- transtab: discarded 6 (143 -> ??)
--4780-- scheduler: 21,623 jumps (bb entries).
--4780-- scheduler: 0/1,828 major/minor sched events.
--4780-- sanity: 1 cheap, 1 expensive checks.
--4780-- exectx: 30,011 lists, 6 contexts (avg 0 per list)
--4780-- exectx: 6 searches, 0 full compares (0 per 1000)
--4780-- exectx: 0 cmp2, 4 cmp4, 0 cmpAll
$

Here you can see that the bad reads and writes have been caught and the memory blocks concerned are
given along with the place they were allocated. You can use the debugger to break the program at the
point of the error.

There are many options to valgrind, including the suppression of certain types of error and memory-
leak detection. To detect the example leak, you must use one of the options that are passed to valgrind.
To check for memory leaks when the program ends, you need to specify --leak-check=yes. You can
get a list of options with valgrind --help.

How It Works
The program is executed under the control of valgrind, which intercepts various actions your program
takes and performs many checks — including memory accesses. If the access concerns an allocated
memory block and is illegal, valgrind prints a message. At the end of the program, a garbage collection
routine is run that determines if any memory blocks have been allocated but not freed. These orphaned
blocks are reported.

458

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 458

Summary
In this chapter, you’ve looked at some debugging tools and techniques. Linux provides some powerful
aids to help with removing defects from programs. You eliminated some bugs from a program using gdb
and looked at some static analysis tools such as cflow and splint. Finally, you looked at problems that
arise when you use dynamically allocated memory and some utilities that can help diagnose them, such
as ElectricFence and valgrind.

The utility programs discussed in this chapter have mostly been made available on FTP servers on
the Internet. The authors concerned may, in some cases, retain copyright. Information about many of the
utilities is available from the Linux archive http://www.ibiblio.org/pub/Linux and we expect that
new versions will be found there as they are released.

459

Chapter 10: Debugging

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 459

47627c10.qxd:WroxPro 9/29/07 3:31 PM Page 460

11
Processes and Signals

Processes and signals form a fundamental part of the Linux operating environment. They control
almost all activities performed by Linux and all other UNIX-like computer systems. An under-
standing of how Linux and UNIX manage processes will hold any systems programmer, applica-
tions programmer, or system administrator in good stead.

In this chapter, you learn how processes are handled in the Linux environment and how to find
out exactly what the computer is doing at any given time. You also see how to start and stop other
processes from within your own programs, how to make processes send and receive messages,
and how to avoid zombies. In particular, you learn about

❑ Process structure, type, and scheduling

❑ Starting new processes in different ways

❑ Parent, child, and zombie processes

❑ What signals are and how to use them

What Is a Process?
The UNIX standards, specifically IEEE Std 1003.1, 2004 Edition, defines a process as “an address
space with one or more threads executing within that address space, and the required system
resources for those threads.” We look at threads in Chapter 12. For now, we will regard a process
as just a program that is running.

A multitasking operating system such as Linux lets many programs run at once. Each instance of a
running program constitutes a process. This is especially evident with a windowing system such as
the X Window System (often simply called X). Like Windows, X provides a graphical user interface
that allows many applications to be run at once. Each application can display one or more windows.

As a multiuser system, Linux allows many users to access the system at the same time. Each user
can run many programs, or even many instances of the same program, at the same time. The sys-
tem itself runs other programs to manage system resources and control user access.

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 461

As you saw in Chapter 4, a program — or process — that is running consists of program code, data, vari-
ables (occupying system memory), open files (file descriptors), and an environment. Typically, a Linux
system will share code and system libraries among processes so that there’s only one copy of the code in
memory at any one time.

Process Structure
Let’s have a look at how a couple of processes might be arranged within the operating system. If two
users, neil and rick, both run the grep program at the same time to look for different strings in differ-
ent files, the processes being used might look like Figure 11-1.

Figure 11-1

If you could run the ps command as in the following code quickly enough and before the searches had
finished, the output might contain something like this:

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
rick 101 96 0 18:24 tty2 00:00:00 grep troi nextgen.doc
neil 102 92 0 18:24 tty4 00:00:00 grep kirk trek.txt

Each process is allocated a unique number, called a process identifier or PID. This is usually a positive
integer between 2 and 32,768. When a process is started, the next unused number in sequence is chosen
and the numbers restart at 2 so that they wrap around. The number 1 is typically reserved for the special
init process, which manages other processes. We will come back to init shortly. Here you see that the
two processes started by neil and rick have been allocated the identifiers 101 and 102.

The program code that will be executed by the grep command is stored in a disk file. Normally, a Linux
process can’t write to the memory area used to hold the program code, so the code is loaded into memory
as read-only. You saw in Figure 11-1 that, although this area can’t be written to, it can safely be shared.

The system libraries can also be shared. Thus, there need be only one copy of printf, for example, in
memory, even if many running programs call it. This is a more sophisticated, but similar, scheme to the
way dynamic link libraries (DLLs) work in Windows.

PID 101

code

data
s = "kirk"

library

grep code

c library

files

trek.txt

$ grep kirk trek.txt

neil

PID 102

code

data
s = "troi"

library

files

nextgen.doc

$ grep troi nextgen.doc

rick

462

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 462

As you can see in the preceding diagram, an additional benefit is that the disk file containing the exe-
cutable program grep is smaller because it doesn’t contain shared library code. This might not seem like
much saving for a single program, but extracting the common routines for (say) the standard C library
saves a significant amount of space over a whole operating system.

Of course, not everything that a program needs to run can be shared. For example, the variables that it
uses are distinct for each process. In this example, you see that the search string passed to the grep com-
mand appears as a variable, s, in the data space of each process. These are separate and usually can’t be
read by other processes. The files that are being used in the two grep commands are also different; the
processes have their own set of file descriptors used for file access.

Additionally, a process has its own stack space, used for local variables in functions and for controlling
function calls and returns. It also has its own environment space, containing environment variables that
may be established solely for this process to use, as you saw with putenv and getenv in Chapter 4. A
process must also maintain its own program counter, a record of where it has gotten to in its execution,
which is the execution thread. In the next chapter you will see that when you use threads, processes can
have more than one thread of execution.

On many Linux systems, and some UNIX systems, there is a special set of “files” in a directory called
/proc. These are special in that rather than being true files they allow you to “look inside” processes
while they are running as if they were files in directories. We took a brief look at the /proc file system
back in Chapter 3.

Finally, because Linux, like UNIX, has a virtual memory system that pages code and data out to an area
of the hard disk, many more processes can be managed than would fit into the physical memory.

The Process Table
The Linux process table is like a data structure describing all of the processes that are currently loaded
with, for example, their PID, status, and command string, the sort of information output by ps. The
operating system manages processes using their PIDs, and they are used as an index into the process
table. The table is of limited size, so the number of processes a system will support is limited. Early
UNIX systems were limited to 256 processes. More modern implementations have relaxed this restric-
tion considerably and may be limited only by the memory available to construct a process table entry.

Viewing Processes
The ps command shows the processes you’re running, the process another user is running, or all the
processes on the system. Here is more sample output:

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 433 425 0 18:12 tty1 00:00:00 [bash]
rick 445 426 0 18:12 tty2 00:00:00 -bash
rick 456 427 0 18:12 tty3 00:00:00 [bash]
root 467 433 0 18:12 tty1 00:00:00 sh /usr/X11R6/bin/startx
root 474 467 0 18:12 tty1 00:00:00 xinit /etc/X11/xinit/xinitrc --
root 478 474 0 18:12 tty1 00:00:00 /usr/bin/gnome-session
root 487 1 0 18:12 tty1 00:00:00 gnome-smproxy --sm-client-id def
root 493 1 0 18:12 tty1 00:00:01 [enlightenment]
root 506 1 0 18:12 tty1 00:00:03 panel --sm-client-id default8

463

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 463

root 508 1 0 18:12 tty1 00:00:00 xscreensaver -no-splash -timeout
root 510 1 0 18:12 tty1 00:00:01 gmc --sm-client-id default10
root 512 1 0 18:12 tty1 00:00:01 gnome-help-browser --sm-client-i
root 649 445 0 18:24 tty2 00:00:00 su
root 653 649 0 18:24 tty2 00:00:00 bash
neil 655 428 0 18:24 tty4 00:00:00 -bash
root 713 1 2 18:27 tty1 00:00:00 gnome-terminal
root 715 713 0 18:28 tty1 00:00:00 gnome-pty-helper
root 717 716 13 18:28 pts/0 00:00:01 emacs
root 718 653 0 18:28 tty2 00:00:00 ps –ef

This shows information about many processes, including the processes involved with the Emacs editor
under X on a Linux system. For example, the TTY column shows which terminal the process was started
from, TIME gives the CPU time used so far, and the CMD column shows the command used to start the
process. Let’s take a closer look at some of these.

neil 655 428 0 18:24 tty4 00:00:00 –bash

The initial login was performed on virtual console number 4. This is just the console on this machine.
The shell program that is running is the Linux default, bash.

root 467 433 0 18:12 tty1 00:00:00 sh /usr/X11R6/bin/startx

The X Window System was started by the command startx. This is a shell script that starts the X server
and runs some initial X programs.

root 717 716 13 18:28 pts/0 00:00:01 emacs

This process represents a window in X running Emacs. It was started by the window manager in response
to a request for a new window. A new pseudo terminal, pts/0, has been assigned for the shell to read
from and write to.

root 512 1 0 18:12 tty1 00:00:01 gnome-help-browser --sm-client-i

This is the GNOME help browser started by the window manager.

By default, the ps program shows only processes that maintain a connection with a terminal, a console,
a serial line, or a pseudo terminal. Other processes run without needing to communicate with a user on a
terminal. These are typically system processes that Linux uses to manage shared resources. You can use
ps to see all such processes using the -e option and to get “full” information with -f.

The exact syntax for the ps command and the format of the output may vary slightly from system to
system. The GNU version of ps used in Linux supports options taken from several previous implemen-
tations of ps, including those in BSD and AT&T variants of UNIX and adds more of its own. Refer to
the manual for more details on the available options and output format of ps.

System Processes
Here are some of the processes running on another Linux system. The output has been abbreviated for
clarity. In the following examples you will see how to view the status of a process. The STAT output from

464

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 464

ps provides codes indicating the current status. Common codes are given in the following table. The
meanings of some of these will become clearer later in this chapter. Others are beyond the scope of this
book and can be safely ignored.

$ ps ax
PID TTY STAT TIME COMMAND
1 ? Ss 0:03 init [5]
2 ? S 0:00 [migration/0]
3 ? SN 0:00 [ksoftirqd/0]
4 ? S< 0:05 [events/0]
5 ? S< 0:00 [khelper]
6 ? S< 0:00 [kthread]

840 ? S< 2:52 [kjournald]
888 ? S<s 0:03 /sbin/udevd --daemon
3069 ? Ss 0:00 /sbin/acpid
3098 ? Ss 0:11 /usr/sbin/hald --daemon=yes
3099 ? S 0:00 hald-runner
8357 ? Ss 0:03 /sbin/syslog-ng
8677 ? Ss 0:00 /opt/kde3/bin/kdm
9119 ? S 0:11 konsole [kdeinit]
9120 pts/2 Ss 0:00 /bin/bash
9151 ? Ss 0:00 /usr/sbin/cupsd
9457 ? Ss 0:00 /usr/sbin/cron
9479 ? Ss 0:00 /usr/sbin/sshd -o PidFile=/var/run/sshd.init.pid

STAT Code Description

S Sleeping. Usually waiting for an event to occur, such as a signal or input to
become available.

R Running. Strictly speaking, “runnable,” that is, on the run queue either
executing or about to run.

D Uninterruptible Sleep (Waiting). Usually waiting for input or output to
complete.

T Stopped. Usually stopped by shell job control or the process is under the
control of a debugger.

Z Defunct or “zombie” process.

N Low priority task, “nice.”

W Paging. (Not for Linux kernel 2.6 onwards.)

s Process is a session leader.

+ Process is in the foreground process group.

l Process is multithreaded.

< High priority task.

465

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 465

9618 tty1 Ss+ 0:00 /sbin/mingetty --noclear tty1
9619 tty2 Ss+ 0:00 /sbin/mingetty tty2
9621 tty3 Ss+ 0:00 /sbin/mingetty tty3
9622 tty4 Ss+ 0:00 /sbin/mingetty tty4
9623 tty5 Ss+ 0:00 /sbin/mingetty tty5
9638 tty6 Ss+ 0:00 /sbin/mingetty tty6
10359 tty7 Ss+ 10:05 /usr/bin/Xorg -br -nolisten tcp :0 vt7 -auth
10360 ? S 0:00 -:0
10381 ? Ss 0:00 /bin/sh /usr/bin/kde
10438 ? Ss 0:00 /usr/bin/ssh-agent /bin/bash /etc/X11/xinit/xinitrc
10478 ? S 0:00 start_kdeinit --new-startup +kcminit_startup
10479 ? Ss 0:00 kdeinit Running...
10500 ? S 0:53 kdesktop [kdeinit]
10502 ? S 1:54 kicker [kdeinit]
10524 ? Sl 0:47 beagled /usr/lib/beagle/BeagleDaemon.exe --bg
10530 ? S 0:02 opensuseupdater
10539 ? S 0:02 kpowersave [kdeinit]
10541 ? S 0:03 klipper [kdeinit]
10555 ? S 0:01 kio_uiserver [kdeinit]
10688 ? S 0:53 konsole [kdeinit]
10689 pts/1 Ss+ 0:07 /bin/bash
10784 ? S 0:00 /opt/kde3/bin/kdesud
11052 ? S 0:01 [pdflush]
19996 ? SNl 0:20 beagled-helper /usr/lib/beagle/IndexHelper.exe
20254 ? S 0:00 qmgr -l -t fifo -u
21192 ? Ss 0:00 /usr/sbin/ntpd -p /var/run/ntp/ntpd.pid -u ntp -i /v
21198 ? S 0:00 pickup -l -t fifo -u
21475 pts/2 R+ 0:00 ps ax

Here you can see one very important process indeed.

1 ? Ss 0:03 init [5]

In general, each process is started by another process known as its parent process. A process so started
is known as a child process. When Linux starts, it runs a single program, the prime ancestor and process
number 1, init. This is, if you like, the operating system process manager and the grandparent of all
processes. Other system processes you’ll meet soon are started by init or by other processes started
by init.

One such example is the login procedure. init starts the getty program once for each serial terminal or
dial-in modem that you can use to log in. These are shown in the ps output like this:

9619 tty2 Ss+ 0:00 /sbin/mingetty tty2

The getty processes wait for activity at the terminal, prompt the user with the familiar login prompt,
and then pass control to the login program, which sets up the user environment and finally starts a shell.
When the user shell exits, init starts another getty process.

You can see that the ability to start new processes and to wait for them to finish is fundamental to the
system. You’ll see later in this chapter how to perform the same tasks from within your own programs
with the system calls fork, exec, and wait.

466

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 466

Process Scheduling
One further ps output example is the entry for the ps command itself:

21475 pts/2 R+ 0:00 ps ax

This indicates that process 21475 is in a run state (R) and is executing the command ps ax. Thus the
process is described in its own output! The status indicator shows only that the program is ready to run,
not necessarily that it’s actually running. On a single-processor computer, only one process can run at a
time, while others wait their turn. These turns, known as time slices, are quite short and give the impres-
sion that programs are running at the same time. The R+ just shows that the program is a foreground
task not waiting for other processes to finish or waiting for input or output to complete. That is why you
may see two such processes listed in ps output. (Another commonly seen process marked as running is
the X display server.)

The Linux kernel uses a process scheduler to decide which process will receive the next time slice. It does
this using the process priority (we discussed priorities back in Chapter 4). Processes with a high priority
get to run more often, whereas others, such as low-priority background tasks, run less frequently. With
Linux, processes can’t overrun their allocated time slice. They are preemptively multitasked so that they
are suspended and resumed without their cooperation. Older systems, such as Windows 3.x, generally
require processes to yield explicitly so that others may resume.

In a multitasking system such as Linux where several programs are likely to be competing for the
same resource, programs that perform short bursts of work and pause for input are considered better
behaved than those that hog the processor by continually calculating some value or continually query-
ing the system to see if new input is available. Well-behaved programs are termed nice programs, and
in a sense this “niceness” can be measured. The operating system determines the priority of a process
based on a “nice” value, which defaults to 0, and on the behavior of the program. Programs that run
for long periods without pausing generally get lower priorities. Programs that pause while, for exam-
ple, waiting for input, get rewarded. This helps keep a program that interacts with the user respon-
sive; while it is waiting for some input from the user, the system increases its priority, so that when
it’s ready to resume, it has a high priority. You can set the process nice value using nice and adjust it
using renice. The nice command increases the nice value of a process by 10, giving it a lower prior-
ity. You can view the nice values of active processes using the –l or –f (for long output) option to ps.
The value you are interested in is shown in the NI (nice) column.

$ ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

000 S 500 1259 1254 0 75 0 - 710 wait4 pts/2 00:00:00 bash
000 S 500 1262 1251 0 75 0 - 714 wait4 pts/1 00:00:00 bash
000 S 500 1313 1262 0 75 0 - 2762 schedu pts/1 00:00:00 emacs
000 S 500 1362 1262 2 80 0 - 789 schedu pts/1 00:00:00 oclock
000 R 500 1363 1262 0 81 0 - 782 - pts/1 00:00:00 ps

Here you can see that the oclock program is running (as process 1362) with a default nice value. If it
had been started with the command

$ nice oclock &

467

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 467

it would have been allocated a nice value of +10. If you adjust this value with the command

$ renice 10 1362
1362: old priority 0, new priority 10

the clock program will run less often. You can see the modified nice value with ps again:

$ ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

000 S 500 1259 1254 0 75 0 - 710 wait4 pts/2 00:00:00 bash
000 S 500 1262 1251 0 75 0 - 714 wait4 pts/1 00:00:00 bash
000 S 500 1313 1262 0 75 0 - 2762 schedu pts/1 00:00:00 emacs
000 S 500 1362 1262 0 90 10 - 789 schedu pts/1 00:00:00 oclock
000 R 500 1365 1262 0 81 0 - 782 - pts/1 00:00:00 ps

The status column now also contains N to indicate that the nice value has changed from the default.

$ ps x
PID TTY STAT TIME COMMAND
1362 pts/1 SN 0:00 oclock

The PPID field of ps output indicates the parent process ID, the PID of either the process that caused this
process to start or, if that process is no longer running, init (PID 1).

The Linux scheduler decides which process it will allow to run on the basis of priority. Exact implementa-
tions vary, of course, but higher-priority processes run more often. In some cases, low-priority processes
don’t run at all if higher-priority processes are ready to run.

Star ting New Processes
You can cause a program to run from inside another program and thereby create a new process by using
the system library function.

#include <stdlib.h>

int system (const char *string);

The system function runs the command passed to it as a string and waits for it to complete. The com-
mand is executed as if the command

$ sh -c string

has been given to a shell. system returns 127 if a shell can’t be started to run the command and -1 if
another error occurs. Otherwise, system returns the exit code of the command.

468

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 468

Try It Out system
You can use system to write a program to run ps. Though this is not tremendously useful in and of
itself, you’ll see how to develop this technique in later examples. (We don’t check that the system call
actually worked for the sake of simplicity in the example.)

#include <stdlib.h>
#include <stdio.h>

int main()
{

printf(“Running ps with system\n”);
system(“ps ax”);
printf(“Done.\n”);
exit(0);

}

When you compile and run this program, system1.c, you get something like the following:

$./system1
Running ps with system
PID TTY STAT TIME COMMAND
1 ? Ss 0:03 init [5]

...

1262 pts/1 Ss 0:00 /bin/bash
1273 pts/2 S 0:00 su -
1274 pts/2 S+ 0:00 -bash
1463 pts/2 SN 0:00 oclock
1465 pts/1 S 0:01 emacs Makefile
1480 pts/1 S+ 0:00 ./system1
1481 pts/1 R+ 0:00 ps ax
Done.

Because the system function uses a shell to start the desired program, you could put it in the back-
ground by changing the function call in system1.c to the following:

system(“ps ax &“);

When you compile and run this version of the program, you get something like

$./system2
Running ps with system
PID TTY STAT TIME COMMAND
1 ? S 0:03 init [5]

...
Done.
$ 1274 pts/2 S+ 0:00 -bash
1463 pts/1 SN 0:00 oclock
1465 pts/1 S 0:01 emacs Makefile
1484 pts/1 R 0:00 ps ax

469

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 469

How It Works
In the first example, the program calls system with the string “ps ax”, which executes the ps program.
The program returns from the call to system when the ps command has finished. The system function
can be quite useful but is also limited. Because the program has to wait until the process started by the
call to system finishes, you can’t get on with other tasks.

In the second example, the call to system returns as soon as the shell command finishes. Because it’s a
request to run a program in the background, the shell returns as soon as the ps program is started, just
as would happen if you had typed

$ ps ax &

at a shell prompt. The system2 program then prints Done. and exits before the ps command has had a
chance to finish all of its output. The ps output continues to produce output after system2 exits and in
this case does not include an entry for system2. This kind of process behavior can be quite confusing for
users. To make good use of processes, you need finer control over their actions. Let’s look at a lower-
level interface to process creation, exec.

In general, using system is a far from ideal way to start other processes, because it invokes the desired
program using a shell. This is both inefficient, because a shell is started before the program is started,
and also quite dependent on the installation for the shell and environment that are used. In the next sec-
tion, you see a much better way of invoking programs, which should almost always be used in prefer-
ence to the system call.

Replacing a Process Image
There is a whole family of related functions grouped under the exec heading. They differ in the way
that they start processes and present program arguments. An exec function replaces the current process
with a new process specified by the path or file argument. You can use exec functions to “hand off”
execution of your program to another. For example, you could check the user’s credentials before start-
ing another application that has a restricted usage policy. The exec functions are more efficient than
system because the original program will no longer be running after the new one is started.

#include <unistd.h>

char **environ;

int execl(const char *path, const char *arg0, ..., (char *)0);
int execlp(const char *file, const char *arg0, ..., (char *)0);
int execle(const char *path, const char *arg0, ..., (char *)0, char *const
envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);

These functions belong to two types. execl, execlp, and execle take a variable number of arguments
ending with a null pointer. execv and execvp have as their second argument an array of strings. In both
cases, the new program starts with the given arguments appearing in the argv array passed to main.

470

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 470

These functions are usually implemented using execve, though there is no requirement for it to be done
this way.

The functions with names suffixed with a p differ in that they will search the PATH environment variable
to find the new program executable file. If the executable isn’t on the path, an absolute filename, including
directories, will need to be passed to the function as a parameter.

The global variable environ is available to pass a value for the new program environment. Alternatively,
an additional argument to the functions execle and execve is available for passing an array of strings to
be used as the new program environment.

If you want to use an exec function to start the ps program, you can choose from among the six exec
family functions, as shown in the calls in the code fragment that follows:

#include <unistd.h>

/* Example of an argument list */
/* Note that we need a program name for argv[0] */
char *const ps_argv[] =

{“ps”, “ax”, 0};

/* Example environment, not terribly useful */
char *const ps_envp[] =

{“PATH=/bin:/usr/bin”, “TERM=console”, 0};

/* Possible calls to exec functions */
execl(“/bin/ps”, “ps”, “ax”, 0); /* assumes ps is in /bin */
execlp(“ps”, “ps”, “ax”, 0); /* assumes /bin is in PATH */
execle(“/bin/ps”, “ps”, “ax”, 0, ps_envp); /* passes own environment */

execv(“/bin/ps”, ps_argv);
execvp(“ps”, ps_argv);
execve(“/bin/ps”, ps_argv, ps_envp);

Try It Out execlp
Let’s modify the example to use an execlp call:

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

printf(“Running ps with execlp\n”);
execlp(“ps”, “ps”, “ax”, 0);
printf(“Done.\n”);
exit(0);

}

471

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 471

When you run this program, pexec.c, you get the usual ps output, but no Done. message at all. Note
also that there is no reference to a process called pexec in the output.

$./pexec
Running ps with execlp
PID TTY STAT TIME COMMAND
1 ? S 0:03 init [5]

...
1262 pts/1 Ss 0:00 /bin/bash
1273 pts/2 S 0:00 su -
1274 pts/2 S+ 0:00 -bash
1463 pts/1 SN 0:00 oclock
1465 pts/1 S 0:01 emacs Makefile
1514 pts/1 R+ 0:00 ps ax

How It Works
The program prints its first message and then calls execlp, which searches the directories given by the
PATH environment variable for a program called ps. It then executes this program in place of the pexec
program, starting it as if you had given the shell command

$ ps ax

When ps finishes, you get a new shell prompt. You don’t return to pexec, so the second message doesn’t
get printed. The PID of the new process is the same as the original, as are the parent PID and nice value.
In effect, all that has happened is that the running program has started to execute new code from a new
executable file specified in the call to exec.

There is a limit on the combined size of the argument list and environment for a process started by exec
functions. This is given by ARG_MAX and on Linux systems is 128K bytes. Other systems may set a more
reduced limit that can lead to problems. The POSIX specification indicates that ARG_MAX should be at
least 4,096 bytes.

The exec functions generally don’t return unless an error occurs, in which case the error variable errno
is set and the exec function returns -1.

The new process started by exec inherits many features from the original. In particular, open file descriptors
remain open in the new process unless their “close on exec flag” has been set (refer to the fcntl system call
in Chapter 3 for more details). Any open directory streams in the original process are closed.

Duplicating a Process Image
To use processes to perform more than one function at a time, you can either use threads, covered in
Chapter 12, or create an entirely separate process from within a program, as init does, rather than
replace the current thread of execution, as in the exec case.

You can create a new process by calling fork. This system call duplicates the current process, creating a
new entry in the process table with many of the same attributes as the current process. The new process

472

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 472

is almost identical to the original, executing the same code but with its own data space, environment,
and file descriptors. Combined with the exec functions, fork is all you need to create new processes.

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

As you can see in Figure 11-2, the call to fork in the parent returns the PID of the new child process. The
new process continues to execute just like the original, with the exception that in the child process the
call to fork returns 0. This allows both the parent and child to determine which is which.

Figure 11-2

If fork fails, it returns -1. This is commonly due to a limit on the number of child processes that a parent
may have (CHILD_MAX), in which case errno will be set to EAGAIN. If there is not enough space for an entry
in the process table, or not enough virtual memory, the errno variable will be set to ENOMEM.

A typical code fragment using fork is

pid_t new_pid;

new_pid = fork();

switch(new_pid) {
case -1 : /* Error */

break;
case 0 : /* We are child */

break;
default : /* We are parent */

break;
}

Original
process

continues

Fork()

Initial process

Returns a
new PID

New
process

Returns
zero

473

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 473

Try It Out fork
Let’s look at a simple example, fork1.c:

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

pid_t pid;
char *message;
int n;

printf(“fork program starting\n”);
pid = fork();
switch(pid)
{
case -1:

perror(“fork failed”);
exit(1);

case 0:
message = “This is the child”;
n = 5;
break;

default:
message = “This is the parent”;
n = 3;
break;

}

for(; n > 0; n--) {
puts(message);
sleep(1);

}
exit(0);

}

This program runs as two processes. A child is created and prints a message five times. The original
process (the parent) prints a message only three times. The parent process finishes before the child has
printed all of its messages, so the next shell prompt appears mixed in with the output.

$./fork1
fork program starting
This is the child
This is the parent
This is the parent
This is the child
This is the parent
This is the child
$ This is the child
This is the child

474

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 474

How It Works
When fork is called, this program divides into two separate processes. The parent process is identified by a
nonzero return from fork and is used to set a number of messages to print, each separated by one second.

Waiting for a Process
When you start a child process with fork, it takes on a life of its own and runs independently. Sometimes,
you would like to find out when a child process has finished. For example, in the previous program, the
parent finishes ahead of the child and you get some messy output as the child continues to run. You can
arrange for the parent process to wait until the child finishes before continuing by calling wait.

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *stat_loc);

The wait system call causes a parent process to pause until one of its child processes is stopped. The call
returns the PID of the child process. This will normally be a child process that has terminated. The status
information allows the parent process to determine the exit status of the child process, that is, the value
returned from main or passed to exit. If stat_loc is not a null pointer, the status information will be
written to the location to which it points.

You can interpret the status information using macros defined in sys/wait.h, shown in the following table.

Try It Out wait
In this Try It Out, you modify the program slightly so you can wait for and examine the child process
exit status. Call the new program wait.c.

#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <stdio.h>

Macro Definition

WIFEXITED(stat_val) Nonzero if the child is terminated normally.

WEXITSTATUS(stat_val) If WIFEXITED is nonzero, this returns child exit code.

WIFSIGNALED(stat_val) Nonzero if the child is terminated on an uncaught signal.

WTERMSIG(stat_val) If WIFSIGNALED is nonzero, this returns a signal number.

WIFSTOPPED(stat_val) Nonzero if the child has stopped.

WSTOPSIG(stat_val) If WIFSTOPPED is nonzero, this returns a signal number.

475

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 475

#include <stdlib.h>

int main()
{

pid_t pid;
char *message;
int n;
int exit_code;

printf(“fork program starting\n”);
pid = fork();
switch(pid)
{

case -1:
perror(“fork failed”);
exit(1);

case 0:
message = “This is the child”;
n = 5;
exit_code = 37;
break;

default:
message = “This is the parent”;
n = 3;
exit_code = 0;
break;

}

for(; n > 0; n--) {
puts(message);
sleep(1);

}

This section of the program waits for the child process to finish.

if (pid != 0) {
int stat_val;
pid_t child_pid;

child_pid = wait(&stat_val);

printf(“Child has finished: PID = %d\n”, child_pid);
if(WIFEXITED(stat_val))

printf(“Child exited with code %d\n”, WEXITSTATUS(stat_val));
else

printf(“Child terminated abnormally\n”);
}
exit(exit_code);

}

When you run this program, you see the parent wait for the child.

$./wait
fork program starting

476

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 476

This is the child
This is the parent
This is the parent
This is the child
This is the parent
This is the child
This is the child
This is the child
Child has finished: PID = 1582
Child exited with code 37
$

How It Works
The parent process, which got a nonzero return from the fork call, uses the wait system call to suspend its
own execution until status information becomes available for a child process. This happens when the child
calls exit; we gave it an exit code of 37. The parent then continues, determines that the child terminated
normally by testing the return value of the wait call, and extracts the exit code from the status information.

Zombie Processes
Using fork to create processes can be very useful, but you must keep track of child processes. When a
child process terminates, an association with its parent survives until the parent in turn either terminates
normally or calls wait. The child process entry in the process table is therefore not freed up immediately.
Although no longer active, the child process is still in the system because its exit code needs to be stored
in case the parent subsequently calls wait. It becomes what is known as defunct, or a zombie process.

You can see a zombie process being created if you change the number of messages in the fork example
program. If the child prints fewer messages than the parent, it will finish first and will exist as a zombie
until the parent has finished.

Try It Out Zombies
fork2.c is the same as fork1.c, except that the number of messages printed by the child and parent
processes is reversed. Here are the relevant lines of code:

switch(pid)
{
case -1:

perror(“fork failed”);
exit(1);

case 0:
message = “This is the child”;
n = 3;
break;

default:
message = “This is the parent”;
n = 5;
break;

}

477

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 477

How It Works
If you run the preceding program with ./fork2 & and then call the ps program after the child has fin-
ished but before the parent has finished, you’ll see a line such as this. (Some systems may say <zombie>
rather than <defunct>.)

$ ps –al

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
004 S 0 1273 1259 0 75 0 - 589 wait4 pts/2 00:00:00 su
000 S 0 1274 1273 0 75 0 - 731 schedu pts/2 00:00:00 bash
000 S 500 1463 1262 0 75 0 - 788 schedu pts/1 00:00:00 oclock
000 S 500 1465 1262 0 75 0 - 2569 schedu pts/1 00:00:01 emacs
000 S 500 1603 1262 0 75 0 - 313 schedu pts/1 00:00:00 fork2
003 Z 500 1604 1603 0 75 0 - 0 do_exi pts/1 00:00:00 fork2 <defunct>
000 R 500 1605 1262 0 81 0 - 781 - pts/1 00:00:00 ps

If the parent then terminates abnormally, the child process automatically gets the process with PID 1
(init) as parent. The child process is now a zombie that is no longer running but has been inherited by
init because of the abnormal termination of the parent process. The zombie will remain in the process
table until collected by the init process. The bigger the table, the slower this procedure. You need to
avoid zombie processes, because they consume resources until init cleans them up.

There’s another system call that you can use to wait for child processes. It’s called waitpid, and you can
use it to wait for a specific process to terminate.

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

The pid argument specifies the PID of a particular child process to wait for. If it’s -1, waitpid will
return information for any child process. Like wait, it will write status information to the location
pointed to by stat_loc, if that is not a null pointer. The options argument allows you to modify the
behavior of waitpid. The most useful option is WNOHANG, which prevents the call to waitpid from
suspending execution of the caller. You can use it to find out whether any child processes have termi-
nated and, if not, to continue. Other options are the same as for wait.

So, if you wanted to have a parent process regularly check whether a specific child process has termi-
nated, you could use the call

waitpid(child_pid, (int *) 0, WNOHANG);

This will return zero if the child has not terminated or stopped, or child_pid if it has. waitpid will
return -1 on error and set errno. This can happen if there are no child processes (errno set to ECHILD),
if the call is interrupted by a signal (EINTR), or if the option argument is invalid (EINVAL).

478

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 478

Input and Output Redirection
You can use your knowledge of processes to alter the behavior of programs by exploiting the fact that open
file descriptors are preserved across calls to fork and exec. The next example involves a filter program —
a program that reads from its standard input and writes to its standard output, performing some useful
transformation as it does so.

Try It Out Redirection
Here’s a very simple filter program, upper.c, that reads input and converts it to uppercase:

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>

int main()
{

int ch;
while((ch = getchar()) != EOF) {

putchar(toupper(ch));
}
exit(0);

}

When you run the program, it does what you expect:

$./upper
hello THERE
HELLO THERE
^D
$

You can, of course, use it to convert a file to uppercase by using the shell redirection

$ cat file.txt
this is the file, file.txt, it is all lower case.
$./upper < file.txt
THIS IS THE FILE, FILE.TXT, IT IS ALL LOWER CASE.

What if you want to use this filter from within another program? This program, useupper.c, accepts a
filename as an argument and will respond with an error if called incorrectly.

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

char *filename;

if (argc != 2) {
fprintf(stderr, “usage: useupper file\n”);

479

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 479

exit(1);
}

filename = argv[1];

You reopen the standard input, again checking for any errors as you do so, and then use execl to
call upper.

if(!freopen(filename, “r”, stdin)) {
fprintf(stderr, “could not redirect stdin from file %s\n”, filename);
exit(2);

}

execl(“./upper”, “upper”, 0);

Don’t forget that execl replaces the current process; if there is no error, the remaining lines are not executed.

perror(“could not exec ./upper”);
exit(3);

}

How It Works
When you run this program, you can give it a file to convert to uppercase. The job is done by the pro-
gram upper, which doesn’t handle filename arguments. Note that you don’t require the source code for
upper; you can run any executable program in this way:

$./useupper file.txt
THIS IS THE FILE, FILE.TXT, IT IS ALL LOWER CASE.

The useupper program uses freopen to close the standard input and associate the file stream stdin
with the file given as a program argument. It then calls execl to replace the running process code with
that of the upper program. Because open file descriptors are preserved across the call to execl, the
upper program runs exactly as it would have under the shell command:

$./upper < file.txt

Threads
Linux processes can cooperate, can send each other messages, and can interrupt one another. They can
even arrange to share segments of memory between themselves, but they are essentially separate entities
within the operating system. They do not readily share variables.

There is a class of process known as a thread that is available in many UNIX and Linux systems. Though
threads can be difficult to program, they can be of great value in some applications, such as multithreaded
database servers. Programming threads on Linux (and UNIX generally) is not as common as using multiple
processes, because Linux processes are quite lightweight, and programming multiple cooperation processes
is much easier than programming threads. Threads are covered in Chapter 12.

480

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 480

Signals
A signal is an event generated by the UNIX and Linux systems in response to some condition, upon
receipt of which a process may in turn take some action. We use the term raise to indicate the generation
of a signal, and the term catch to indicate the receipt of a signal. Signals are raised by some error condi-
tions, such as memory segment violations, floating-point processor errors, or illegal instructions. They are
generated by the shell and terminal handlers to cause interrupts and can also be explicitly sent from one
process to another as a way of passing information or modifying behavior. In all these cases, the program-
ming interface is the same. Signals can be raised, caught and acted upon, or (for some at least) ignored.

Signal names are defined by including the header file signal.h. They all begin with SIG and include
those listed in the following table.

*Implementation-dependent actions may also be taken.

If a process receives one of these signals without first arranging to catch it, the process will be termi-
nated immediately. Usually, a core dump file is created. This file, called core and placed in the current
directory, is an image of the process that can be useful in debugging.

Additional signals include those in the following table.

Signal Name Description

SIGABORT *Process abort

SIGALRM Alarm clock

SIGFPE *Floating-point exception

SIGHUP Hangup

SIGILL *Illegal instruction

SIGINT Terminal interrupt

SIGKILL Kill (can’t be caught or ignored)

SIGPIPE Write on a pipe with no reader

SIGQUIT Terminal quit

SIGSEGV *Invalid memory segment access

SIGTERM Termination

SIGUSR1 User-defined signal 1

SIGUSR2 User-defined signal 2

481

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 481

SIGCHLD can be useful for managing child processes. It’s ignored by default. The remaining signals
cause the process receiving them to stop, except for SIGCONT, which causes the process to resume. They
are used by shell programs for job control and are rarely used by user programs.

We’ll look at the first group of signals in a little more detail later. For now, it’s enough to know that if the
shell and terminal driver are configured normally, typing the interrupt character (usually Ctrl+C) at the
keyboard will result in the SIGINT signal being sent to the foreground process, that is, the program cur-
rently running. This will cause the program to terminate unless it has arranged to catch the signal.

If you want to send a signal to a process other than the current foreground task, use the kill command.
This takes an optional signal number or name, and the PID (usually found using the ps command) to
send the signal to. For example, to send a “hangup” signal to a shell running on a different terminal with
PID 512, you would use the command

$ kill –HUP 512

A useful variant of the kill command is killall, which allows you to send a signal to all processes
running a specified command. Not all versions of UNIX support it, though Linux generally does. This is
useful when you do not know the PID, or when you want to send a signal to several different processes
executing the same command. A common use is to tell the inetd program to reread its configuration
options. To do this you can use the command

$ killall –HUP inetd

Programs can handle signals using the signal library function.

#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

This rather complex declaration says that signal is a function that takes two parameters, sig and func.
The signal to be caught or ignored is given as argument sig. The function to be called when the speci-
fied signal is received is given as func. This function must be one that takes a single int argument (the

Signal Name Description

SIGCHLD Child process has stopped or exited.

SIGCONT Continue executing, if stopped.

SIGSTOP Stop executing. (Can’t be caught or ignored.)

SIGTSTP Terminal stop signal.

SIGTTIN Background process trying to read.

SIGTTOU Background process trying to write.

482

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 482

signal received) and is of type void. The signal function itself returns a function of the same type, which
is the previous value of the function set up to handle this signal, or one of these two special values:

An example should make things clear. In the following Try It Out, you write a program, ctrlc.c, that
reacts to typing Ctrl+C by printing an appropriate message rather than terminating. Pressing Ctrl+C a
second time will end the program.

Try It Out Signal Handling
The function ouch reacts to the signal that is passed in the parameter sig. This function will be called
when a signal occurs. It prints a message and then resets the signal handling for SIGINT (by default,
generated by typing Ctrl+C) back to the default behavior.

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void ouch(int sig)
{

printf(“OUCH! - I got signal %d\n”, sig);
(void) signal(SIGINT, SIG_DFL);

}

The main function has to intercept the SIGINT signal generated when you type Ctrl+C. For the rest of
the time, it just sits in an infinite loop, printing a message once a second.

int main()
{

(void) signal(SIGINT, ouch);

while(1) {
printf(“Hello World!\n”);
sleep(1);

}
}

Typing Ctrl+C (shown as ^C in the following output) for the first time causes the program to react and
then continue. When you type Ctrl+C again, the program ends because the behavior of SIGINT has
returned to the default behavior of causing the program to exit.

$./ctrlc1
Hello World!
Hello World!
Hello World!
Hello World!
^C
OUCH! - I got signal 2

SIG_IGN Ignore the signal.

SIG_DFL Restore default behavior.

483

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 483

Hello World!
Hello World!
Hello World!
Hello World!
^C
$

As you can see from this example, the signal handling function takes a single integer parameter, the signal
number that caused the function to be called. This can be useful if the same function is used to handle more
than one signal. Here you print out the value of SIGINT, which on this system happens to have the value 2.
You shouldn’t rely on traditional numeric values for signals; always use signal names in new programs.

It is not safe to call all functions, such as printf, from within a signal handler. A useful technique is to use
a signal handler to set a flag and then check that flag from the main program and print a message if required.
Toward the end of the chapter, you will find a list of calls that can safely be made inside signal handlers.

How It Works
The program arranges for the function ouch to be called when you give the SIGINT signal by typing
Ctrl+C. After the interrupt function ouch has completed, the program carries on, but the signal action is
restored to the default. (Different versions of UNIX, particularly those derived from Berkeley UNIX,
have historically had subtly different signal behaviors. If you want the default action to a signal restored
after it has occurred, it’s always best to code it that way specifically.) When it receives a second SIGINT
signal, the program takes the default action, which is to terminate the program.

If you wanted to retain the signal handler and continue to react to Ctrl+C, you would need to re-estab-
lish it by calling signal again. This leads to a short time when the signal is not handled, from the start
of the interrupt function to just before the signal handler is re-established. It’s possible for a second sig-
nal to be received in this time and terminate the program against your wishes.

We don’t recommend that you use the signal interface for catching signals. We include it here because
you will find it in many older programs. You’ll see sigaction, a more cleanly defined and reliable
interface later, which you should use in all new programs.

The signal function returns the previous value of the signal handler for the specified signal if there is
one, or SIG_ERR otherwise, in which case, errno will be set to a positive value. errno will be set to
EINVAL if an invalid signal is specified or an attempt is made to handle a signal that may not be caught
or ignored, such as SIGKILL.

Sending Signals
A process may send a signal to another process, including itself, by calling kill. The call will fail if the
program doesn’t have permission to send the signal, often because the target process is owned by another
user. This is the program equivalent of the shell command of the same name.

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

484

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 484

The kill function sends the specified signal, sig, to the process whose identifier is given by pid. It
returns 0 on success. To send a signal, the sending process must have permission to do so. Normally, this
means that both processes must have the same user ID (that is, you can send a signal only to one of your
own processes, although the superuser can send signals to any process).

kill will fail, return -1, and set errno if the signal given is not a valid one (errno set to EINVAL), if it
doesn’t have permission (EPERM), or if the specified process doesn’t exist (ESRCH).

Signals provide you with a useful alarm clock facility. The alarm function call can be used by a process
to schedule a SIGALRM signal at some time in the future.

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

The alarm call schedules the delivery of a SIGALRM signal in seconds seconds. In fact, the alarm will be
delivered shortly after that, due to processing delays and scheduling uncertainties. A value of 0 will can-
cel any outstanding alarm request. Calling alarm before the signal is received will cause the alarm to be
rescheduled. Each process can have only one outstanding alarm. alarm returns the number of seconds
left before any outstanding alarm call would be sent, or -1 if the call fails.

To see how alarm works, you can simulate its effect by using fork, sleep, and signal. A program
could start a new process for the sole purpose of sending a signal at some time later.

Try It Out An Alarm Clock
In alarm.c, the first function, ding, simulates an alarm clock.

#include <sys/types.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

static int alarm_fired = 0;

void ding(int sig)
{

alarm_fired = 1;
}

In main, you tell the child process to wait for five seconds before sending a SIGALRM signal to its parent.

int main()
{

pid_t pid;

printf(“alarm application starting\n”);

pid = fork();
switch(pid) {
case -1:

485

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 485

/* Failure */
perror(“fork failed”);
exit(1);

case 0:
/* child */
sleep(5);
kill(getppid(), SIGALRM);
exit(0);

}

The parent process arranges to catch SIGALRM with a call to signal and then waits for the inevitable.

/* if we get here we are the parent process */
printf(“waiting for alarm to go off\n”);
(void) signal(SIGALRM, ding);

pause();
if (alarm_fired)

printf(“Ding!\n”);

printf(“done\n”);
exit(0);

}

When you run this program, it pauses for five seconds while it waits for the simulated alarm clock.

$./alarm
alarm application starting
waiting for alarm to go off
<5 second pause>
Ding!
done
$

This program introduces a new function, pause, which simply causes the program to suspend execution
until a signal occurs. When it receives a signal, any established handler is run and execution continues as
normal. It’s declared as

#include <unistd.h>

int pause(void);

and returns -1 (if the next received signal doesn’t cause the program to terminate) with errno set to
EINTR when interrupted by a signal. It is more common to use sigsuspend when waiting for signals,
which we discuss a bit later in the chapter.

How It Works
The alarm clock simulation program starts a new process via fork. This child process sleeps for five
seconds and then sends a SIGALRM to its parent. The parent arranges to catch SIGALRM and then pauses
until a signal is received. You do not call printf in the signal handler directly; rather, you set a flag and
then check the flag afterward.

486

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 486

Using signals and suspending execution is an important part of Linux programming. It means that a
program need not necessarily run all the time. Rather than run in a loop continually checking whether
an event has occurred, it can wait for an event to happen. This is especially important in a multiuser
environment where processes share a single processor and this kind of busy wait has a large impact on
system performance. A particular problem with signals is that you never know quite “What will happen
if a signal occurs in the middle of a system call?” (The answer is a rather unsatisfactory “it depends.”) In
general, you need to worry only about “slow” system calls, such as reading from a terminal, where the
system call will return with an error if a signal occurs while it is waiting. If you start using signals in
your programs, you need to be aware that some system calls could fail if a signal causes an error condi-
tion that you may not have considered before signal handling was added.

You must program your signals carefully, because there are a number of “race conditions” that can occur
in programs that use them. For example, if you intend to call pause to wait for a signal and that signal
occurs before the call to pause, your program may wait indefinitely for an event that won’t occur. These
race conditions, critical timing problems, catch many a novice programmer. Always check signal code
very carefully.

A Robust Signals Interface
We’ve covered raising and catching signals using signal and friends in some depth, because they are
very common in older UNIX programs. However, the X/Open and UNIX specifications recommend a
newer programming interface for signals that is more robust: sigaction.

#include <signal.h>

int sigaction(int sig, const struct sigaction *act, struct sigaction *oact);

The sigaction structure, used to define the actions to be taken on receipt of the signal specified by sig,
is defined in signal.h and has at least the following members:

void (*) (int) sa_handler /* function, SIG_DFL or SIG_IGN
sigset_t sa_mask /* signals to block in sa_handler
int sa_flags /* signal action modifiers

The sigaction function sets the action associated with the signal sig. If oact is not null, sigaction
writes the previous signal action to the location it refers to. If act is null, this is all sigaction does. If
act isn’t null, the action for the specified signal is set.

As with signal, sigaction returns 0 if successful and -1 if not. The error variable errno will be set to
EINVAL if the specified signal is invalid or if an attempt is made to catch or ignore a signal that can’t be
caught or ignored.

Within the sigaction structure pointed to by the argument act, sa_handler is a pointer to a function
called when signal sig is received. This is much like the function func you saw earlier passed to signal.
You can use the special values SIG_IGN and SIG_DFL in the sa_handler field to indicate that the signal is
to be ignored or the action is to be restored to its default, respectively.

487

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 487

The sa_mask field specifies a set of signals to be added to the process’s signal mask before the sa_handler
function is called. These are the set of signals that are blocked and won’t be delivered to the process. This
prevents the case you saw earlier where a signal is received before its handler has run to completion. Using
the sa_mask field can eliminate this race condition.

However, signals caught with handlers set by sigaction are by default not reset, and the sa_flags
field must be set to contain the value SA_RESETHAND if you want to obtain the behavior you saw earlier
with signal. Before we look in any more detail at sigaction, let’s rewrite the program ctrlc.c, using
sigaction instead of signal.

Try It Out sigaction
Make the changes that follow so that SIGINT is intercepted by sigaction. Call the new program
ctrlc2.c.

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void ouch(int sig)
{

printf(“OUCH! - I got signal %d\n”, sig);
}

int main()
{

struct sigaction act;

act.sa_handler = ouch;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;

sigaction(SIGINT, &act, 0);

while(1) {
printf(“Hello World!\n”);
sleep(1);

}
}

When you run this version of the program, you always get a message when you type Ctrl+C because
SIGINT is handled repeatedly by sigaction. To terminate the program, you have to type Ctrl+\, which
generates the SIGQUIT signal by default.

$./ctrlc2
Hello World!
Hello World!
Hello World!
^C
OUCH! - I got signal 2
Hello World!
Hello World!
^C
OUCH! - I got signal 2

488

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 488

Hello World!
Hello World!
^\
Quit
$

How It Works
The program calls sigaction instead of signal to set the signal handler for Ctrl+C (SIGINT) to the
function ouch. It first has to set up a sigaction structure that contains the handler, a signal mask, and
flags. In this case, you don’t need any flags, and an empty signal mask is created with the new function,
sigemptyset.

After running this program, you may find a core dump (in a file called core) has been created. You can
safely delete it.

Signal Sets
The header file signal.h defines the type sigset_t and functions used to manipulate sets of signals.
These sets are used in sigaction and other functions to modify process behavior on receipt of signals.

#include <signal.h>

int sigaddset(sigset_t *set, int signo);
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigdelset(sigset_t *set, int signo);

These functions perform the operations suggested by their names. sigemptyset initializes a signal set to
be empty. sigfillset initializes a signal set to contain all defined signals. sigaddset and sigdelset
add and delete a specified signal (signo) from a signal set. They all return 0 if successful and -1 with
errno set on error. The only error defined is EINVAL if the specified signal is invalid.

The function sigismember determines whether the given signal is a member of a signal set. It returns 1
if the signal is a member of the set, 0 if it isn’t, and -1 with errno set to EINVAL if the signal is invalid.

#include <signal.h>

int sigismember(sigset_t *set, int signo);

The process signal mask is set or examined by calling the function sigprocmask. This signal mask is the
set of signals that are currently blocked and will therefore not be received by the current process.

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

sigprocmask can change the process signal mask in a number of ways according to the how argument.
New values for the signal mask are passed in the argument set if it isn’t null, and the previous signal
mask will be written to the signal set oset.

489

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 489

The how argument can be one of the following:

If the set argument is a null pointer, the value of how is not used and the only purpose of the call is to
fetch the value of the current signal mask into oset.

If it completes successfully, sigprocmask returns 0, or it returns -1 if the how parameter is invalid, in
which case errno will be set to EINVAL.

If a signal is blocked by a process, it won’t be delivered, but will remain pending. A program can deter-
mine which of its blocked signals are pending by calling the function sigpending.

#include <signal.h>

int sigpending(sigset_t *set);

This writes a set of signals that are blocked from delivery and are pending into the signal set pointed to
by set. It returns 0 if successful, otherwise, -1 with errno set to indicate the error. This function can be
useful when a program needs to handle signals and to control when the handling function is called.

A process can suspend execution until the delivery of one of a set of signals by calling sigsuspend. This
is a more general form of the pause function you met earlier.

#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

The sigsuspend function replaces the process signal mask with the signal set given by sigmask and
then suspends execution. It will resume after the execution of a signal handling function. If the received
signal terminates the program, sigsuspend will never return. If a received signal doesn’t terminate the
program, sigsuspend returns -1 with errno set to EINTR.

sigaction Flags
The sa_flags field of the sigaction structure used in sigaction may contain the values shown in
the following table to modify signal behavior:

SA_NOCLDSTOP Don’t generate SIGCHLD when child processes stop.

SA_RESETHAND Reset signal action to SIG_DFL on receipt.

SA_RESTART Restart interruptible functions rather than error with EINTR.

SA_NODEFER Don’t add the signal to the signal mask when caught.

SIG_BLOCK The signals in set are added to the signal mask.

SIG_SETMASK The signal mask is set from set.

SIG_UNBLOCK The signals in set are removed from the signal mask.

490

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 490

The SA_RESETHAND flag can be used to automatically clear a signal function when a signal is caught, as
we saw before.

Many system calls that a program uses are interruptible; that is, when they receive a signal they will
return with an error and errno will be set to EINTR to indicate that the function returned due to a signal.
This behavior requires extra care by an application using signals. If SA_RESTART is set in the sa_flags
field in a call to sigaction, a function that might otherwise be interrupted by a signal will instead be
restarted once the signal handling function has been executed.

Ordinarily, when a signal handling function is being executed, the signal received is added to the
process signal mask for the duration of the handling function. This prevents a subsequent occurrence of
the same signal, causing the signal handling function to run again. If the function is not re-entrant, hav-
ing it called by another occurrence of a signal before it finishes handling the first may cause problems. If,
however, the SA_NODEFER flag is set, the signal mask is not altered when it receives this signal.

A signal handling function could be interrupted in the middle and called again by something else. When
you come back to the first call, it’s vital that it still operates correctly. It’s not just recursive (calling itself),
but re-entrant (can be entered and executed again without problems). Interrupt service routines in the
kernel that deal with more than one device at a time need to be re-entrant, because a higher-priority
interrupt might “get in” during the execution of the same code.

Functions that are safe to call inside a signal handler, those guaranteed by the X/Open specification
either to be re-entrant or not to raise signals themselves, are listed in the following table.

All functions not listed in the following table should be considered unsafe with respect to signals.

Continued on next page

access alarm cfgetispeed cfgetospeed

cfsetispeed cfsetospeed chdir chmod

chown close creat dup2

dup execle execve _exit

fcntl fork fstat getegid

geteuid getgid getgroups getpgrp

getpid getppid getuid kill

link lseek mkdir mkfifo

open pathconf pause pipe

read rename rmdir setgid

setpgid setsid setuid sigaction

sigaddset sigdelset sigemptyset sigfillset

491

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 491

Common Signal Reference
In this section, we list the signals that Linux and UNIX programs typically need with their default
behaviors.

The default action for the signals in the following table is abnormal termination of the process with all
the consequences of _exit (which is like exit but performs no cleanup before returning to the kernel).
However, the status is made available to wait, and waitpid indicates abnormal termination by the
specified signal.

By default, the signals in the next table also cause abnormal termination. Additionally, implementation-
dependent actions, such as creation of a core file, may occur.

Signal Name Description

SIGALRM Generated by the timer set by the alarm function.

SIGHUP Sent to the controlling process by a disconnecting terminal, or by
the controlling process on termination to each foreground process.

SIGINT Typically raised from the terminal by typing Ctrl+C or the config-
ured interrupt character.

SIGKILL Typically used from the shell to forcibly terminate an errant
process, because this signal can’t be caught or ignored.

SIGPIPE Generated by an attempt to write to a pipe with no
associated reader.

SIGTERM Sent as a request for a process to finish. Used by UNIX when shut-
ting down to request that system services stop. This is the default
signal sent from the kill command.

SIGUSR1, SIGUSR2 May be used by processes to communicate with each other, possi-
bly to cause them to report status information.

sigismember signal sigpending sigprocmask

sigsuspend sleep stat sysconf

tcdrain tcflow tcflush tcgetattr

tcgetpgrp tcsendbreak tcsetattr tcsetpgrp

time times umask uname

unlink utime wait waitpid

write

492

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 492

A process is suspended by default on receipt of one of the signals in the following table.

SIGCONT restarts a stopped process and is ignored if received by a process that is not stopped. The
SIGCHLD signal is ignored by default.

Summary
In this chapter, you have seen how processes are a fundamental part of the Linux operating system. You
have learned how they can be started, terminated, and viewed, and how you can use them to solve pro-
gramming problems. You’ve also taken a look at signals, events that can be used to control the actions of
running programs. You have seen that all Linux processes, down to and including init, use the same
set of system calls available to any programmer.

Signal Name Description

SIGCONT Continue executing, if stopped.

SIGCHLD Raised when a child process stops or exits.

Signal Name Description

SIGSTOP Stop executing (can’t be caught or ignored).

SIGTSTP Terminal stop signal, often raised by typing Ctrl+Z.

SIGTTIN, SIGTTOU Used by the shell to indicate that background jobs have stopped
because they need to read from the terminal or produce output.

Signal Name Description

SIGFPE Generated by a floating-point arithmetic exception.

SIGILL An illegal instruction has been executed by the processor. Usually caused
by a corrupt program or invalid shared memory module.

SIGQUIT Typically raised from the terminal by typing Ctrl+\ or the configured
quit character.

SIGSEGV A segmentation violation, usually caused by reading or writing at an ille-
gal location in memory either by exceeding array bounds or dereferenc-
ing an invalid pointer. Overwriting a local array variable and corrupting
the stack can cause a SIGSEGV to be raised when a function returns to an
illegal address.

493

Chapter 11: Processes and Signals

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 493

47627c11.qxd:WroxPro 10/1/07 7:18 AM Page 494

12
POSIX Threads

In Chapter 11, you saw how processes are handled in Linux (and indeed in UNIX). These multi-
processing features have long been a feature of UNIX-like operating systems. Sometimes it may be
very useful to make a single program do two things at once, or at least to appear to do so, or you
might want two or more things to happen at the same time in a closely coupled way but consider
the overhead of creating a new process with fork too great. For these occasions you can use
threads, which allow a single process to multitask.

In this chapter, you look at

❑ Creating new threads within a process

❑ Synchronizing data access between threads in a single process

❑ Modifying the attributes of a thread

❑ Controlling one thread from another in the same process

What Is a Thread?
Multiple strands of execution in a single program are called threads. A more precise definition is that a
thread is a sequence of control within a process. All the programs you have seen so far have executed
as a single process, although, like many other operating systems, Linux is quite capable of running
multiple processes simultaneously. Indeed, all processes have at least one thread of execution. All the
processes that you have seen so far in this book have had just one thread of execution.

It’s important to be clear about the difference between the fork system call and the creation of
new threads. When a process executes a fork call, a new copy of the process is created with its
own variables and its own PID. This new process is scheduled independently, and (in general)
executes almost independently of the process that created it. When we create a new thread in a
process, in contrast, the new thread of execution gets its own stack (and hence local variables) but
shares global variables, file descriptors, signal handlers, and its current directory state with the
process that created it.

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 495

The concept of threads has been around for some time, but until the IEEE POSIX committee published some
standards, they had not been widely available in UNIX-like operating systems, and the implementations
that did exist tended to vary between different vendors. With the advent of the POSIX 1003.1c specification,
all that changed; threads are not only better standardized, but are also available on most Linux distributions.
Now that multi-core processors have also become common even in desktop machines, most machines also
have underlying hardware support that allows them to physically execute multiple threads simultaneously.
Previously, with single-core CPUs, the simultaneous execution of threads was just a clever, though very effi-
cient, illusion.

Linux first acquired thread support around 1996, with a library often referred to as “LinuxThreads.” This
was very close to the POSIX standard (indeed, for many purposes the differences are not noticeable) and it
was a significant step forward that enabled Linux programmers to use threads for the first time. However,
there where slight discrepancies between the Linux implementation and the POSIX standard, most notably
with regard to signal handling. These limitations were imposed not so much by the library implementa-
tion, but more by the limitations of the underlying support from the Linux kernel.

Various projects looked at how the thread support on Linux might be improved, not just to clear up the
slight discrepancies between the POSIX standard and the Linux implementation, but also to improve
performance and remove any unnecessary restrictions. Much work centered on how user-level threads
should map to kernel-level threads. The two principal projects were New Generation POSIX Threads
(NGPT) and Native POSIX Thread Library (NPTL). Both projects had to make changes to the Linux ker-
nel to support the new libraries, and both offered significant performance improvements over the older
Linux threads.

In 2002, the NGPT team announced that they did not wish to split the community and would cease adding
new features to NGPT, but would continue to work on thread support in Linux, effectively throwing their
weight behind the NPTL effort. NPTL became the new standard for threads on Linux, with its first main-
stream release in Red Hat Linux 9. You can find some interesting background information on NPTL in a
paper titled “The Native POSIX Thread Library for Linux” by Ulrich Drepper and Ingo Molnar, which, at
the time of this book’s writing, is at http://people.redhat.com/drepper/nptl-design.pdf.

Most of the code in this chapter should work with any of the thread libraries, because it is based on the
POSIX standard that is common across all the thread libraries. However, you may see some slight differ-
ences if you are using an older Linux distribution, particularly if you use ps to look at the examples
while they are running.

Advantages and Drawbacks of Threads
Creating a new thread has some distinct advantages over creating a new process in certain circum-
stances. The overhead cost of creating a new thread is significantly less than that of creating a new
process (though Linux is particularly efficient at creating new processes compared with many other
operating systems).

Following are some advantages of using threads:

❑ Sometimes it is very useful to make a program appear to do two things at once. The classic example
is to perform a real-time word count on a document while still editing the text. One thread can
manage the user’s input and perform editing. The other, which can see the same document content,
can continuously update a word count variable. The first thread (or even a third one) can use this

496

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 496

shared variable to keep the user informed. Another example is a multithreaded database server
where an apparent single process serves multiple clients, improving the overall data throughput by
servicing some requests while blocking others, waiting for disk activity. For a database server, this
apparent multitasking is quite hard to do efficiently in different processes, because the requirements
for locking and data consistency cause the different processes to be very tightly coupled. This can
be done much more easily with multiple threads than with multiple processes.

❑ The performance of an application that mixes input, calculation, and output may be improved
by running these as three separate threads. While the input or output thread is waiting for a
connection, one of the other threads can continue with calculations. A server application pro-
cessing multiple network connects may also be a natural fit for a multithreaded program.

❑ Now that multi-cored CPUs are common even in desktop and laptop machines, using multiple
threads inside a process can, if the application is suitable, enable a single process to better utilize
the hardware resources available.

❑ In general, switching between threads requires the operating system to do much less work than
switching between processes. Thus, multiple threads are much less demanding on resources
than multiple processes, and it is more practical to run programs that logically require many
threads of execution on single-processor systems. That said, the design difficulties of writing
a multithreaded program are significant and should not be taken lightly.

Threads also have drawbacks:

❑ Writing multithreaded programs requires very careful design. The potential for introducing
subtle timing faults, or faults caused by the unintentional sharing of variables in a multithreaded
program is considerable. Alan Cox (the well respected Linux guru) has commented that threads
are also known as “how to shoot yourself in both feet at once.”

❑ Debugging a multithreaded program is much, much harder than debugging a single-threaded
one, because the interactions between the threads are very hard to control.

❑ A program that splits a large calculation into two and runs the two parts as different threads
will not necessarily run more quickly on a single processor machine, unless the calculation truly
allows multiple parts to be calculated simultaneously and the machine it is executing on has
multiple processor cores to support true multiprocessing.

A First Threads Program
There is a whole set of library calls associated with threads, most of whose names start with pthread.
To use these library calls, you must define the macro _REENTRANT, include the file pthread.h, and link
with the threads library using -lpthread.

When the original UNIX and POSIX library routines were designed, it was assumed that there would
be only a single thread of execution in any process. An obvious example is errno, the variable used for
retrieving error information after a call fails. In a multithreaded program there would, by default, be
only one errno variable shared between all the threads. The variable could easily be updated by a call
in one thread before a different thread has been able to retrieve a previous error code. Similar problems
exist with functions, such as fputs, that normally use a single global area for buffering output.

497

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 497

You need routines known as re-entrant routines. Re-entrant code can be called more than once, whether
by different threads or by nested invocations in some way, and still function correctly. Thus, the re-entrant
section of code usually must use local variables only in such a way that each and every call to the code
gets its own unique copy of the data.

In multithreaded programs, you tell the compiler that you need this feature by defining the _REENTRANT
macro before any #include lines in your program. This does three things, and does them so elegantly
that usually you don’t even need to know what was done:

❑ Some functions get prototypes for a re-entrant safe equivalent. These are normally the same
function name, but with _r appended so that, for example, gethostbyname is changed to
gethostbyname_r.

❑ Some stdio.h functions that are normally implemented as macros become proper re-entrant
safe functions.

❑ The variable errno, from errno.h, is changed to call a function, which can determine the real
errno value in a multithread safe way.

Including the file pthread.h provides you with other definitions and prototypes that you will need in
your code, much like stdio.h for standard input and output routines. Finally, you need to ensure that you
include the appropriate thread header file and link with the appropriate threads library that implements
the pthread functions. The Try It Out example later in this section offers more detail about compiling your
program, but first let’s look at the new functions you need for managing threads. pthread_create creates
a new thread, much as fork creates a new process.

#include <pthread.h>

int pthread_create(pthread_t *thread, pthread_attr_t *attr, void
*(*start_routine)(void *), void *arg);

This may look imposing, but it is actually quite easy to use. The first argument is a pointer to pthread_t.
When a thread is created, an identifier is written to the memory location to which this variable points.
This identifier enables you to refer to the thread. The next argument sets the thread attributes. You do not
usually need any special attributes, and you can simply pass NULL as this argument. Later in the chapter
you will see how to use these attributes. The final two arguments tell the thread the function that it is to
start executing and the arguments that are to be passed to this function.

void *(*start_routine)(void *)

The preceding line simply says that you must pass the address of a function taking a pointer to void as a
parameter and the function will return a pointer to void. Thus, you can pass any type of single argument
and return a pointer to any type. Using fork causes execution to continue in the same location with a dif-
ferent return code, whereas using a new thread explicitly provides a pointer to a function where the new
thread should start executing.

The return value is 0 for success or an error number if anything goes wrong. The manual pages have
details of error conditions for this and other functions used in this chapter.

pthread_create, like most pthread_ functions, is among the few Linux functions that do not fol-
low the convention of using a return value of 1 for errors. Unless you are very sure, it’s always safest to
double-check the manual before checking the return code.

498

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 498

When a thread terminates, it calls the pthread_exit function, much as a process calls exit when it ter-
minates. This function terminates the calling thread, returning a pointer to an object. Never use it to return
a pointer to a local variable, because the variable will cease to exist when the thread does so, causing a
serious bug. pthread_exit is declared as follows:

#include <pthread.h>

void pthread_exit(void *retval);

pthread_join is the thread equivalent of wait that processes use to collect child processes. This func-
tion is declared as follows:

#include <pthread.h>

int pthread_join(pthread_t th, void **thread_return);

The first parameter is the thread for which to wait, the identifier that pthread_create filled in for
you. The second argument is a pointer to a pointer that itself points to the return value from the
thread. Like pthread_create, this function returns zero for success and an error code on failure.

Try It Out A Simple Threaded Program
This program creates a single extra thread, shows that it is sharing variables with the original thread,
and gets the new thread to return a result to the original thread. Multithreaded programs don’t get much
simpler than this! Here is thread1.c:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>

void *thread_function(void *arg);

char message[] = “Hello World”;

int main() {
int res;
pthread_t a_thread;
void *thread_result;

res = pthread_create(&a_thread, NULL, thread_function, (void *)message);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
printf(“Waiting for thread to finish...\n”);
res = pthread_join(a_thread, &thread_result);
if (res != 0) {

perror(“Thread join failed”);
exit(EXIT_FAILURE);

}

499

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 499

printf(“Thread joined, it returned %s\n”, (char *)thread_result);
printf(“Message is now %s\n”, message);
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
printf(“thread_function is running. Argument was %s\n”, (char *)arg);
sleep(3);
strcpy(message, “Bye!”);
pthread_exit(“Thank you for the CPU time”);

}

1. To compile this, first you need to ensure that _REENTRANT is defined. On a few systems, you
may also need to define _POSIX_C_SOURCE, but normally this will not be necessary.

2. Next you must ensure that the appropriate thread library is linked. In the unlikely event that
you are using an older Linux distribution where NPTL is not the default thread library, you may
want to consider an upgrade, although most code in this chapter is compatible with the older
Linux threads implementation. An easy way to check is to look in /usr/include/pthread.h.
If this file shows a copyright date of 2003 or later, it’s almost certainly the NPTL implementa-
tion. If the date is earlier, it’s probably time to get a more recent Linux installation.

3. Having identified and installed the appropriate files, you can now compile and link your pro-
gram like this:

$ cc -D_REENTRANT -I/usr/include/nptl thread1.c
–o thread1 -L/usr/lib/nptl -lpthread

If NPTL is the default on your system (which is quite likely), you almost certainly don’t need the –I and
–L options, and can use the simpler:

$ cc -D_REENTRANT thread1.c –o thread1 -lpthread

We will use the simpler version of the compile line throughout this chapter.

4. When you run this program, you should see the following:

$./thread1
Waiting for thread to finish...
thread_function is running. Argument was Hello World
Thread joined, it returned Thank you for the CPU time
Message is now Bye!

It’s worth spending a little time on understanding this program, because we will be using it as the basis
for most of the examples in this chapter.

How It Works
You declare a prototype for the function that the thread will call when you create it:

void *thread_function(void *arg);

500

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 500

As required by pthread_create, it takes a pointer to void as its only argument and returns a pointer to
void. (We will come to the implementation of thread_function in a moment.)

In main, you declare some variables and then call pthread_create to start running your new thread.

pthread_t a_thread;
void *thread_result;

res = pthread_create(&a_thread, NULL, thread_function, (void *)message);

You pass the address of a pthread_t object that you can use to refer to the thread afterward. You don’t
want to modify the default thread attributes, so you pass NULL as the second parameter. The final two
parameters are the function to call and a parameter to pass to it.

If the call succeeds, two threads will now be running. The original thread (main) continues and exe-
cutes the code after pthread_create, and a new thread starts executing in the imaginatively named
thread_function.

The original thread checks that the new thread has started and then calls pthread_join.

res = pthread_join(a_thread, &thread_result);

Here you pass the identifier of the thread that you are waiting to join and a pointer to a result. This
function will wait until the other thread terminates before it returns. It then prints the return value
from the thread and the contents of a variable, and exits.

The new thread starts executing at the start of thread_function, which prints out its arguments, sleeps
for a short period, updates global variables, and then exits, returning a string to the main thread. The
new thread writes to the same array, message, to which the original thread has access. If you had called
fork rather than pthread_create, the array would have been a copy of the original message, rather
than the same array.

Simultaneous Execution
The next example shows you how to write a program that checks that the execution of two threads
occurs simultaneously. (Of course, if you are using a single-processor system, the CPU would be cleverly
switched between the threads, rather than having the hardware simultaneously execute both threads
using separate processor cores). Because you haven’t yet met any of the thread synchronization func-
tions, this will be a very inefficient program that does what is known as a polling between the two
threads. Again, you will make use of the fact that everything except local function variables are shared
between the different threads in a process.

Try It Out Simultaneous Execution of Two Threads
The program you create in this section, thread2.c, is created by slightly modifying thread1.c. You
add an extra file scope variable to test which thread is running:

501

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 501

The full code files for the examples are provided in the downloads from the book’s website.

int run_now = 1;

Set run_now to 1 when the main function is executing and to 2 when your new thread is executing.

In the main function, after the creation of the new thread, add the following code:

int print_count1 = 0;

while(print_count1++ < 20) {
if (run_now == 1) {

printf(“1”);
run_now = 2;

}
else {

sleep(1);
}

}

If run_now is 1, print “1” and set it to 2. Otherwise, you sleep briefly and check the value again. You are
waiting for the value to change to 1 by checking over and over again. This is called a busy wait, although
here it is slowed down by sleeping for a second between checks. You’ll see a better way to do this later in
the chapter.

In thread_function, where your new thread is executing, you do much the same but with the values
reversed:

int print_count2 = 0;

while(print_count2++ < 20) {
if (run_now == 2) {

printf(“2”);
run_now = 1;

}
else {

sleep(1);
}

}

You remove the parameter passing and return value passing because you are no longer interested in
them.

When you run the program, you see the following output. (You may find that it takes a few seconds for
the program to produce output, particularly on a single-core CPU machine.)

$ cc -D_REENTRANT thread2.c -o thread2 -lpthread
$./thread2
12121212121212121212
Waiting for thread to finish...
Thread joined

502

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 502

How It Works
Each thread tells the other one to run by setting the run_now variable and then waits till the other thread
has changed its value before running again. This shows that execution passes between the two threads
automatically and again illustrates the point that both threads are sharing the run_now variable.

Synchronization
In the previous section, you saw that both threads execute together, but the method of switching between
them was clumsy and very inefficient. Fortunately, there is a set functions specifically designed to provide
better ways to control the execution of threads and access to critical sections of code.

We look at two basic methods here: semaphores, which act as gatekeepers around a piece of code, and
mutexes, which act as a mutual exclusion (hence the name mutex) device to protect sections of code. These
methods are similar; indeed, one can be implemented in terms of the other. However, there are some cases
where the semantics of the problem suggest that one is more expressive than the other. For example, con-
trolling access to some shared memory, which only one thread can access at a time, would most naturally
involve a mutex. However, controlling access to a set of identical objects as a whole, such as giving one
telephone line out of a set of five available lines to a thread, suits a counting semaphore better. Which one
you choose depends on personal preference and the most appropriate mechanism for your program.

Synchronization with Semaphores
There are two sets of interface functions for semaphores: One is taken from POSIX Realtime Extensions
and used for threads, and the other is known as System V semaphores, which are commonly used for
process synchronization. (We discuss the second type in Chapter 14.) The two are not guaranteed to be
interchangeable and, although very similar, use different function calls.

Dijkstra, a Dutch computer scientist, first conceived the concept of semaphores. A semaphore is a special
type of variable that can be incremented or decremented, but crucial access to the variable is guaranteed
to be atomic, even in a multithreaded program. This means that if two (or more) threads in a program
attempt to change the value of a semaphore, the system guarantees that all the operations will in fact
take place in sequence. With normal variables the result of conflicting operations from different threads
within the same program is undefined.

In this section we look at the simplest type of semaphore, a binary semaphore that takes only values 0 or 1.
There is also a more general semaphore, a counting semaphore that takes a wider range of values. Normally,
semaphores are used to protect a piece of code so that only one thread of execution can run it at any one
time. For this job a binary semaphore is needed. Occasionally, you want to permit a limited number of
threads to execute a given piece of code; for this you would use a counting semaphore. Because counting
semaphores are much less common, we won’t consider them further here except to say that they are just a
logical extension of a binary semaphore and that the actual function calls needed are identical.

The semaphore functions do not start with pthread_, as most thread-specific functions do, but with
sem_. Four basic semaphore functions are used in threads. They are all quite simple.

503

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 503

A semaphore is created with the sem_init function, which is declared as follows:

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

This function initializes a semaphore object pointed to by sem, sets its sharing option (which we discuss
more in a moment), and gives it an initial integer value. The pshared parameter controls the type of sema-
phore. If the value of pshared is 0, the semaphore is local to the current process. Otherwise, the semaphore
may be shared between processes. Here we are interested only in semaphores that are not shared between
processes. At the time of writing, Linux doesn’t support this sharing, and passing a nonzero value for
pshared will cause the call to fail.

The next pair of functions controls the value of the semaphore and is declared as follows:

#include <semaphore.h>

int sem_wait(sem_t * sem);

int sem_post(sem_t * sem);

These both take a pointer to the semaphore object initialized by a call to sem_init.

The sem_post function atomically increases the value of the semaphore by 1. Atomically here means that if
two threads simultaneously try to increase the value of a single semaphore by 1, they do not interfere with
each other, as might happen if two programs read, increment, and write a value to a file at the same time. If
both programs try to increase the value by 1, the semaphore will always be correctly increased in value by 2.

The sem_wait function atomically decreases the value of the semaphore by one, but always waits until
the semaphore has a nonzero count first. Thus, if you call sem_wait on a semaphore with a value of 2,
the thread will continue executing but the semaphore will be decreased to 1. If sem_wait is called on a
semaphore with a value of 0, the function will wait until some other thread has incremented the value
so that it is no longer 0. If two threads are both waiting in sem_wait for the same semaphore to become
nonzero and it is incremented once by a third process, only one of the two waiting processes will get to
decrement the semaphore and continue; the other will remain waiting. This atomic “test and set” ability
in a single function is what makes semaphores so valuable.

There is another semaphore function, sem_trywait, that is the nonblocking partner of sem_wait.
We don’t discuss it further here; you can find more details in the manual pages.

The last semaphore function is sem_destroy. This function tidies up the semaphore when you have
finished with it. It is declared as follows:

#include <semaphore.h>

int sem_destroy(sem_t * sem);

Again, this function takes a pointer to a semaphore and tidies up any resources that it may have. If you
attempt to destroy a semaphore for which some thread is waiting, you will get an error.

Like most Linux functions, these functions all return 0 on success.

504

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 504

Try It Out A Thread Semaphore
This code, thread3.c, is also based on thread1.c. Because a lot has changed, we present it in full.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>

void *thread_function(void *arg);
sem_t bin_sem;

#define WORK_SIZE 1024
char work_area[WORK_SIZE];

int main() {
int res;
pthread_t a_thread;
void *thread_result;

res = sem_init(&bin_sem, 0, 0);
if (res != 0) {

perror(“Semaphore initialization failed”);
exit(EXIT_FAILURE);

}
res = pthread_create(&a_thread, NULL, thread_function, NULL);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
printf(“Input some text. Enter ‘end’ to finish\n”);
while(strncmp(“end”, work_area, 3) != 0) {

fgets(work_area, WORK_SIZE, stdin);
sem_post(&bin_sem);

}
printf(“\nWaiting for thread to finish...\n”);
res = pthread_join(a_thread, &thread_result);
if (res != 0) {

perror(“Thread join failed”);
exit(EXIT_FAILURE);

}
printf(“Thread joined\n”);
sem_destroy(&bin_sem);
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
sem_wait(&bin_sem);
while(strncmp(“end”, work_area, 3) != 0) {

printf(“You input %d characters\n”, strlen(work_area) -1);
sem_wait(&bin_sem);

505

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 505

}
pthread_exit(NULL);

}

The first important change is the inclusion of semaphore.h to provide access to the semaphore func-
tions. Then you declare a semaphore and some variables and initialize the semaphore before you create
your new thread.

sem_t bin_sem;

#define WORK_SIZE 1024
char work_area[WORK_SIZE];

int main() {
int res;
pthread_t a_thread;
void *thread_result;
res = sem_init(&bin_sem, 0, 0);
if (res != 0) {

perror(“Semaphore initialization failed”);
exit(EXIT_FAILURE);

}

Note that the initial value of the semaphore is set to 0.

In the function main, after you have started the new thread, you read some text from the keyboard, load
your work area, and then increment the semaphore with sem_post.

printf(“Input some text. Enter ‘end’ to finish\n”);
while(strncmp(“end”, work_area, 3) != 0) {

fgets(work_area, WORK_SIZE, stdin);
sem_post(&bin_sem);

}

In the new thread, you wait for the semaphore and then count the characters from the input.

sem_wait(&bin_sem);
while(strncmp(“end”, work_area, 3) != 0) {
printf(“You input %d characters\n”, strlen(work_area) -1);
sem_wait(&bin_sem);

}

While the semaphore is set, you are waiting for keyboard input. When you have some input, you release
the semaphore, allowing the second thread to count the characters before the first thread reads the key-
board again.

Again both threads share the same work_area array. Again, we have omitted some error checking, such
as the returns from sem_wait to make the code samples more succinct and easier to follow. However, in
production code you should always check for error returns unless there is a very good reason to omit
this check.

506

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 506

Give the program a run:

$ cc -D_REENTRANT thread3.c –o thread3 -lpthread
$./thread3
Input some text. Enter ‘end’ to finish
The Wasp Factory
You input 16 characters
Iain Banks
You input 10 characters
end

Waiting for thread to finish...
Thread joined

In threaded programs, timing faults are always hard to find, but the program seems resilient to both
quick input of text and more leisurely pauses.

How It Works
When you initialize the semaphore, you set its value to 0. Thus, when the thread’s function starts, the
call to sem_wait blocks and waits for the semaphore to become nonzero.

In the main thread, you wait until you have some text and then increment the semaphore with sem_post,
which immediately allows the other thread to return from its sem_wait and start executing. Once it has
counted the characters, it again calls sem_wait and is blocked until the main thread again calls sem_post
to increment the semaphore.

It is easy to overlook subtle design errors that result in subtle errors. Let’s modify the program slightly
to thread3a.c to pretend that text input from the keyboard is sometimes replaced with automatically
available text. Modify the reading loop in the main to this:

printf(“Input some text. Enter ‘end’ to finish\n”);
while(strncmp(“end”, work_area, 3) != 0) {
if (strncmp(work_area, “FAST”, 4) == 0) {
sem_post(&bin_sem);
strcpy(work_area, “Wheeee...”);

} else {
fgets(work_area, WORK_SIZE, stdin);

}
sem_post(&bin_sem);

}

Now if you type FAST, the program calls sem_post to allow the character counter to run, but immedi-
ately updates work_area with something different.

$ cc -D_REENTRANT thread3a.c -o thread3a -lpthread
$./thread3a
Input some text. Enter ‘end’ to finish
Excession
You input 9 characters

507

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 507

FAST
You input 7 characters
You input 7 characters
You input 7 characters
end

Waiting for thread to finish...
Thread joined

The problem is that the program was relying on text input from the program taking so long that there
was time for the other thread to count the words before the main thread was ever ready to give it more
words to count. When you tried to give it two different sets of words to count in quick succession (FAST
from the keyboard and then Wheeee... automatically), there was no time for the second thread to exe-
cute. However, the semaphore had been incremented more than once, so the counter thread just kept
counting the words and decreasing the semaphore until it became zero again.

This shows just how careful you need to be with timing considerations in multithreaded programs. It’s
possible to fix the program by using an extra semaphore to make the main thread wait until the counter
thread has had the chance to finish its counting, but an easier way is to use a mutex, which we look at next.

Synchronization with Mutexes
The other way of synchronizing access in multithreaded programs is with mutexes (short for mutual
exclusions), which act by allowing the programmer to “lock” an object so that only one thread can access
it. To control access to a critical section of code you lock a mutex before entering the code section and
then unlock it when you have finished.

The basic functions required to use mutexes are very similar to those needed for semaphores. They are
declared as follows:

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t
*mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex));

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

As usual, 0 is returned for success, and on failure an error code is returned, but errno is not set; you
must use the return code.

As with semaphores, they all take a pointer to a previously declared object, in this case a pthread_mutex_t.
The extra attribute parameter pthread_mutex_init allows you to provide attributes for the mutex, which
control its behavior. The attribute type by default is “fast.” This has the slight drawback that, if your pro-
gram tries to call pthread_mutex_lock on a mutex that it has already locked, the program will block.
Because the thread that holds the lock is the one that is now blocked, the mutex can never be unlocked and
the program is deadlocked. It is possible to alter the attributes of the mutex so that it either checks for this
and returns an error or acts recursively and allows multiple locks by the same thread if there are the same
number of unlocks afterward.

508

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 508

Setting the attribute of a mutex is beyond the scope of this book, so we will pass NULL for the attribute
pointer and use the default behavior. You can find more about changing the attributes by reading the
manual page for pthread_mutex_init.

Try It Out A Thread Mutex
Again, this is a modification of the original thread1.c but heavily modified. This time, you will be
extra careful about access to your critical variables and use a mutex to ensure they are ever accessed by
only one thread at any one time. To keep the example code easy to read, we have omitted some error
checking on the returns from mutex lock and unlock. In production code, we would check these return
values. Here is the new program, thread4.c:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>

void *thread_function(void *arg);
pthread_mutex_t work_mutex; /* protects both work_area and time_to_exit */

#define WORK_SIZE 1024
char work_area[WORK_SIZE];
int time_to_exit = 0;

int main() {
int res;
pthread_t a_thread;
void *thread_result;
res = pthread_mutex_init(&work_mutex, NULL);
if (res != 0) {

perror(“Mutex initialization failed”);
exit(EXIT_FAILURE);

}
res = pthread_create(&a_thread, NULL, thread_function, NULL);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
pthread_mutex_lock(&work_mutex);
printf(“Input some text. Enter ‘end’ to finish\n”);
while(!time_to_exit) {

fgets(work_area, WORK_SIZE, stdin);
pthread_mutex_unlock(&work_mutex);
while(1) {

pthread_mutex_lock(&work_mutex);
if (work_area[0] != ‘\0’) {

pthread_mutex_unlock(&work_mutex);
sleep(1);

}
else {

break;
}

509

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 509

}
}
pthread_mutex_unlock(&work_mutex);
printf(“\nWaiting for thread to finish...\n”);
res = pthread_join(a_thread, &thread_result);
if (res != 0) {

perror(“Thread join failed”);
exit(EXIT_FAILURE);

}
printf(“Thread joined\n”);
pthread_mutex_destroy(&work_mutex);
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
sleep(1);
pthread_mutex_lock(&work_mutex);
while(strncmp(“end”, work_area, 3) != 0) {

printf(“You input %d characters\n”, strlen(work_area) -1);
work_area[0] = ‘\0’;
pthread_mutex_unlock(&work_mutex);
sleep(1);
pthread_mutex_lock(&work_mutex);
while (work_area[0] == ‘\0’) {

pthread_mutex_unlock(&work_mutex);
sleep(1);
pthread_mutex_lock(&work_mutex);

}
}
time_to_exit = 1;
work_area[0] = ‘\0’;
pthread_mutex_unlock(&work_mutex);
pthread_exit(0);

}
$ cc -D_REENTRANT thread4.c –o thread4 -lpthread
$./thread4
Input some text. Enter ‘end’ to finish
Whit
You input 4 characters
The Crow Road
You input 13 characters
end

Waiting for thread to finish...
Thread joined

How It Works
You start by declaring a mutex, your work area, and this time, an additional variable: time_to_exit.

pthread_mutex_t work_mutex; /* protects both work_area and time_to_exit */

#define WORK_SIZE 1024
char work_area[WORK_SIZE];
int time_to_exit = 0;

510

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 510

Then initialize the mutex:

res = pthread_mutex_init(&work_mutex, NULL);
if (res != 0) {

perror(“Mutex initialization failed”);
exit(EXIT_FAILURE);

}

Next start the new thread. Here is the code that executes in the thread function:

pthread_mutex_lock(&work_mutex);
while(strncmp(“end”, work_area, 3) != 0) {

printf(“You input %d characters\n”, strlen(work_area) -1);
work_area[0] = ‘\0’;
pthread_mutex_unlock(&work_mutex);
sleep(1);
pthread_mutex_lock(&work_mutex);
while (work_area[0] == ‘\0’) {

pthread_mutex_unlock(&work_mutex);
sleep(1);
pthread_mutex_lock(&work_mutex);

}
}
time_to_exit = 1;
work_area[0] = ‘\0’;
pthread_mutex_unlock(&work_mutex);

First, the new thread tries to lock the mutex. If it’s already locked, the call will block until it is released.
Once you have access, you check to see whether you are being requested to exit. If you are requested to
exit, simply set time_to_exit, zap the first character of the work area, and exit.

If you don’t want to exit, count the characters and then zap the first character to a null. You use the first
character being null as a way of telling the reader program that you have finished the counting. You then
unlock the mutex and wait for the main thread to run. Periodically, you attempt to lock the mutex and,
when you succeed, check whether the main thread has given you any more work to do. If it hasn’t, you
unlock the mutex and wait some more. If it has, you count the characters and go around the loop again.

Here is the main thread:

pthread_mutex_lock(&work_mutex);
printf(“Input some text. Enter ‘end’ to finish\n”);
while(!time_to_exit) {

fgets(work_area, WORK_SIZE, stdin);
pthread_mutex_unlock(&work_mutex);
while(1) {

pthread_mutex_lock(&work_mutex);
if (work_area[0] != ‘\0’) {

pthread_mutex_unlock(&work_mutex);
sleep(1);

}
else {

break;
}

511

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 511

}
}
pthread_mutex_unlock(&work_mutex);

This is quite similar. You lock the work area so that you can read text into it and then unlock it to allow
the other thread access to count the words. Periodically, you relock the mutex, check whether the words
have been counted (work_area[0] set to a null), and release the mutex if you need to wait longer. As
we noted earlier, this kind of polling for an answer is generally not good programming practice, and in
the real world you would probably have used a semaphore to avoid this. However, the code served its
purpose as an example of using a mutex.

Thread Attributes
When we first looked at threads, we did not discuss the more advanced topic of thread attributes. Now
that we have covered the key topic of synchronizing threads, we can come back and look at these more
advanced features of threads themselves. There are quite a few attributes of threads that you can control;
here we are only going to look at those that you are most likely to need. You can find details of the others
in the manual pages.

In all of the previous examples, you had to resynchronize your threads using pthread_join before
allowing the program to exit. You needed to do this if you wanted to allow one thread to return data
to the thread that created it. Sometimes you neither need the second thread to return information to the
main thread nor want the main thread to wait for it.

Suppose that you create a second thread to spool a backup copy of a data file that is being edited while
the main thread continues to service the user. When the backup has finished, the second thread can just
terminate. There is no need for it to rejoin the main thread.

You can create threads that behave like this. They are called detached threads, and you create them
by modifying the thread attributes or by calling pthread_detach. Because we want to demonstrate
attributes, we use the former method here.

The most important function that you need is pthread_attr_init, which initializes a thread attrib-
ute object.

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

Once again, 0 is returned for success and an error code is returned on failure.

There is also a destroy function: pthread_attr_destroy. Its purpose is to allow clean destruction
of the attribute object. Once the object has been destroyed, it cannot be used again until it has been
reinitialized.

512

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 512

When you have a thread attribute object initialized, there are many additional functions that you can call to
set different attribute behaviors. We list the main ones here (you can find the complete list in the man pages,
usually under the pthread.h entry), but look closely at only two, detachedstate and schedpolicy:

#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy);

int pthread_attr_setschedparam(pthread_attr_t *attr, const struct sched_param
*param);

int pthread_attr_getschedparam(const pthread_attr_t *attr, struct sched_param
*param);

int pthread_attr_setinheritsched(pthread_attr_t *attr, int inherit);

int pthread_attr_getinheritsched(const pthread_attr_t *attr, int *inherit);

int pthread_attr_setscope(pthread_attr_t *attr, int scope);

int pthread_attr_getscope(const pthread_attr_t *attr, int *scope);

int pthread_attr_setstacksize(pthread_attr_t *attr, int scope);

int pthread_attr_getstacksize(const pthread_attr_t *attr, int *scope);

As you can see, there are quite a few attributes you can use, but fortunately you will generally get by
without ever having to use most of these.

❑ detachedstate: This attribute allows you to avoid the need for threads to rejoin. As with
most of these _set functions, it takes a pointer to the attribute and a flag to determine the
state required. The two possible flag values for pthread_attr_setdetachstate are
PTHREAD_CREATE_JOINABLE and PTHREAD_CREATE_DETACHED. By default, the attribute will
have the value PTHREAD_CREATE_JOINABLE so that you can allow the two threads to join. If
the state is set to PTHREAD_CREATE_DETACHED, you cannot call pthread_join to recover the
exit state of another thread.

❑ schedpolicy: This controls how threads are scheduled. The options are SCHED_OTHER,
SCHED_RP, and SCHED_FIFO. By default, the attribute is SCHED_OTHER. The other two types of
scheduling are available only to processes running with superuser permissions, because they
both have real-time scheduling but with slightly different behavior. SCHED_RR uses a round-
robin scheduling scheme, and SCHED_FIFO uses a “first in, first out” policy. Discussion of these
is beyond the scope of this book.

❑ schedparam: This is a partner to schedpolicy and allows control over the scheduling of
threads running with schedule policy SCHED_OTHER. We take a look at an example of this a
bit later in the chapter.

513

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 513

❑ inheritsched: This attribute takes two possible values: PTHREAD_EXPLICIT_SCHED and
PTHREAD_INHERIT_SCHED. By default, the value is PTHREAD_EXPLICIT_SCHED, which means
scheduling is explicitly set by the attributes. By setting it to PTHREAD_INHERIT_SCHED, a new
thread will instead use the parameters that its creator thread was using.

❑ scope: This attribute controls how the scheduling of a thread is calculated. Because Linux currently
supports only the value PTHREAD_SCOPE_SYSTEM, we will not look at this further here.

❑ stacksize: This attribute controls the thread creation stack size, set in bytes. This is part of
the “optional” section of the specification and is supported only on implementations where
_POSIX_THREAD_ATTR_STACKSIZE is defined. Linux implements threads with a large amount
of stack by default, so the feature is generally redundant on Linux.

Try It Out Setting the Detached State Attribute
For the detached thread example, thread5.c, you create a thread attribute, set it to be detached, and then
create a thread using the attribute. Now when the child thread has finished, it calls pthread_exit in the
normal way. This time, however, the originating thread no longer waits for the thread that it created to
rejoin. In this example, you use a simple thread_finished flag to allow the main thread to detect whether
the child has finished and to show that the threads are still sharing variables.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg);

char message[] = “Hello World”;
int thread_finished = 0;

int main() {
int res;
pthread_t a_thread;

pthread_attr_t thread_attr;

res = pthread_attr_init(&thread_attr);
if (res != 0) {

perror(“Attribute creation failed”);
exit(EXIT_FAILURE);

}
res = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
if (res != 0) {

perror(“Setting detached attribute failed”);
exit(EXIT_FAILURE);

}
res = pthread_create(&a_thread, &thread_attr,

thread_function, (void *)message);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}

514

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 514

(void)pthread_attr_destroy(&thread_attr);
while(!thread_finished) {

printf(“Waiting for thread to say it’s finished...\n”);
sleep(1);

}
printf(“Other thread finished, bye!\n”);
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
printf(“thread_function is running. Argument was %s\n”, (char *)arg);
sleep(4);
printf(“Second thread setting finished flag, and exiting now\n”);
thread_finished = 1;
pthread_exit(NULL);

}

There are no surprises in the output:

$./thread5
Waiting for thread to say it’s finished...
thread_function is running. Argument was Hello World
Waiting for thread to say it’s finished...
Waiting for thread to say it’s finished...
Waiting for thread to say it’s finished...
Second thread setting finished flag, and exiting now
Other thread finished, bye!

As you can see, setting the detached state allowed the secondary thread to complete independently,
without the originating thread needing to wait for it.

How It Works
The two important sections of code are

pthread_attr_t thread_attr;

res = pthread_attr_init(&thread_attr);
if (res != 0) {

perror(“Attribute creation failed”);
exit(EXIT_FAILURE);

}

which declares a thread attribute and initializes it, and

res = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
if (res != 0) {

perror(“Setting detached attribute failed”);
exit(EXIT_FAILURE);

}

which sets the attribute values to have the detached state.

515

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 515

The other slight differences are creating the thread, passing the address of the attributes,

res = pthread_create(&a_thread, &thread_attr, thread_function, (void
*)message);

and, for completeness, destroying the attributes when you have used them:

pthread_attr_destroy(&thread_attr);

Thread Attributes Scheduling
Let’s take a look at a second thread attribute you might want to change: scheduling. Changing the sched-
uling attribute is very similar to setting the detached state, but there are two more functions that you can
use to find the available priority levels, sched_get_priority_max and sched_get_priority_min.

Try It Out Scheduling
Because this thread6.c is very similar to the previous example, we’ll just look at the differences.

1. First, you need some additional variables:

int max_priority;
int min_priority;
struct sched_param scheduling_value;

2. After you have set the detached attribute, you set the scheduling policy:

res = pthread_attr_setschedpolicy(&thread_attr, SCHED_OTHER);
if (res != 0) {

perror(“Setting scheduling policy failed”);
exit(EXIT_FAILURE);

}

3. Next find the range of priorities that are allowed:

max_priority = sched_get_priority_max(SCHED_OTHER);
min_priority = sched_get_priority_min(SCHED_OTHER);

4. and set one:

scheduling_value.sched_priority = min_priority;
res = pthread_attr_setschedparam(&thread_attr, &scheduling_value);
if (res != 0) {

perror(“Setting scheduling priority failed”);
exit(EXIT_FAILURE);

}

When you run it, the output you get is:

$./thread6
Waiting for thread to say it’s finished...

516

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 516

thread_function is running. Argument was Hello World
Waiting for thread to say it’s finished...
Waiting for thread to say it’s finished...
Waiting for thread to say it’s finished...
Second thread setting finished flag, and exiting now
Other thread finished, bye!

How It Works
This is very similar to setting a detached state attribute, except that you set the scheduling policy instead.

Canceling a Thread
Sometimes, you want one thread to be able to ask another thread to terminate, rather like sending it a
signal. There is a way to do this with threads, and, in parallel with signal handling, threads get a way of
modifying how they behave when they are asked to terminate.

Let’s look first at the function to request a thread to terminate:

#include <pthread.h>

int pthread_cancel(pthread_t thread);

This is pretty straightforward: Given a thread identifier, you can request that it be canceled. On the receiving
end of the cancel request, things are slightly more complicated, but not much. A thread can set its cancel
state using pthread_setcancelstate.

#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);

The first parameter is either PTHREAD_CANCEL_ENABLE, which allows it to receive cancel requests,
or PTHREAD_CANCEL_DISABLE, which causes them to be ignored. The oldstate pointer allows the
previous state to be retrieved. If you are not interested, you can simply pass NULL. If cancel requests
are accepted, there is a second level of control the thread can take, the cancel type, which is set with
pthread_setcanceltype.

#include <pthread.h>

int pthread_setcanceltype(int type, int *oldtype);

The type can take one of two values, PTHREAD_CANCEL_ASYNCHRONOUS, which causes cancellation requests
to be acted upon immediately, and PTHREAD_CANCEL_DEFERRED, which makes cancellation requests wait
until the thread executes one of these functions: pthread_join, pthread_cond_wait,
pthread_cond_timedwait, pthread_testcancel, sem_wait, or sigwait.

517

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 517

We have not covered all of these calls in this chapter, because not all are generally needed. As ever, you
can find more details in the manual pages.

According to the POSIX standard, other system calls that may block, such as read, wait, and so on,
should also be cancellation points. At the time of this writing, support for this in Linux seems to be incom-
plete. Some experimentation does, however, suggest that some blocked calls, such as sleep, do allow can-
cellation to take place. To be on the safe side, you may want to add some pthread_testcancel calls in
code that you expect to be canceled.

Again, the oldtype allows the previous state to be retrieved, or a NULL can be passed if you are not
interested in knowing the previous state. By default, threads start with the cancellation state
PTHREAD_CANCEL_ENABLE and the cancellation type PTHREAD_CANCEL_DEFERRED.

Try It Out Canceling a Thread
The program thread7.c is derived, yet again, from thread1.c. This time, the main thread sends a
cancel request to the thread that it has created.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg);

int main() {
int res;
pthread_t a_thread;
void *thread_result;

res = pthread_create(&a_thread, NULL, thread_function, NULL);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}

sleep(3);
printf(“Canceling thread...\n”);
res = pthread_cancel(a_thread);
if (res != 0) {

perror(“Thread cancelation failed”);
exit(EXIT_FAILURE);

}
printf(“Waiting for thread to finish...\n”);
res = pthread_join(a_thread, &thread_result);
if (res != 0) {

perror(“Thread join failed”);
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

518

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 518

void *thread_function(void *arg) {
int i, res;
res = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
if (res != 0) {

perror(“Thread pthread_setcancelstate failed”);
exit(EXIT_FAILURE);

}
res = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);
if (res != 0) {

perror(“Thread pthread_setcanceltype failed”);
exit(EXIT_FAILURE);

}
printf(“thread_function is running\n”);
for(i = 0; i < 10; i++) {

printf(“Thread is still running (%d)...\n”, i);
sleep(1);

}
pthread_exit(0);

}

When you run this, you get the following output, showing that the thread is canceled:

$./thread7
thread_function is running
Thread is still running (0)...
Thread is still running (1)...
Thread is still running (2)...
Canceling thread...
Waiting for thread to finish...
$

How It Works
After the new thread has been created in the usual way, the main thread sleeps (to allow the new thread
some time to get started) and then issues a cancel request:

sleep(3);
printf(“Cancelling thread...\n”);
res = pthread_cancel(a_thread);
if (res != 0) {

perror(“Thread cancelation failed”);
exit(EXIT_FAILURE);

}

In the created thread, you first set the cancel state to allow canceling:

res = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
if (res != 0) {

perror(“Thread pthread_setcancelstate failed”);
exit(EXIT_FAILURE);

}

519

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 519

Then you set the cancel type to be deferred:

res = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);
if (res != 0) {

perror(“Thread pthread_setcanceltype failed”);
exit(EXIT_FAILURE);

}

Finally, the thread waits around to be canceled:

for(i = 0; i < 10; i++) {
printf(“Thread is still running (%d)...\n”, i);
sleep(1);

}

Threads in Abundance
Up until now, we have always had the normal thread of execution of a program create just one other
thread. However, we don’t want you to think that you can create only one extra thread.

Try It Out Many Threads
For the final example in this chapter, thread8.c, we show how to create several threads in the same
program and then collect them again in an order different from that in which they were started.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

#define NUM_THREADS 6

void *thread_function(void *arg);

int main() {
int res;
pthread_t a_thread[NUM_THREADS];
void *thread_result;
int lots_of_threads;

for(lots_of_threads = 0; lots_of_threads < NUM_THREADS; lots_of_threads++) {
res = pthread_create(&(a_thread[lots_of_threads]),

NULL, thread_function, (void *)&lots_of_threads);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
sleep(1);

}
printf(“Waiting for threads to finish...\n”);

520

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 520

for(lots_of_threads = NUM_THREADS - 1; lots_of_threads >= 0;
lots_of_threads--) {

res = pthread_join(a_thread[lots_of_threads], &thread_result);
if (res == 0) {

printf(“Picked up a thread\n”);
}
else {

perror(“pthread_join failed”);
}

}
printf(“All done\n”);
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
int my_number = *(int *)arg;
int rand_num;

printf(“thread_function is running. Argument was %d\n”, my_number);
rand_num=1+(int)(9.0*rand()/(RAND_MAX+1.0));
sleep(rand_num);
printf(“Bye from %d\n”, my_number);
pthread_exit(NULL);

}

When you run this program, you get the following output:

$./thread8
thread_function is running. Argument was 0
thread_function is running. Argument was 1
thread_function is running. Argument was 2
thread_function is running. Argument was 3
thread_function is running. Argument was 4
Bye from 1
thread_function is running. Argument was 5
Waiting for threads to finish...
Bye from 5
Picked up a thread
Bye from 0
Bye from 2
Bye from 3
Bye from 4
Picked up a thread
Picked up a thread
Picked up a thread
Picked up a thread
Picked up a thread
All done

As you can see, you created many threads and allowed them to finish out of sequence. There is a subtle
bug in this program that makes itself evident if you remove the call to sleep from the loop that starts
the threads. We have included it to show you just how careful you need to be when writing programs
that use threads. Can you spot it? We explain in the following “How It Works” section.

521

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 521

How It Works
This time you create an array of thread IDs:

pthread_t a_thread[NUM_THREADS];

and loop around creating several threads:

for(lots_of_threads = 0; lots_of_threads < NUM_THREADS; lots_of_threads++) {
res = pthread_create(&(a_thread[lots_of_threads]), NULL,

thread_function, (void *)&lots_of_threads);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
sleep(1);

}

The threads themselves then wait for a random time before exiting:

void *thread_function(void *arg) {
int my_number = *(int *)arg;
int rand_num;

printf(“thread_function is running. Argument was %d\n”, my_number);
rand_num=1+(int)(9.0*rand()/(RAND_MAX+1.0));
sleep(rand_num);
printf(“Bye from %d\n”, my_number);
pthread_exit(NULL);

}

While in the main (original) thread, you wait to pick them up, but not in the order in which you
created them:

for(lots_of_threads = NUM_THREADS - 1; lots_of_threads >= 0; lots_of_threads--)
{

res = pthread_join(a_thread[lots_of_threads], &thread_result);
if (res == 0) {

printf(“Picked up a thread\n”);
}
else {

perror(“pthread_join failed”);
}

}

If you try to run the program with no sleep, you might see some strange effects, including some
threads being started with the same argument; for example, you might see output similar to this:

thread_function is running. Argument was 0
thread_function is running. Argument was 2
thread_function is running. Argument was 2
thread_function is running. Argument was 4
thread_function is running. Argument was 4
thread_function is running. Argument was 5
Waiting for threads to finish...

522

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 522

Bye from 5
Picked up a thread
Bye from 2
Bye from 0
Bye from 2
Bye from 4
Bye from 4
Picked up a thread
Picked up a thread
Picked up a thread
Picked up a thread
Picked up a thread
All done

Did you spot why this could happen? The threads are being started using a local variable for the argument
to the thread function. This variable is updated in the loop. The offending lines are

for(lots_of_threads = 0; lots_of_threads < NUM_THREADS; lots_of_threads++) {
res = pthread_create(&(a_thread[lots_of_threads]), NULL,

thread_function, (void *)&lots_of_threads);

If the main thread runs fast enough, it might alter the argument (lots_of_threads) for some of the
threads. Behavior like this arises when not enough care is taken with shared variables and multiple exe-
cution paths. We did warn you that programming threads required careful attention to design! To correct
the problem, you need to pass the value directly like this:

res = pthread_create(&(a_thread[lots_of_threads]), NULL, thread_function, (void
*)lots_of_threads);

and of course change thread_function:

void *thread_function(void *arg) {
int my_number = (int)arg;

This is shown in the program thread8a.c, with the changes highlighted:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>

#define NUM_THREADS 6

void *thread_function(void *arg);

int main() {

int res;
pthread_t a_thread[NUM_THREADS];
void *thread_result;
int lots_of_threads;

523

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 523

for(lots_of_threads = 0; lots_of_threads < NUM_THREADS; lots_of_threads++) {

res = pthread_create(&(a_thread[lots_of_threads]), NULL,
thread_function, (void *)lots_of_threads);

if (res != 0) {
perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
}

printf(“Waiting for threads to finish...\n”);
for(lots_of_threads = NUM_THREADS - 1; lots_of_threads >= 0; lots_of_threads--) {
res = pthread_join(a_thread[lots_of_threads], &thread_result);
if (res == 0) {
printf(“Picked up a thread\n”);

} else {
perror(“pthread_join failed”);

}
}

printf(“All done\n”);

exit(EXIT_SUCCESS);
}

void *thread_function(void *arg) {
int my_number = (int)arg;
int rand_num;

printf(“thread_function is running. Argument was %d\n”, my_number);
rand_num=1+(int)(9.0*rand()/(RAND_MAX+1.0));
sleep(rand_num);
printf(“Bye from %d\n”, my_number);

pthread_exit(NULL);
}

Summary
In this chapter, you learned how to create several threads of execution inside a process, where each thread
shares file scope variables. You looked at the two ways that threads can control access to critical code and
data, using both semaphores and mutexes. Next, you saw how to control the attributes of threads and, in
particular, how you could separate them from the main thread so that it no longer had to wait for threads
that it had created to complete. After a quick look at how one thread can request another to finish and at
how the receiving thread can manage such requests, we presented an example of a program with many
simultaneous threads executing.

We haven’t had the space to cover every last function call and nuance associated with threads, but you
should now have sufficient understanding to start writing your own programs with threads and to
investigate the more esoteric aspects of threads by reading the manual pages.

524

Chapter 12: POSIX Threads

47627c12.qxd:WroxPro 9/29/07 3:34 PM Page 524

13
Inter-Process

Communication: Pipes

In Chapter 11, you saw a very simple way of sending messages between two processes using signals.
You created notification events that could be used to provoke a response, but the information trans-
ferred was limited to a signal number.

In this chapter, you take a look at pipes, which allow more useful data to be exchanged between
processes. By the end of the chapter, you’ll be using your newfound knowledge to re-implement
the CD database program as a very simple client/server application.

We cover the following topics in this chapter:

❑ The definition of a pipe

❑ Process pipes

❑ Pipe calls

❑ Parent and child processes

❑ Named pipes: FIFOs

❑ Client/server considerations

What Is a Pipe?
We use the term pipe to mean connecting a data flow from one process to another. Generally you
attach, or pipe, the output of one process to the input of another.

Most Linux users will already be familiar with the idea of a pipeline, linking shell commands
together so that the output of one process is fed straight to the input of another. For shell com-
mands, this is done using the pipe character to join the commands, such as

cmd1 | cmd2

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 525

The shell arranges the standard input and output of the two commands, so that

❑ The standard input to cmd1 comes from the terminal keyboard.

❑ The standard output from cmd1 is fed to cmd2 as its standard input.

❑ The standard output from cmd2 is connected to the terminal screen.

What the shell has done, in effect, is reconnect the standard input and output streams so that data flows
from the keyboard input through the two commands and is then output to the screen. See Figure 13-1 for
a visual representation of this process.

Figure 13-1

In this chapter, you see how to achieve this effect within a program and how you can use pipes to connect
multiple processes to allow you to implement a simple client/server system.

Process Pipes
Perhaps the simplest way of passing data between two programs is with the popen and pclose functions.
These have the following prototypes:

#include <stdio.h>

FILE *popen(const char *command, const char *open_mode);
int pclose(FILE *stream_to_close);

popen
The popen function allows a program to invoke another program as a new process and either pass data
to it or receive data from it. The command string is the name of the program to run, together with any
parameters. open_mode must be either “r” or “w”.

If the open_mode is “r”, output from the invoked program is made available to the invoking program
and can be read from the file stream FILE * returned by popen, using the usual stdio library functions
for reading (for example, fread). However, if open_mode is “w”, the program can send data to the
invoked command with calls to fwrite. The invoked program can then read the data on its standard
input. Normally, the program being invoked won’t be aware that it’s reading data from another process;
it simply reads its standard input stream and acts on it.

CMD1 CMD2pipe

standard
output

standard
input

526

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 526

A call to popen must specify either “r” or “w”; no other option is supported in a standard implementa-
tion of popen. This means that you can’t invoke another program and both read from and write to it. On
failure, popen returns a null pointer. If you want bidirectional communication using pipes, the normal
solution is to use two pipes, one for data flow in each direction.

pclose
When the process started with popen has finished, you can close the file stream associated with it using
pclose. The pclose call will return only when the process started with popen finishes. If it’s still run-
ning when pclose is called, the pclose call will wait for the process to finish.

The pclose call normally returns the exit code of the process whose file stream it is closing. If the invoking
process has already executed a wait statement before calling pclose, the exit status will be lost because
the invoked process has finished and pclose will return –1, with errno set to ECHILD.

Try It Out Reading Output from an External Program
Let’s try a simple popen and pclose example, popen1.c. You’ll use popen in a program to access infor-
mation from uname. The uname -a command prints system information, including the machine type,
the OS name, version and release, and the machine’s network name.

Having initialized the program, you open the pipe to uname, making it readable and setting read_fp to
point to the output. At the end, the pipe pointed to by read_fp is closed.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *read_fp;
char buffer[BUFSIZ + 1];
int chars_read;
memset(buffer, ‘\0’, sizeof(buffer));
read_fp = popen(“uname -a”, “r”);
if (read_fp != NULL) {

chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
if (chars_read > 0) {

printf(“Output was:-\n%s\n”, buffer);
}
pclose(read_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

When you run this program, you should get output like the following (from one of the authors’ machines):

$./popen1
Output was:-
Linux suse103 2.6.20.2-2-default #1 SMP Fri Mar 9 21:54:10 UTC 2007 i686 i686 i386
GNU/Linux

527

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 527

How It Works
The program uses the popen call to invoke the uname command with the -a parameter. It then uses the
returned file stream to read data up to BUFSIZ characters (as this is a #define from stdio.h) and then
prints it out so it appears on the screen. Because you’ve captured the output of uname inside a program,
it’s available for processing.

Sending Output to popen
Now that you’ve seen an example of capturing output from an external program, let’s look at sending
output to an external program. Here’s a program, popen2.c, that pipes data to another. Here, you’ll use
od (octal dump).

Try It Out Sending Output to an External Program
Have a look at the following code; you can see that it is very similar to the preceding example, except
you are writing down a pipe instead of reading from it. This is popen2.c.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *write_fp;
char buffer[BUFSIZ + 1];

sprintf(buffer, “Once upon a time, there was...\n”);
write_fp = popen(“od -c”, “w”);
if (write_fp != NULL) {

fwrite(buffer, sizeof(char), strlen(buffer), write_fp);
pclose(write_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

When you run this program, you should get the following output:

$./popen2
0000000 O n c e u p o n a t i m e
0000020 , t h e r e w a s . . . \n
0000037

How It Works
The program uses popen with the parameter “w” to start the od -c command, so that it can send data to
that command. It then sends a string that the od -c command receives and processes; the od -c com-
mand then prints the result of the processing on its standard output.

528

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 528

From the command line, you can get the same output with the command

$ echo “Once upon a time, there was...” | od -c

Passing More Data
The mechanism that you’ve used so far simply sends or receives all the data in a single fread or
fwrite. Sometimes you may want to send the data in smaller pieces, or perhaps you may not know the
size of the output. To avoid having to declare a very large buffer, you can just use multiple fread or
fwrite calls and process the data in parts.

Here’s a program, popen3.c, that reads all of the data from a pipe.

Try It Out Reading Larger Amounts of Data from a Pipe
In this program, you read data from an invoked ps ax process. There’s no way to know in advance how
much output there will be, so you must allow for multiple reads of the pipe.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *read_fp;
char buffer[BUFSIZ + 1];
int chars_read;

memset(buffer, ‘\0’, sizeof(buffer));
read_fp = popen(“ps ax”, “r”);
if (read_fp != NULL) {

chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
while (chars_read > 0) {

buffer[chars_read – 1] = ‘\0’;
printf(“Reading %d:-\n %s\n”, BUFSIZ, buffer);
chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);

}
pclose(read_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

The output, edited for brevity, is similar to this:

$./popen3
Reading 1024:-

PID TTY STAT TIME COMMAND
1 ? Ss 0:03 init [5]

529

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 529

2 ? SW 0:00 [kflushd]
3 ? SW 0:00 [kpiod]
4 ? SW 0:00 [kswapd]
5 ? SW< 0:00 [mdrecoveryd]

...
240 tty2 S 0:02 emacs draft1.txt

Reading 1024:-
368 tty1 S 0:00 ./popen3
369 tty1 R 0:00 ps -ax

...

How It Works
The program uses popen with an “r” parameter in a similar fashion to popen1.c. This time, it continues
reading from the file stream until there is no more data available. Notice that, although the ps command
takes some time to execute, Linux arranges the process scheduling so that both programs run when they
can. If the reader process, popen3, has no input data, it’s suspended until some becomes available. If the
writer process, ps, produces more output than can be buffered, it’s suspended until the reader has con-
sumed some of the data.

In this example, you may not see Reading:- output a second time. This will be the case if BUFSIZ is
greater than the length of the ps command output. Some (mostly more recent) Linux systems set BUFSIZ
as high as 8,192 or even higher. To test that the program works correctly when reading several chunks of
output, try reading less than BUFSIZ, maybe BUFSIZE/10, characters at a time.

How popen Is Implemented
The popen call runs the program you requested by first invoking the shell, sh, passing it the command
string as an argument. This has two effects, one good and the other not so good.

In Linux (as in all UNIX-like systems), all parameter expansion is done by the shell, so invoking the shell to
parse the command string before the program is invoked allows any shell expansion, such as determining
what files *.c actually refers to, to be done before the program starts. This is often quite useful, and it
allows complex shell commands to be started with popen. Other process creation functions, such as execl,
can be much more complex to invoke, because the calling process has to perform its own shell expansion.

The unfortunate effect of using the shell is that for every call to popen, a shell is invoked along with the
requested program. Each call to popen then results in two extra processes being started, which makes
the popen function a little expensive in terms of system resources and invocation of the target command
is slower than it might otherwise have been.

Here’s a program, popen4.c, that you can use to demonstrate the behavior of popen. You can count the
lines in all the popen example source files by cating the files and then piping the output to wc -l,
which counts the number of lines. On the command line, the equivalent command is

$ cat popen*.c | wc -l

Actually, wc -l popen*.c is easier to type and much more efficient, but the example serves to illus-
trate the principle.

530

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 530

Try It Out popen Starts a Shell
This program uses exactly the preceding command, but through popen so that it can read the result:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *read_fp;
char buffer[BUFSIZ + 1];
int chars_read;

memset(buffer, ‘\0’, sizeof(buffer));
read_fp = popen(“cat popen*.c | wc -l”, “r”);
if (read_fp != NULL) {

chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
while (chars_read > 0) {

buffer[chars_read – 1] = ‘\0’;
printf(“Reading:-\n %s\n”, buffer);
chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);

}
pclose(read_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

When you run this program, the output is

$./popen4
Reading:-

94

How It Works
The program shows that the shell is being invoked to expand popen*.c to the list of all files starting
popen and ending in .c and also to process the pipe (|) symbol and feed the output from cat into wc.
You invoke the shell, the cat program, and wc and cause an output redirection, all in a single popen call.
The program that invokes the command sees only the final output.

The Pipe Call
You’ve seen the high-level popen function, but now let’s move on to look at the lower-level pipe func-
tion. This function provides a means of passing data between two programs, without the overhead of
invoking a shell to interpret the requested command. It also gives you more control over the reading and
writing of data.

531

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 531

The pipe function has the following prototype:

#include <unistd.h>

int pipe(int file_descriptor[2]);

pipe is passed (a pointer to) an array of two integer file descriptors. It fills the array with two new file
descriptors and returns a zero. On failure, it returns -1 and sets errno to indicate the reason for failure.
Errors defined in the Linux manual page for pipe (in section 2 of the manual) are

❑ EMFILE: Too many file descriptors are in use by the process.

❑ ENFILE: The system file table is full.

❑ EFAULT: The file descriptor is not valid.

The two file descriptors returned are connected in a special way. Any data written to file_descriptor[1]
can be read back from file_descriptor[0]. The data is processed in a first in, first out basis, usually
abbreviated to FIFO. This means that if you write the bytes 1, 2, 3 to file_descriptor[1], reading from
file_descriptor[0] will produce 1, 2, 3. This is different from a stack, which operates on a last in, first out
basis, usually abbreviated to LIFO.

It’s important to realize that these are file descriptors, not file streams, so you must use the lower-
level read and write system calls to access the data, rather than the stream library functions
fread and fwrite.

Here’s a program, pipe1.c, that uses pipe to create a pipe.

Try It Out The pipe Function
The following example is pipe1.c. Note the file_pipes array, the address of which is passed to the
pipe function as a parameter.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
char buffer[BUFSIZ + 1];

memset(buffer, ‘\0’, sizeof(buffer));

if (pipe(file_pipes) == 0) {
data_processed = write(file_pipes[1], some_data, strlen(some_data));
printf(“Wrote %d bytes\n”, data_processed);
data_processed = read(file_pipes[0], buffer, BUFSIZ);
printf(“Read %d bytes: %s\n”, data_processed, buffer);

532

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 532

exit(EXIT_SUCCESS);
}
exit(EXIT_FAILURE);

}

When you run this program, the output is

$./pipe1
Wrote 3 bytes
Read 3 bytes: 123

How It Works
The program creates a pipe using the two file descriptors in the array file_pipes[]. It then writes data
into the pipe using the file descriptor file_pipes[1] and reads it back from file_pipes[0]. Notice
that the pipe has some internal buffering that stores the data in between the calls to write and read.

You should be aware that the effect of trying to write using file_descriptor[0], or read using
file_descriptor[1], is undefined, so the behavior could be very strange and may change without
warning. On the authors’ systems, such calls fail with a –1 return value, which at least ensures that it’s
easy to catch this mistake.

At first glance, this example of a pipe doesn’t seem to offer us anything that we couldn’t have done with
a simple file. The real advantage of pipes comes when you want to pass data between two processes. As
you saw in Chapter 12, when a program creates a new process using the fork call, file descriptors that
were previously open remain open. By creating a pipe in the original process and then forking to create
a new process, you can pass data from one process to the other down the pipe.

Try It Out Pipes across a fork
1. This is pipe2.c. It starts rather like the first example, up until you make the call to fork.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
char buffer[BUFSIZ + 1];
pid_t fork_result;

memset(buffer, ‘\0’, sizeof(buffer));

if (pipe(file_pipes) == 0) {
fork_result = fork();
if (fork_result == -1) {

533

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 533

fprintf(stderr, “Fork failure”);
exit(EXIT_FAILURE);

}

2. You’ve made sure the fork worked, so if fork_result equals zero, you’re in the child process:

if (fork_result == 0) {
data_processed = read(file_pipes[0], buffer, BUFSIZ);
printf(“Read %d bytes: %s\n”, data_processed, buffer);
exit(EXIT_SUCCESS);

}

3. Otherwise, you must be in the parent process:

else {
data_processed = write(file_pipes[1], some_data,

strlen(some_data));
printf(“Wrote %d bytes\n”, data_processed);

}
}
exit(EXIT_SUCCESS);

}

When you run this program, the output is, as before,

$./pipe2
Wrote 3 bytes
Read 3 bytes: 123

You may find that in practice the command prompt reappears before the last part of the output because
the parent will finish before the child, so we have tidied the output here to make it easier to read.

How It Works
First, the program creates a pipe with the pipe call. It then uses the fork call to create a new process.
If the fork was successful, the parent writes data into the pipe, while the child reads data from the pipe.
Both parent and child exit after a single write and read. If the parent exits before the child, you might
see the shell prompt between the two outputs.

Although the program is superficially very similar to the first pipe example, we’ve taken a big step for-
ward by being able to use separate processes for the reading and writing, as illustrated in Figure 13-2.

Figure 13-2

Parent
process

file_pipes[1] file_pipes[0]

Child
processPipe

534

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 534

Parent and Child Processes
The next logical step in our investigation of the pipe call is to allow the child process to be a different
program from its parent, rather than just a different process running the same program. You do this
using the exec call. One difficulty is that the new execed process needs to know which file descriptor
to access. In the previous example, this wasn’t a problem because the child had access to its copy of the
file_pipes data. After an exec call, this will no longer be the case, because the old process has been
replaced by the new child process. You can get around this by passing the file descriptor (which is, after
all, just a number) as a parameter to the newly execed program.

To show how this works, you need two programs. The first is the data producer. It creates the pipe and
then invokes the child, the data consumer.

Try It Out Pipes and exec
1. For the first program, you adapt pipe2.c to pipe3.c. The changed lines are shown shaded:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
char buffer[BUFSIZ + 1];
pid_t fork_result;

memset(buffer, ‘\0’, sizeof(buffer));

if (pipe(file_pipes) == 0) {
fork_result = fork();
if (fork_result == (pid_t)-1) {

fprintf(stderr, “Fork failure”);
exit(EXIT_FAILURE);

}

if (fork_result == 0) {
sprintf(buffer, “%d”, file_pipes[0]);
(void)execl(“pipe4”, “pipe4”, buffer, (char *)0);
exit(EXIT_FAILURE);

}
else {

data_processed = write(file_pipes[1], some_data,
strlen(some_data));

printf(“%d - wrote %d bytes\n”, getpid(), data_processed);
}

}
exit(EXIT_SUCCESS);

}

535

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 535

2. The consumer program, pipe4.c, which reads the data, is much simpler:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{

int data_processed;
char buffer[BUFSIZ + 1];
int file_descriptor;

memset(buffer, ‘\0’, sizeof(buffer));
sscanf(argv[1], “%d”, &file_descriptor);
data_processed = read(file_descriptor, buffer, BUFSIZ);

printf(“%d - read %d bytes: %s\n”, getpid(), data_processed, buffer);
exit(EXIT_SUCCESS);

}

Remembering that pipe3 invokes the pipe4 program, you get something similar to the following out-
put when you run pipe3:

$./pipe3
22460 - wrote 3 bytes
22461 - read 3 bytes: 123

How It Works
The pipe3 program starts like the previous example, using the pipe call to create a pipe and then using
the fork call to create a new process. It then uses sprintf to store the “read” file descriptor number of the
pipe in a buffer that will form an argument of pipe4.

A call to execl is used to invoke the pipe4 program. The arguments to execl are

❑ The program to invoke

❑ argv[0], which takes the program name

❑ argv[1], which contains the file descriptor number you want the program to read from

❑ (char *)0, which terminates the parameters

The pipe4 program extracts the file descriptor number from the argument string and then reads from
that file descriptor to obtain the data.

Reading Closed Pipes
Before we move on, we need to look a little more carefully at the file descriptors that are open. Up to this
point you have allowed the reading process simply to read some data and then exit, assuming that Linux
will clean up the files as part of the process termination.

536

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 536

Most programs that read data from the standard input do so differently than the examples you’ve seen
so far. They don’t usually know how much data they have to read, so they will normally loop — reading
data, processing it, and then reading more data until there’s no more data to read.

A read call will normally block; that is, it will cause the process to wait until data becomes available. If
the other end of the pipe has been closed, then no process has the pipe open for writing, and the read
blocks. Because this isn’t very helpful, a read on a pipe that isn’t open for writing returns zero rather
than blocking. This allows the reading process to detect the pipe equivalent of end of file and act appro-
priately. Notice that this isn’t the same as reading an invalid file descriptor, which read considers an
error and indicates by returning –1.

If you use a pipe across a fork call, there are two different file descriptors that you can use to write to
the pipe: one in the parent and one in the child. You must close the write file descriptors of the pipe in
both parent and child processes before the pipe is considered closed and a read call on the pipe will fail.
You’ll see an example of this later when we return to this subject in more detail to look at the O_NON-
BLOCK flag and FIFOs.

Pipes Used as Standard Input and Output
Now that you know how to make a read on an empty pipe fail, you can look at a much cleaner method
of connecting two processes with a pipe. You arrange for one of the pipe file descriptors to have a known
value, usually the standard input, 0, or the standard output, 1. This is slightly more complex to set up in
the parent, but it allows the child program to be much simpler.

The one big advantage is that you can invoke standard programs, ones that don’t expect a file descriptor
as a parameter. In order to do this, you need to use the dup function, which you met in Chapter 3. There
are two closely related versions of dup that have the following prototypes:

#include <unistd.h>

int dup(int file_descriptor);
int dup2(int file_descriptor_one, int file_descriptor_two);

The purpose of the dup call is to open a new file descriptor, a little like the open call. The difference is
that the new file descriptor created by dup refers to the same file (or pipe) as an existing file descriptor.
In the case of dup, the new file descriptor is always the lowest number available, and in the case of dup2
it’s the same as, or the first available descriptor greater than, the parameter file_descriptor_two.

You can get the same effect as dup and dup2 by using the more general fcntl call, with a command
F_DUPFD. Having said that, the dup call is easier to use because it’s tailored specifically to the needs
of creating duplicate file descriptors. It’s also very commonly used, so you’ll find it more frequently in
existing programs than fcntl and F_DUPFD.

So how does dup help in passing data between processes? The trick is knowing that the standard input file
descriptor is always 0 and that dup always returns a new file descriptor using the lowest available number.
By first closing file descriptor 0 and then calling dup, the new file descriptor will have the number 0. Because
the new descriptor is a duplicate of an existing one, standard input will have been changed to access the file
or pipe whose file descriptor you passed to dup. You will have created two file descriptors that refer to the
same file or pipe, and one of them will be the standard input.

537

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 537

File Descriptor Manipulation by close and dup
The easiest way to understand what happens when you close file descriptor 0, and then call dup, is to
look at how the state of the first four file descriptors changes during the sequence. This is shown in the
following table.

Try It Out Pipes and dup
Let’s return to the previous example, but this time you’ll arrange for the child program to have its stdin
file descriptor replaced with the read end of the pipe you create. You’ll also do some tidying up of file
descriptors so the child program can correctly detect the end of the data in the pipe. As usual, we’ll omit
some error checking for the sake of brevity.

Modify pipe3.c to pipe5.c using the following code:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
pid_t fork_result;

if (pipe(file_pipes) == 0) {
fork_result = fork();
if (fork_result == (pid_t)-1) {

fprintf(stderr, “Fork failure”);
exit(EXIT_FAILURE);

}

if (fork_result == (pid_t)0) {
close(0);
dup(file_pipes[0]);
close(file_pipes[0]);
close(file_pipes[1]);

File Descriptor
Number

Initially After close of File
Descriptor 0

After dup

0 Standard input {closed} Pipe file descriptor

1 Standard output Standard output Standard output

2 Standard error Standard error Standard error

3 Pipe file descriptor Pipe file descriptor Pipe file descriptor

538

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 538

execlp(“od”, “od”, “-c”, (char *)0);
exit(EXIT_FAILURE);

}
else {

close(file_pipes[0]);
data_processed = write(file_pipes[1], some_data,

strlen(some_data));
close(file_pipes[1]);
printf(“%d - wrote %d bytes\n”, (int)getpid(), data_processed);

}
}
exit(EXIT_SUCCESS);

}

The output from this program is

$./pipe5
22495 - wrote 3 bytes
0000000 1 2 3
0000003

How It Works
As before, the program creates a pipe and then forks, creating a child process. At this point, both the parent
and child have file descriptors that access the pipe, one each for reading and writing, so there are four open
file descriptors in total.

Let’s look at the child process first. The child closes its standard input with close(0) and then calls
dup(file_pipes[0]). This duplicates the file descriptor associated with the read end of the pipe as
file descriptor 0, the standard input. The child then closes the original file descriptor for reading from the
pipe, file_pipes[0]. Because the child will never write to the pipe, it also closes the write file descrip-
tor associated with the pipe, file_pipes[1]. It now has a single file descriptor associated with the pipe:
file descriptor 0, its standard input.

The child can then use exec to invoke any program that reads standard input. In this case, you use the
od command. The od command will wait for data to be available to it as if it were waiting for input from
a user terminal. In fact, without some special code to explicitly detect the difference, it won’t know that
the input is from a pipe rather than a terminal.

The parent starts by closing the read end of the pipe file_pipes[0], because it will never read the
pipe. It then writes data to the pipe. When all the data has been written, the parent closes the write end
of the pipe and exits. Because there are now no file descriptors open that could write to the pipe, the od
program will be able to read the three bytes written to the pipe, but subsequent reads will then return 0
bytes, indicating an end of file. When the read returns 0, the od program exits. This is analogous to run-
ning the od command on a terminal, then pressing Ctrl+D to send end of file to the od command.

Figure 13-3 shows the sequence after the call to the pipe, Figure 13-4 shows the sequence after the call to
fork, and Figure 13-5 represents the program when it’s ready to transfer data.

539

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 539

Figure 13-3

Figure 13-4

Figure 13-5

Named Pipes: FIFOs
So far, you have only been able to pass data between related programs, that is, programs that have been
started from a common ancestor process. Often this isn’t very convenient, because you would like unre-
lated processes to be able to exchange data.

You do this with FIFOs, often referred to as named pipes. A named pipe is a special type of file (remember
that everything in Linux is a file!) that exists as a name in the file system but behaves like the unnamed
pipes that you’ve met already.

Parent Pipe

Standard output

Standard input

Child
write

read

Parent Pipe Child

file_pipes[0]

read

write

file_pipes[1]

file_pipes[0]

read

write

file_pipes[1]

Process

Pipe

540

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 540

You can create named pipes from the command line and from within a program. Historically, the com-
mand-line program for creating them was mknod:

$ mknod filename p

However, the mknod command is not in the X/Open command list, so it may not be available on all
UNIX-like systems. The preferred command-line method is to use

$ mkfifo filename

Some older versions of UNIX only had the mknod command. X/Open Issue 4 Version 2 has the
mknod function call, but not the command-line program. Linux, friendly as ever, supplies both
mknod and mkfifo.

From inside a program, you can use two different calls:

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *filename, mode_t mode);
int mknod(const char *filename, mode_t mode | S_IFIFO, (dev_t) 0);

Like the mknod command, you can use the mknod function for making many special types of files. Using
a dev_t value of 0 and ORing the file access mode with S_IFIFO is the only portable use of this function
that creates a named pipe. We’ll use the simpler mkfifo function in the examples.

Try It Out Creating a Named Pipe
The following example is fifo1.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

int main()
{

int res = mkfifo(“/tmp/my_fifo”, 0777);
if (res == 0) printf(“FIFO created\n”);
exit(EXIT_SUCCESS);

}

You can create and look for the pipe with

$./fifo1
FIFO created
$ ls -lF /tmp/my_fifo
prwxr-xr-x 1 rick users 0 2007-06-16 17:18 /tmp/my_fifo|

541

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 541

Notice that the first character of output is a p, indicating a pipe. The | symbol at the end is added by the
ls command’s -F option and also indicates a pipe.

How It Works
The program uses the mkfifo function to create a special file. Although you ask for a mode of 0777, this
is altered by the user mask (umask) setting (in this case 022), just as in normal file creation, so the resulting
file has mode 755. If your umask is set differently, for example to 0002, you will see different permissions
on the created file.

You can remove the FIFO just like a conventional file by using the rm command, or from within a program
by using the unlink system call.

Accessing a FIFO
One very useful feature of named pipes is that, because they appear in the file system, you can use them
in commands where you would normally use a filename. Before you do more programming using the
FIFO file you created, let’s investigate the behavior of the FIFO file using normal file commands.

Try It Out Accessing a FIFO File
1. First, try reading the (empty) FIFO:

$ cat < /tmp/my_fifo

2. Now try writing to the FIFO. You will have to use a different terminal because the first com-
mand will now be hanging, waiting for some data to appear in the FIFO.

$ echo “Hello World” > /tmp/my_fifo

You will see the output appear from the cat command. If you don’t send any data down the
FIFO, the cat command will hang until you interrupt it, conventionally with Ctrl+C.

3. You can do both at once by putting the first command in the background:

$ cat < /tmp/my_fifo &
[1] 1316
$ echo “Hello World” > /tmp/my_fifo
Hello World

[1]+ Done cat </tmp/my_fifo
$

How It Works
Because there was no data in the FIFO, the cat and echo programs both block, waiting for some data to
arrive and some other process to read the data, respectively.

Looking at the third stage, the cat process is initially blocked in the background. When echo makes
some data available, the cat command reads the data and prints it to the standard output. Notice that

542

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 542

the cat program then exits without waiting for more data. It doesn’t block because the pipe will have
been closed when the second command putting data in the FIFO completed, so calls to read in the cat
program will return 0 bytes, indicating the end of file.

Now that you’ve seen how the FIFO behaves when you access it using command-line programs, let’s
look in more detail at the program interface, which allows you more control over how reads and writes
behave when you’re accessing a FIFO.

Unlike a pipe created with the pipe call, a FIFO exists as a named file, not as an open file descriptor,
and it must be opened before it can be read from or written to. You open and close a FIFO using the
same open and close functions that you saw used earlier for files, with some additional functionality.
The open call is passed the path name of the FIFO, rather than that of a regular file.

Opening a FIFO with open
The main restriction on opening FIFOs is that a program may not open a FIFO for reading and writing
with the mode O_RDWR. If a program violates this restriction, the result is undefined. This is quite a sensi-
ble restriction because, normally, you use a FIFO only for passing data in a single direction, so there is
no need for an O_RDWR mode. A process would read its own output back from a pipe if it were opened
read/write.

If you do want to pass data in both directions between programs, it’s much better to use either a pair of
FIFOs or pipes, one for each direction, or (unusually) explicitly change the direction of the data flow by
closing and reopening the FIFO. We return to bidirectional data exchange using FIFOs later in the chapter.

The other difference between opening a FIFO and a regular file is the use of the open_flag (the second
parameter to open) with the option O_NONBLOCK. Using this open mode not only changes how the open call
is processed, but also changes how read and write requests are processed on the returned file descriptor.

There are four legal combinations of O_RDONLY, O_WRONLY, and the O_NONBLOCK flag. We’ll consider
each in turn.

open(const char *path, O_RDONLY);

In this case, the open call will block; it will not return until a process opens the same FIFO for writing.
This is like the first cat example.

open(const char *path, O_RDONLY | O_NONBLOCK);

The open call will now succeed and return immediately, even if the FIFO has not been opened for writing
by any process.

open(const char *path, O_WRONLY);

In this case, the open call will block until a process opens the same FIFO for reading.

open(const char *path, O_WRONLY | O_NONBLOCK);

543

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 543

This will always return immediately, but if no process has the FIFO open for reading, open will return
an error, –1, and the FIFO won’t be opened. If a process does have the FIFO open for reading, the file
descriptor returned can be used for writing to the FIFO.

Notice the asymmetry between the use of O_NONBLOCK with O_RDONLY and O_WRONLY, in that a non-
blocking open for writing fails if no process has the pipe open for reading, but a nonblocking read
doesn’t fail. The behavior of the close call isn’t affected by the O_NONBLOCK flag.

Try It Out Opening FIFO Files
Now look at how you can use the behavior of open with the O_NONBLOCK flag to synchronize two
processes. Rather than use a number of example programs, you’ll write a single test program, fifo2.c,
which allows you to investigate the behavior of FIFOs by passing in different parameters.

1. Start with the header files, a #define, and the check that the correct number of command-line
arguments has been supplied:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME “/tmp/my_fifo”

int main(int argc, char *argv[])
{

int res;
int open_mode = 0;
int i;

if (argc < 2) {
fprintf(stderr, “Usage: %s <some combination of\

O_RDONLY O_WRONLY O_NONBLOCK>\n”, *argv);
exit(EXIT_FAILURE);

}

2. Assuming that the program passed the test, you now set the value of open_mode from those
arguments:

for(i = 1; i <argc; i++) {
if (strncmp(*++argv, “O_RDONLY”, 8) == 0)

open_mode |= O_RDONLY;
if (strncmp(*argv, “O_WRONLY”, 8) == 0)

open_mode |= O_WRONLY;
if (strncmp(*argv, “O_NONBLOCK”, 10) == 0)

open_mode |= O_NONBLOCK;
}

544

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 544

3. Next check whether the FIFO exists, and create it if necessary. Then the FIFO is opened and out-
put given to that effect while the program catches forty winks. Last of all, the FIFO is closed.

if (access(FIFO_NAME, F_OK) == -1) {
res = mkfifo(FIFO_NAME, 0777);
if (res != 0) {

fprintf(stderr, “Could not create fifo %s\n”, FIFO_NAME);
exit(EXIT_FAILURE);

}
}

printf(“Process %d opening FIFO\n”, getpid());
res = open(FIFO_NAME, open_mode);
printf(“Process %d result %d\n”, getpid(), res);
sleep(5);
if (res != -1) (void)close(res);
printf(“Process %d finished\n”, getpid());
exit(EXIT_SUCCESS);

}

How It Works
This program allows you to specify on the command line the combinations of O_RDONLY, O_WRONLY, and
O_NONBLOCK that you want to use. It does this by comparing known strings with command-line parame-
ters and setting (with |=) the appropriate flag if the string matches. The program uses the access func-
tion to check whether the FIFO file already exists and will create it if required.

You never destroy the FIFO, because you have no way of telling if another program already has the FIFO
in use.

O_RDONLY and O_WRONLY without O_NONBLOCK
You now have your test program, so you can try out a couple of combinations. Notice that the first pro-
gram, the reader, has been put in the background:

$./fifo2 O_RDONLY &
[1] 152
Process 152 opening FIFO
$./fifo2 O_WRONLY
Process 153 opening FIFO
Process 152 result 3
Process 153 result 3
Process 152 finished
Process 153 finished

This is probably the most common use of named pipes. It allows the reader process to start and wait in
the open call and then allows both programs to continue when the second program opens the FIFO.
Notice that both the reader and writer processes have synchronized at the open call.

When a Linux process is blocked, it doesn’t consume CPU resources, so this method of process synchro-
nization is very CPU-efficient.

545

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 545

O_RDONLY with O_NONBLOCK and O_WRONLY
In the following example, the reader process executes the open call and continues immediately, even
though no writer process is present. The writer also immediately continues past the open call, because
the FIFO is already open for reading.

$./fifo2 O_RDONLY O_NONBLOCK &
[1] 160
Process 160 opening FIFO
$./fifo2 O_WRONLY
Process 161 opening FIFO
Process 160 result 3
Process 161 result 3
Process 160 finished
Process 161 finished
[1]+ Done ./fifo2 O_RDONLY O_NONBLOCK

These two examples are probably the most common combinations of open modes. Feel free to use the
example program to experiment with some other combinations.

Reading and Writing FIFOs
Using the O_NONBLOCK mode affects how read and write calls behave on FIFOs.

A read on an empty blocking FIFO (that is, one not opened with O_NONBLOCK) will wait until some data
can be read. Conversely, a read on a nonblocking FIFO with no data will return 0 bytes.

A write on a full blocking FIFO will wait until the data can be written. A write on a FIFO that can’t
accept all of the bytes being written will either:

❑ Fail, if the request is for PIPE_BUF bytes or less and the data can’t be written.

❑ Write part of the data, if the request is for more than PIPE_BUF bytes, returning the number of
bytes actually written, which could be 0.

The size of a FIFO is an important consideration. There is a system-imposed limit on how much data can
be “in” a FIFO at any one time. This is the #define PIPE_BUF, usually found in limits.h. On Linux
and many other UNIX-like systems, this is commonly 4,096 bytes, but it could be as low as 512 bytes on
some systems. The system guarantees that writes of PIPE_BUF or fewer bytes on a FIFO that has been
opened O_WRONLY (that is, blocking) will either write all or none of the bytes.

Although this limit is not very important in the simple case of a single FIFO writer and a single FIFO
reader, it’s quite common to use a single FIFO to allow many different programs to send requests to a
single FIFO reader. If several different programs try to write to the FIFO at the same time, it’s usually
vital that the blocks of data from different programs don’t get interleaved — that is, each write must
be “atomic.” How do you do this?

Well, if you ensure that all your write requests are to a blocking FIFO and are less than PIPE_BUF bytes
in size, the system will ensure that data never gets interleaved. In general, it’s a good idea to restrict the
data transferred via a FIFO to blocks of PIPE_BUF bytes, unless you’re using only a single-writer and a
single-reader process.

546

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 546

Try It Out Inter-Process Communication with FIFOs
To show how unrelated processes can communicate using named pipes, you need two separate pro-
grams, fifo3.c and fifo4.c.

1. The first program is the producer program. It creates the pipe if required, and then writes data
to it as quickly as possible.

Note that, for illustration purposes, we don’t mind what the data is, so we don’t bother to initialize a
buffer. In both listings, shaded lines show the changes from fifo2.c, with all the command-line argu-
ment code removed.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME “/tmp/my_fifo”
#define BUFFER_SIZE PIPE_BUF
#define TEN_MEG (1024 * 1024 * 10)

int main()
{

int pipe_fd;
int res;
int open_mode = O_WRONLY;
int bytes_sent = 0;
char buffer[BUFFER_SIZE + 1];

if (access(FIFO_NAME, F_OK) == -1) {
res = mkfifo(FIFO_NAME, 0777);
if (res != 0) {

fprintf(stderr, “Could not create fifo %s\n”, FIFO_NAME);
exit(EXIT_FAILURE);

}
}

printf(“Process %d opening FIFO O_WRONLY\n”, getpid());
pipe_fd = open(FIFO_NAME, open_mode);
printf(“Process %d result %d\n”, getpid(), pipe_fd);

if (pipe_fd != -1) {
while(bytes_sent < TEN_MEG) {

res = write(pipe_fd, buffer, BUFFER_SIZE);
if (res == -1) {

fprintf(stderr, “Write error on pipe\n”);
exit(EXIT_FAILURE);

}

547

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 547

bytes_sent += res;
}
(void)close(pipe_fd);

}
else {

exit(EXIT_FAILURE);
}

printf(“Process %d finished\n”, getpid());
exit(EXIT_SUCCESS);

}

2. The second program, the consumer, is much simpler. It reads and discards data from the FIFO.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME “/tmp/my_fifo”
#define BUFFER_SIZE PIPE_BUF

int main()
{

int pipe_fd;
int res;
int open_mode = O_RDONLY;
char buffer[BUFFER_SIZE + 1];
int bytes_read = 0;

memset(buffer, ‘\0’, sizeof(buffer));

printf(“Process %d opening FIFO O_RDONLY\n”, getpid());
pipe_fd = open(FIFO_NAME, open_mode);
printf(“Process %d result %d\n”, getpid(), pipe_fd);

if (pipe_fd != -1) {
do {

res = read(pipe_fd, buffer, BUFFER_SIZE);
bytes_read += res;

} while (res > 0);
(void)close(pipe_fd);

}
else {

exit(EXIT_FAILURE);
}

printf(“Process %d finished, %d bytes read\n”, getpid(), bytes_read);
exit(EXIT_SUCCESS);

}

548

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 548

When you run these programs at the same time, using the time command to time the reader, the output
you get (with some tidying for clarity) is

$./fifo3 &
[1] 375
Process 375 opening FIFO O_WRONLY
$ time ./fifo4
Process 377 opening FIFO O_RDONLY
Process 375 result 3
Process 377 result 3
Process 375 finished
Process 377 finished, 10485760 bytes read

real 0m0.053s
user 0m0.020s
sys 0m0.040s

[1]+ Done ./fifo3

How It Works
Both programs use the FIFO in blocking mode. You start fifo3 (the writer/producer) first, which blocks,
waiting for a reader to open the FIFO. When fifo4 (the consumer) is started, the writer is then unblocked
and starts writing data to the pipe. At the same time, the reader starts reading data from the pipe.

Linux arranges the scheduling of the two processes so that they both run when they can and are blocked
when they can’t. Thus, the writer is blocked when the pipe is full, and the reader is blocked when the
pipe is empty.

The output from the time command shows that it took the reader well under one-tenth of a second to
run, reading 10 megabytes of data in the process. This shows that pipes, at least as implemented in modern
versions of Linux, can be an efficient way of transferring data between programs.

Advanced Topic: Client/Server Using FIFOs
For your final look at FIFOs, let’s consider how you might build a very simple client/server application
using named pipes. You want to have a single-server process that accepts requests, processes them, and
returns the resulting data to the requesting party: the client.

You want to allow multiple client processes to send data to the server. In the interests of simplicity, we’ll
assume that the data to be processed can be broken into blocks, each smaller than PIPE_BUF bytes. Of
course, you could implement this system in many ways, but we’ll consider only one method as an illus-
tration of how named pipes can be used.

Because the server will process only one block of information at a time, it seems logical to have a single
FIFO that is read by the server and written to by each of the clients. By opening the FIFO in blocking
mode, the server and the clients will be automatically blocked as required.

549

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 549

Returning the processed data to the clients is slightly more difficult. You need to arrange a second pipe,
one per client, for the returned data. By passing the process identifier (PID) of the client in the original
data sent to the server, both parties can use this to generate the unique name for the return pipe.

Try It Out An Example Client/Server Application
1. First, you need a header file, client.h, that defines the data common to both client and server

programs. It also includes the required system headers, for convenience.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define SERVER_FIFO_NAME “/tmp/serv_fifo”
#define CLIENT_FIFO_NAME “/tmp/cli_%d_fifo”

#define BUFFER_SIZE 20

struct data_to_pass_st {
pid_t client_pid;
char some_data[BUFFER_SIZE - 1];

};

2. Now for the server program, server.c. In this section, you create and then open the server
pipe. It’s set to be read-only, with blocking. After sleeping (for demonstration purposes), the
server reads in any data from the client, which has the data_to_pass_st structure.

#include “client.h”
#include <ctype.h>

int main()
{

int server_fifo_fd, client_fifo_fd;
struct data_to_pass_st my_data;
int read_res;
char client_fifo[256];
char *tmp_char_ptr;

mkfifo(SERVER_FIFO_NAME, 0777);
server_fifo_fd = open(SERVER_FIFO_NAME, O_RDONLY);
if (server_fifo_fd == -1) {

fprintf(stderr, “Server fifo failure\n”);
exit(EXIT_FAILURE);

}

sleep(10); /* lets clients queue for demo purposes */

do {
read_res = read(server_fifo_fd, &my_data, sizeof(my_data));
if (read_res > 0) {

550

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 550

3. In this next stage, you perform some processing on the data just read from the client: Convert
all the characters in some_data to uppercase and combine the CLIENT_FIFO_NAME with the
received client_pid.

tmp_char_ptr = my_data.some_data;
while (*tmp_char_ptr) {

*tmp_char_ptr = toupper(*tmp_char_ptr);
tmp_char_ptr++;

}
sprintf(client_fifo, CLIENT_FIFO_NAME, my_data.client_pid);

4. Then send the processed data back, opening the client pipe in write-only, blocking mode.
Finally, shut down the server FIFO by closing the file and then unlinking the FIFO.

client_fifo_fd = open(client_fifo, O_WRONLY);
if (client_fifo_fd != -1) {

write(client_fifo_fd, &my_data, sizeof(my_data));
close(client_fifo_fd);

}
}

} while (read_res > 0);
close(server_fifo_fd);
unlink(SERVER_FIFO_NAME);
exit(EXIT_SUCCESS);

}

5. Here’s the client, client.c. The first part of this program opens the server FIFO, if it already
exists, as a file. It then gets its own process ID, which forms some of the data that will be sent to
the server. The client FIFO is created, ready for the next section.

#include “client.h”
#include <ctype.h>

int main()
{

int server_fifo_fd, client_fifo_fd;
struct data_to_pass_st my_data;
int times_to_send;
char client_fifo[256];

server_fifo_fd = open(SERVER_FIFO_NAME, O_WRONLY);
if (server_fifo_fd == -1) {

fprintf(stderr, “Sorry, no server\n”);
exit(EXIT_FAILURE);

}

my_data.client_pid = getpid();
sprintf(client_fifo, CLIENT_FIFO_NAME, my_data.client_pid);
if (mkfifo(client_fifo, 0777) == -1) {

fprintf(stderr, “Sorry, can’t make %s\n”, client_fifo);
exit(EXIT_FAILURE);

}

551

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 551

6. For each of the five loops, the client data is sent to the server. Then the client FIFO is opened
(read-only, blocking mode) and the data read back. Finally, the server FIFO is closed and the
client FIFO removed from the file system.

for (times_to_send = 0; times_to_send < 5; times_to_send++) {
sprintf(my_data.some_data, “Hello from %d”, my_data.client_pid);
printf(“%d sent %s, “, my_data.client_pid, my_data.some_data);
write(server_fifo_fd, &my_data, sizeof(my_data));
client_fifo_fd = open(client_fifo, O_RDONLY);
if (client_fifo_fd != -1) {

if (read(client_fifo_fd, &my_data, sizeof(my_data)) > 0) {
printf(“received: %s\n”, my_data.some_data);

}
close(client_fifo_fd);

}
}
close(server_fifo_fd);
unlink(client_fifo);
exit(EXIT_SUCCESS);

}

To test this application, you need to run a single copy of the server and several clients. To get them all
started at close to the same time, use the following shell commands:

$./server &
$ for i in 1 2 3 4 5
do
./client &
done
$

This starts one server process and five client processes. The output from the clients, edited for brevity,
looks like this:

531 sent Hello from 531, received: HELLO FROM 531
532 sent Hello from 532, received: HELLO FROM 532
529 sent Hello from 529, received: HELLO FROM 529
530 sent Hello from 530, received: HELLO FROM 530
531 sent Hello from 531, received: HELLO FROM 531
532 sent Hello from 532, received: HELLO FROM 532

As you can see in this output, different client requests are being interleaved, but each client is getting
the suitably processed data returned to it. Note that you may or may not see this interleaving; the order
in which client requests are received may vary between machines and possibly between runs on the
same machine.

How It Works
Now we’ll cover the sequence of client and server operations as they interact, something that we haven’t
covered so far.

552

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 552

The server creates its FIFO in read-only mode and blocks. It does this until the first client connects by open-
ing the same FIFO for writing. At that point, the server process is unblocked and the sleep is executed,
so the writes from the clients queue up. (In a real application, the sleep would be removed; we’re only
using it to demonstrate the correct operation of the program with multiple simultaneous clients.)

In the meantime, after the client has opened the server FIFO, it creates its own uniquely named FIFO for
reading data back from the server. Only then does the client write data to the server (blocking if the pipe
is full or the server’s still sleeping) and then blocks on a read of its own FIFO, waiting for the reply.

On receiving the data from the client, the server processes it, opens the client pipe for writing, and writes
the data back, which unblocks the client. When the client is unblocked, it can read from its pipe the data
written to it by the server.

The whole process repeats until the last client closes the server pipe, causing the server’s read to fail
(returning 0) because no process has the server pipe open for writing. If this were a real server process
that needed to wait for further clients, you would need to modify it to either

❑ Open a file descriptor to its own server pipe, so read always blocks rather than returning 0.

❑ Close and reopen the server pipe when read returns 0 bytes, so the server process blocks in the
open waiting for a client, just as it did when it first started.

Both of these techniques are illustrated in the rewrite of the CD database application to use named pipes.

The CD Database Application
Now that you’ve seen how you can use named pipes to implement a simple client/server system, you
can revisit the CD database application and convert it accordingly. You’ll also incorporate some signal
handling to allow you to perform some tidy-up actions when the process is interrupted. You will use the
earlier dbm version of the application that had a command-line interface to see the code as straightfor-
wardly as possible.

Before you get to look in detail at this new version, you must compile the application. If you have the
source code from the website, use the makefile to compile it into the server and client programs.

As you saw early in Chapter 7, different distributions name and install the dbm files in slightly differ-
ent ways. If the provided files do not compile on your distribution, check back to Chapter 7 for further
advice on the naming and location of the dbm files.

Running server -i allows the program to initialize a new CD database.

Needless to say, the client won’t run unless the server is up and running. Here’s the makefile to show
how the programs fit together:

all: server client

553

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 553

CC=cc
CFLAGS= -pedantic -Wall

For debugging un-comment the next line
DFLAGS=-DDEBUG_TRACE=1 -g

Where, and which version, of dbm are we using.
This assumes gdbm is pre-installed in a standard place, but we are
going to use the gdbm compatibility routines, that make it emulate ndbm.
We do this because ndbm is the ‘most standard’ of the dbm versions.
Depending on your distribution, these may need changing.
DBM_INC_PATH=/usr/include/gdbm
DBM_LIB_PATH=/usr/lib
DBM_LIB_FILE=-lgdbm
On some distributions you may need to change the above line to include
the compatibility library, as shown below.
DBM_LIB_FILE=-lgdbm_compat -lgdbm

.c.o:
$(CC) $(CFLAGS) -I$(DBM_INC_PATH) $(DFLAGS) -c $<

app_ui.o: app_ui.c cd_data.h
cd_dbm.o: cd_dbm.c cd_data.h
client_f.o: clientif.c cd_data.h cliserv.h
pipe_imp.o: pipe_imp.c cd_data.h cliserv.h
server.o: server.c cd_data.h cliserv.h

client: app_ui.o clientif.o pipe_imp.o
$(CC) -o client $(DFLAGS) app_ui.o clientif.o pipe_imp.o

server: server.o cd_dbm.o pipe_imp.o
$(CC) -o server -L$(DBM_LIB_PATH) $(DFLAGS) server.o cd_dbm.o pipe_imp.o -

l$(DBM_LIB_FILE)

clean:
rm -f server client_app *.o *~

Aims
The aim is to split the part of the application that deals with the database away from the user inter-
face part of the application. You also want to run a single-server process, but allow many simultane-
ous clients, and to minimize changes to the existing code. Wherever possible, you will leave existing
code unchanged.

To keep things simple, you also want to be able to create (and delete) pipes within the application, so
there’s no need for a system administrator to create named pipes before you can use them.

It’s also important to ensure that you never “busy wait,” wasting CPU time, for an event. As you’ve
seen, Linux allows you to block, waiting for events without using significant resources. You should use
the blocking nature of pipes to ensure that you use the CPU efficiently. After all, the server could, in the-
ory, wait for many hours for a request to arrive.

554

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 554

Implementation
The earlier, single-process version of the application that you saw in Chapter 7 used a set of data access
routines for manipulating the data. These were

int database_initialize(const int new_database);
void database_close(void);
cdc_entry get_cdc_entry(const char *cd_catalog_ptr);
cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no);
int add_cdc_entry(const cdc_entry entry_to_add);
int add_cdt_entry(const cdt_entry entry_to_add);
int del_cdc_entry(const char *cd_catalog_ptr);
int del_cdt_entry(const char *cd_catalog_ptr, const int track_no);
cdc_entry search_cdc_entry(const char *cd_catalog_ptr,

int *first_call_ptr);

These functions provide a convenient place to make a clean separation between client and server.

In the single-process implementation, you can view the application as having two parts, even though it
was compiled as a single program, as shown in Figure 13-6.

Figure 13-6

In the client-server implementation, you want to insert some named pipes and supporting code between
the two major parts of the application. Figure 13-7 shows the structure you need.

In the implementation, both the client and server interface routines are put in the same file, pipe_imp.c.
This keeps all the code that depends on the use of named pipes for the client/server implementation in a
single file. The formatting and packaging of the data being passed is kept separate from the routines that
implement the named pipes. You end up with more source files, but a better logical division between
them. The calling structure in the application is illustrated in Figure 13-8.

The files app_ui.c, client_if.c, and pipe_imp.c are compiled and linked together to give a client pro-
gram. The files cd_dbm.c, server.c, and pipe_imp.c are compiled and linked together to give a server
program. A header file, cliserv.h, acts as a common definitions header file to tie the two together.

The files app_ui.c and cd_dbm.c have only very minor changes, principally to allow for the split into two
programs. Because the application is now quite large and a significant proportion of the code is unchanged
from that previously seen, we show here only the files cliserv.h, client_if.c, and pipe_imp.c.

Data access
routines

User Interface Database access

555

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 555

Some parts of this file are dependent on the specific client/server implementation, in this case named
pipes. We’ll be changing to a different client/server model at the end of Chapter 14.

Figure 13-7

Figure 13-8

Connecting pipe(s)

Client Server

pipe_imp.c pipe_imp.c

client_if.c server.c

app_ui.c cd_dbm.c

Connecting pipe(s)

User Interface Database access

Client Server

Client Interface Server Interface

556

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 556

The Header File, cliserv.h
First look at cliserv.h. This file defines the client/server interface. It’s required by both client and
server implementations.

1. Following are the required #include headers:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

2. You then define the named pipes. Use one pipe for the server and one pipe for each client.
Because there may be multiple clients, the client incorporates a process ID into the name to
ensure that its pipe is unique:

#define SERVER_PIPE “/tmp/server_pipe”
#define CLIENT_PIPE “/tmp/client_%d_pipe”

#define ERR_TEXT_LEN 80

3. Implement the commands as enumerated types, rather than #defines.

This is a good way of allowing the compiler to do more type checking and also helps in debugging the
application, because many debuggers are able to show the name of enumerated constants, but not
the name defined by a #define directive.

The first typedef gives the type of request being sent to the server; the second gives the server
response to the client:

typedef enum {
s_create_new_database = 0,
s_get_cdc_entry,
s_get_cdt_entry,
s_add_cdc_entry,
s_add_cdt_entry,
s_del_cdc_entry,
s_del_cdt_entry,
s_find_cdc_entry

} client_request_e;

typedef enum {
r_success = 0,
r_failure,
r_find_no_more

} server_response_e;

557

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 557

4. Next, declare a structure that will form the message passed in both directions between the
two processes.

Because you don’t actually need to return both a cdc_entry and cdt_entry in the same response,
you could have combined them in a union. However, for simplicity you can keep them separate. This
also makes the code easier to maintain.

typedef struct {
pid_t client_pid;
client_request_e request;
server_response_e response;
cdc_entry cdc_entry_data;
cdt_entry cdt_entry_data;
char error_text[ERR_TEXT_LEN + 1];

} message_db_t;

5. Finally, here are the pipe interface functions that perform data transfer, implemented in
pipe_imp.c. These divide into server- and client-side functions, in the first and second
blocks, respectively:

int server_starting(void);
void server_ending(void);
int read_request_from_client(message_db_t *rec_ptr);
int start_resp_to_client(const message_db_t mess_to_send);
int send_resp_to_client(const message_db_t mess_to_send);
void end_resp_to_client(void);

int client_starting(void);
void client_ending(void);
int send_mess_to_server(message_db_t mess_to_send);
int start_resp_from_server(void);
int read_resp_from_server(message_db_t *rec_ptr);
void end_resp_from_server(void);

We split the rest of the discussion into the client interface functions and details of the server- and client-
side functions found in pipe_imp.c, and we look at the source code as necessary.

Client Interface Functions
Now look at clientif.c. This provides “fake” versions of the database access routines. These encode the
request in a message_db_t structure and then use the routines in pipe_imp.c to transfer the request to
the server. This allows you to make minimal changes to the original app_ui.c.

The Client’s Interpreter
1. This file implements the nine database functions prototyped in cd_data.h. It does so by pass-

ing requests to the server and then returning the server response from the function, acting as an
intermediary. The file starts with #include files and constants:

#define _POSIX_SOURCE

558

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 558

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#include “cd_data.h”
#include “cliserv.h”

2. The static variable mypid reduces the number of calls to getpid that would otherwise be
required. We use a local function, read_one_response, to eliminate duplicated code:

static pid_t mypid;

static int read_one_response(message_db_t *rec_ptr);

3. The database_initialize and close routines are still called, but are now used, respectively,
for initializing the client side of the pipes interface and for removing redundant named pipes
when the client exits:

int database_initialize(const int new_database)
{

if (!client_starting()) return(0);
mypid = getpid();
return(1);

} /* database_initialize */

void database_close(void) {
client_ending();

}

4. The get_cdc_entry routine is called to get a catalog entry from the database, given a CD cata-
log title. Here you encode the request in a message_db_t structure and pass it to the server. You
then read the response back into a different message_db_t structure. If an entry is found, it’s
included inside the message_db_t structure as a cdc_entry structure, so you pass back the
appropriate part of the structure:

cdc_entry get_cdc_entry(const char *cd_catalog_ptr)
{

cdc_entry ret_val;
message_db_t mess_send;
message_db_t mess_ret;

ret_val.catalog[0] = ‘\0’;
mess_send.client_pid = mypid;
mess_send.request = s_get_cdc_entry;
strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

if (send_mess_to_server(mess_send)) {

559

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 559

if (read_one_response(&mess_ret)) {
if (mess_ret.response == r_success) {

ret_val = mess_ret.cdc_entry_data;
} else {

fprintf(stderr, “%s”, mess_ret.error_text);
}

} else {
fprintf(stderr, “Server failed to respond\n”);

}
} else {

fprintf(stderr, “Server not accepting requests\n”);
}
return(ret_val);

}

5. Here’s the source for the function read_one_response that you use to avoid duplicating code:

static int read_one_response(message_db_t *rec_ptr) {

int return_code = 0;
if (!rec_ptr) return(0);

if (start_resp_from_server()) {
if (read_resp_from_server(rec_ptr)) {

return_code = 1;
}
end_resp_from_server();

}
return(return_code);

}

6. The other get_xxx, del_xxx, and add_xxx routines are implemented in a similar way to the
get_cdc_entry function and are reproduced here for completeness. First, the function for
retrieving CD tracks:

cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{

cdt_entry ret_val;
message_db_t mess_send;
message_db_t mess_ret;

ret_val.catalog[0] = ‘\0’;
mess_send.client_pid = mypid;
mess_send.request = s_get_cdt_entry;
strcpy(mess_send.cdt_entry_data.catalog, cd_catalog_ptr);
mess_send.cdt_entry_data.track_no = track_no;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
ret_val = mess_ret.cdt_entry_data;

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

560

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 560

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(ret_val);

}

7. Next, two functions for adding data, first to the catalog and then to the tracks database:

int add_cdc_entry(const cdc_entry entry_to_add)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_add_cdc_entry;
mess_send.cdc_entry_data = entry_to_add;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

int add_cdt_entry(const cdt_entry entry_to_add)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_add_cdt_entry;
mess_send.cdt_entry_data = entry_to_add;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

561

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 561

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

8. Last, two functions for data deletion:

int del_cdc_entry(const char *cd_catalog_ptr)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_del_cdc_entry;
strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

int del_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_del_cdt_entry;
strcpy(mess_send.cdt_entry_data.catalog, cd_catalog_ptr);
mess_send.cdt_entry_data.track_no = track_no;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

562

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 562

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

Searching the Database
The function for the search on the CD key is more complex. The user of this function expects to call it
once to start a search. We catered to this expectation in Chapter 7 by setting *first_call_ptr to true
on this first call and the function then to return the first match. On subsequent calls to the search func-
tion, *first_call_ptr is false and further matches are returned, one per call.

Now that you’ve split the application across two processes, you can no longer allow the search to proceed
one entry at a time in the server, because a different client may request a different search from the server
while your search is in progress. You can’t make the server side store the context (how far the search has
gotten) for each client search separately, because the client side can simply stop searching part of the way
through a search, when a user finds the CD he is looking for or if the client “falls over.”

You can either change the way the search is performed or, as in the following code, hide the complexity
in the interface routine. This code arranges for the server to return all the possible matches to a search
and then store them in a temporary file until the client requests them.

1. This function looks more complicated than it is because it calls three pipe functions that you’ll
be looking at in the next section: send_mess_to_server, start_resp_from_server, and
read_resp_from_server.

cdc_entry search_cdc_entry(const char *cd_catalog_ptr, int *first_call_ptr)
{

message_db_t mess_send;
message_db_t mess_ret;

static FILE *work_file = (FILE *)0;
static int entries_matching = 0;
cdc_entry ret_val;

ret_val.catalog[0] = ‘\0’;

if (!work_file && (*first_call_ptr == 0)) return(ret_val);

2. Here’s the first call to search, that is, with *first_call_ptr set to true. It’s set to false
immediately, in case you forget. A work_file is created and the client message structure initial-
ized.

if (*first_call_ptr) {
*first_call_ptr = 0;
if (work_file) fclose(work_file);
work_file = tmpfile();
if (!work_file) return(ret_val);

mess_send.client_pid = mypid;
mess_send.request = s_find_cdc_entry;
strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

563

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 563

3. Next, there’s this three-deep condition test, which makes calls to functions in pipe_imp.c. If
the message is successfully sent to the server, the client waits for the server’s response. While
reads from the server are successful, the search matches are returned to the client’s work_file
and the entries_matching counter is incremented.

if (send_mess_to_server(mess_send)) {
if (start_resp_from_server()) {

while (read_resp_from_server(&mess_ret)) {
if (mess_ret.response == r_success) {

fwrite(&mess_ret.cdc_entry_data, sizeof(cdc_entry), 1, work_file);
entries_matching++;

} else {
break;

}
} /* while */

} else {
fprintf(stderr, “Server not responding\n”);

}
} else {

fprintf(stderr, “Server not accepting requests\n”);
}

4. The next test checks whether the search had any luck. Then the fseek call sets the work_file
to the next place for data to be written.

if (entries_matching == 0) {
fclose(work_file);
work_file = (FILE *)0;
return(ret_val);

}
(void)fseek(work_file, 0L, SEEK_SET);

5. If this is not the first call to the search function with this particular search term, the code checks
whether there are any matches left. Finally, the next matching entry is read to the ret_val
structure. The previous checks guarantee that a matching entry exists.

} else {
/* not *first_call_ptr */

if (entries_matching == 0) {
fclose(work_file);
work_file = (FILE *)0;
return(ret_val);

}
}

fread(&ret_val, sizeof(cdc_entry), 1, work_file);
entries_matching--;

return(ret_val);
}

564

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 564

The Server Interface, server.c
Just as the client side has an interface to the app_ui.c program, so the server side needs a program to
control the (renamed) cd_access.c, now cd_dbm.c. The server’s main function is listed here.

1. Start by declaring some global variables, a prototype for the process_command function, and a
signal-catcher function to ensure a clean exit:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>

#include “cd_data.h”
#include “cliserv.h”

int save_errno;
static int server_running = 1;

static void process_command(const message_db_t mess_command);

void catch_signals()
{

server_running = 0;
}

2. Now you come to the main function. After checking that the signal-catching routines are all
right, the program checks to see whether you passed -i on the command line. If you did, it will
create a new database. If the call to the database_initialize routine in cd_dbm.c fails, an
error message is shown. If all is well and the server is running, any requests from the client are
fed to the process_command function, which you’ll see in a moment.

int main(int argc, char *argv[]) {
struct sigaction new_action, old_action;
message_db_t mess_command;
int database_init_type = 0;

new_action.sa_handler = catch_signals;
sigemptyset(&new_action.sa_mask);
new_action.sa_flags = 0;
if ((sigaction(SIGINT, &new_action, &old_action) != 0) ||

(sigaction(SIGHUP, &new_action, &old_action) != 0) ||
(sigaction(SIGTERM, &new_action, &old_action) != 0)) {
fprintf(stderr, “Server startup error, signal catching failed\n”);
exit(EXIT_FAILURE);

}

565

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 565

if (argc > 1) {
argv++;
if (strncmp(“-i”, *argv, 2) == 0) database_init_type = 1;

}
if (!database_initialize(database_init_type)) {

fprintf(stderr, “Server error:-\
could not initialize database\n”);

exit(EXIT_FAILURE);
}

if (!server_starting()) exit(EXIT_FAILURE);

while(server_running) {
if (read_request_from_client(&mess_command)) {

process_command(mess_command);
} else {

if(server_running) fprintf(stderr, “Server ended - can not \
read pipe\n”);

server_running = 0;
}

} /* while */
server_ending();
exit(EXIT_SUCCESS);

}

3. Any client messages are fed to the process_command function, where they are fed into a case
statement that makes the appropriate calls to cd_dbm.c:

static void process_command(const message_db_t comm)
{

message_db_t resp;
int first_time = 1;

resp = comm; /* copy command back, then change resp as required */

if (!start_resp_to_client(resp)) {
fprintf(stderr, “Server Warning:-\

start_resp_to_client %d failed\n”, resp.client_pid);
return;

}

resp.response = r_success;
memset(resp.error_text, ‘\0’, sizeof(resp.error_text));
save_errno = 0;

switch(resp.request) {
case s_create_new_database:

if (!database_initialize(1)) resp.response = r_failure;
break;

case s_get_cdc_entry:
resp.cdc_entry_data =

get_cdc_entry(comm.cdc_entry_data.catalog);
break;

case s_get_cdt_entry:

566

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 566

resp.cdt_entry_data =
get_cdt_entry(comm.cdt_entry_data.catalog,

comm.cdt_entry_data.track_no);
break;

case s_add_cdc_entry:
if (!add_cdc_entry(comm.cdc_entry_data)) resp.response =

r_failure;
break;

case s_add_cdt_entry:
if (!add_cdt_entry(comm.cdt_entry_data)) resp.response =

r_failure;
break;

case s_del_cdc_entry:
if (!del_cdc_entry(comm.cdc_entry_data.catalog)) resp.response

= r_failure;
break;

case s_del_cdt_entry:
if (!del_cdt_entry(comm.cdt_entry_data.catalog,

comm.cdt_entry_data.track_no)) resp.response = r_failure;
break;

case s_find_cdc_entry:
do {

resp.cdc_entry_data =
search_cdc_entry(comm.cdc_entry_data.catalog,

&first_time);
if (resp.cdc_entry_data.catalog[0] != 0) {

resp.response = r_success;
if (!send_resp_to_client(resp)) {

fprintf(stderr, “Server Warning:-\
failed to respond to %d\n”, resp.client_pid);

break;
}

} else {
resp.response = r_find_no_more;

}
} while (resp.response == r_success);

break;
default:

resp.response = r_failure;
break;

} /* switch */

sprintf(resp.error_text, “Command failed:\n\t%s\n”,
strerror(save_errno));

if (!send_resp_to_client(resp)) {
fprintf(stderr, “Server Warning:-\

failed to respond to %d\n”, resp.client_pid);
}

end_resp_to_client();
return;

}

567

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 567

Before you look at the actual pipe implementation, let’s discuss the sequence of events that needs to
occur to pass data between the client and server processes. Figure 13-9 shows both client and server
processes starting and how both parties loop while processing commands and responses.

Figure 13-9

In this implementation, the situation is slightly more difficult, because, for a search request, the client
passes a single command to the server and then expects to receive one or more responses from the
server. This leads to some additional complexity, mainly in the client.

Client
starts

Client reads
user

command

Client
sends
data

Server
receives

data

Server
starts

Server
processes

data

Server
returns
results

Client
reads
results

Client
displays
result

568

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 568

The Pipe
Here’s the pipes implementation file, pipe_imp.c, which has both the client- and server-side functions.

As you saw in Chapter 10, the symbol DEBUG_TRACE can be defined to show the sequence of calls as
the client and server processes pass messages to each other.

Pipes Implementation Header
1. First the #includes:

#include “cd_data.h”
#include “cliserv.h”

2. You also define some values that you need in different functions within the file:

static int server_fd = -1;
static pid_t mypid = 0;
static char client_pipe_name[PATH_MAX + 1] = {‘\0’};
static int client_fd = -1;
static int client_write_fd = -1;

Server-Side Functions
Next, you need to look at the server-side functions. The next section shows the functions that open and
close the named pipe and read messages from the clients. The following section shows the code that
opens, sends, and closes the client pipes based on the process ID the client includes in its message.

Server Functions
1. The server_starting routine creates the named pipe from which the server will read com-

mands. It then opens that pipe for reading. This open will block until a client opens the pipe for
writing. Use a blocking mode so that the server can perform blocking reads on the pipe while
waiting for commands to be sent to it.

int server_starting(void)
{

#if DEBUG_TRACE
printf(“%d :- server_starting()\n”, getpid());

#endif

unlink(SERVER_PIPE);
if (mkfifo(SERVER_PIPE, 0777) == -1) {

fprintf(stderr, “Server startup error, no FIFO created\n”);
return(0);

}

if ((server_fd = open(SERVER_PIPE, O_RDONLY)) == -1) {
if (errno == EINTR) return(0);
fprintf(stderr, “Server startup error, no FIFO opened\n”);
return(0);

}
return(1);

}

569

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 569

2. When the server ends, it removes the named pipe so that clients can detect that no server
is running:

void server_ending(void)
{

#if DEBUG_TRACE
printf(“%d :- server_ending()\n”, getpid());

#endif

(void)close(server_fd);
(void)unlink(SERVER_PIPE);

}

3. The read_request_from_client function shown in the following example will block reading
in the server pipe until a client writes a message into it:

int read_request_from_client(message_db_t *rec_ptr)
{

int return_code = 0;
int read_bytes;

#if DEBUG_TRACE
printf(“%d :- read_request_from_client()\n”, getpid());

#endif

if (server_fd != -1) {
read_bytes = read(server_fd, rec_ptr, sizeof(*rec_ptr));

...

}
return(return_code);

}

4. In the special case where no clients have the pipe open for writing, the read will return 0; that
is, it detects an EOF. Then the server closes the pipe and opens it again, so that it blocks until a
client also opens the pipe. This is just the same as when the server first starts; you have reinitial-
ized the server. Insert this code into the preceding function:

if (read_bytes == 0) {
(void)close(server_fd);
if ((server_fd = open(SERVER_PIPE, O_RDONLY)) == -1) {

if (errno != EINTR) {
fprintf(stderr, “Server error, FIFO open failed\n”);

}
return(0);

}
read_bytes = read(server_fd, rec_ptr, sizeof(*rec_ptr));

}
if (read_bytes == sizeof(*rec_ptr)) return_code = 1;

570

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 570

The server is a single process that may be serving many clients simultaneously. Because each client uses
a different pipe to receive its responses, the server needs to write to a different pipe to send responses to
different clients. Because file descriptors are a limited resource, the server opens a client pipe for writing
only when it has data to send.

The code splits the opening, writing, and closing of the client pipe into three separate functions. You
need to do this when you’re returning multiple results to a search, so you can open the pipe once, write
many responses, and close it again.

Plumbing the Pipes
1. First open the client pipe:

int start_resp_to_client(const message_db_t mess_to_send)
{

#if DEBUG_TRACE
printf(“%d :- start_resp_to_client()\n”, getpid());

#endif

(void)sprintf(client_pipe_name, CLIENT_PIPE, mess_to_send.client_pid);
if ((client_fd = open(client_pipe_name, O_WRONLY)) == -1) return(0);
return(1);

}

2. The messages are all sent using calls to this function. You’ll see the corresponding client-side
functions that field the message later.

int send_resp_to_client(const message_db_t mess_to_send)
{

int write_bytes;

#if DEBUG_TRACE
printf(“%d :- send_resp_to_client()\n”, getpid());

#endif

if (client_fd == -1) return(0);
write_bytes = write(client_fd, &mess_to_send, sizeof(mess_to_send));
if (write_bytes != sizeof(mess_to_send)) return(0);
return(1);

}

3. Finally, close the client pipe:

void end_resp_to_client(void)
{

#if DEBUG_TRACE
printf(“%d :- end_resp_to_client()\n”, getpid());

#endif

if (client_fd != -1) {
(void)close(client_fd);

571

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 571

client_fd = -1;
}

}

Client-Side Functions
Complementing the server are the client functions in pipe_imp.c. They are very similar to the server-
side functions, except for the worryingly named send_mess_to_server function.

Client Functions
1. After checking that a server is accessible, the client_starting function initializes the client-

side pipe:

int client_starting(void)
{

#if DEBUG_TRACE
printf(“%d :- client_starting\n”, getpid());

#endif

mypid = getpid();
if ((server_fd = open(SERVER_PIPE, O_WRONLY)) == -1) {

fprintf(stderr, “Server not running\n”);
return(0);

}

(void)sprintf(client_pipe_name, CLIENT_PIPE, mypid);
(void)unlink(client_pipe_name);
if (mkfifo(client_pipe_name, 0777) == -1) {

fprintf(stderr, “Unable to create client pipe %s\n”,
client_pipe_name);

return(0);
}
return(1);

}

2. The client_ending function closes file descriptors and deletes the now-redundant named pipe:

void client_ending(void)
{

#if DEBUG_TRACE
printf(“%d :- client_ending()\n”, getpid());

#endif

if (client_write_fd != -1) (void)close(client_write_fd);
if (client_fd != -1) (void)close(client_fd);
if (server_fd != -1) (void)close(server_fd);
(void)unlink(client_pipe_name);

}

3. The send_mess_to_server function passes the request through the server pipe:

int send_mess_to_server(message_db_t mess_to_send)
{

572

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 572

int write_bytes;

#if DEBUG_TRACE
printf(“%d :- send_mess_to_server()\n”, getpid());

#endif

if (server_fd == -1) return(0);
mess_to_send.client_pid = mypid;
write_bytes = write(server_fd, &mess_to_send, sizeof(mess_to_send));
if (write_bytes != sizeof(mess_to_send)) return(0);
return(1);

}

As with the server-side functions you saw earlier, the client gets results back from the server using three
functions, to cater to multiple search results.

Getting Server Results
1. This client function starts to listen for the server response. It opens a client pipe as read-only

and then reopens this pipe’s file as write-only. You’ll see why a bit later in the section.

int start_resp_from_server(void)
{

#if DEBUG_TRACE
printf(“%d :- start_resp_from_server()\n”, getpid());

#endif

if (client_pipe_name[0] == ‘\0’) return(0);
if (client_fd != -1) return(1);

client_fd = open(client_pipe_name, O_RDONLY);
if (client_fd != -1) {

client_write_fd = open(client_pipe_name, O_WRONLY);
if (client_write_fd != -1) return(1);
(void)close(client_fd);
client_fd = -1;

}
return(0);

}

2. Here’s the main read from the server that gets the matching database entries:

int read_resp_from_server(message_db_t *rec_ptr)
{

int read_bytes;
int return_code = 0;

#if DEBUG_TRACE
printf(“%d :- read_resp_from_server()\n”, getpid());

#endif

if (!rec_ptr) return(0);
if (client_fd == -1) return(0);

read_bytes = read(client_fd, rec_ptr, sizeof(*rec_ptr));

573

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 573

if (read_bytes == sizeof(*rec_ptr)) return_code = 1;
return(return_code);

}

3. And finally, here’s the client function that marks the end of the server response:

void end_resp_from_server(void)
{

#if DEBUG_TRACE
printf(“%d :- end_resp_from_server()\n”, getpid());

#endif

/* This function is empty in the pipe implementation */
}

The second, additional open of the client pipe for writing in start_resp_from_server,

client_write_fd = open(client_pipe_name, O_WRONLY);

is used to prevent a race condition when the server needs to respond to several requests from the client
in quick succession.

To explain this a little more, consider the following sequence of events:

1. The client writes a request to the server.

2. The server reads the request, opens the client pipe, and sends the response back, but is sus-
pended before it gets as far as closing the client pipe.

3. The client opens its pipe for reading, reads the first response, and closes its pipe.

4. The client then sends a new command and opens the client pipe for reading.

5. The server then resumes running, closing its end of the client pipe.

Unfortunately, at this point the client is trying to read the pipe, looking for a response to its next request,
but the read will return with 0 bytes because no process has the client pipe open for writing.

By allowing the client to open its pipe for both reading and writing, thus removing the need for repeat-
edly reopening the pipe, you avoid this race condition. Note that the client never writes to the pipe, so
there’s no danger of reading erroneous data.

Application Summary
You’ve now separated the CD database application into a client and a server, enabling you to develop the
user interface and the underlying database technology independently. You can see that a well-defined data-
base interface allows each major element of the application to make the best use of computer resources. If
you took things a little further, you could change the pipes implementation to a networked one and use a
dedicated database server machine. You learn more about networking in Chapter 15.

574

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 574

Summary
In this chapter, you looked at passing data between processes using pipes. First, you looked at unnamed
pipes, created with the popen or the pipe call, and saw how, using a pipe and the dup call, you can pass
data from one program to the standard input of another. You then looked at named pipes and showed
how you can pass data between unrelated programs. Finally, you implemented a simple client/server
example, using FIFOs to provide not only for process synchronization, but also bidirectional data flow.

575

Chapter 13: Inter-Process Communication: Pipes

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 575

47627c13.qxd:WroxPro 9/29/07 3:35 PM Page 576

14
Semaphores, Shared

Memory, and Message
Queues

In this chapter, we discuss a set of inter-process communication facilities that were originally
introduced in the AT&T System V.2 release of UNIX. Because all these facilities appeared in the
same release and have a similar programmatic interface, they are often referred to as the IPC
(Inter-Process Communication) facilities, or more commonly System V IPC. As you’ve already
seen, they are by no means the only way of communicating between processes, but the expression
System V IPC is usually used to refer to these specific facilities.

We cover the following topics in this chapter:

❑ Semaphores, for managing access to resources

❑ Shared memory, for highly efficient data sharing between programs

❑ Messaging, for an easy way of passing data between programs

Semaphores
When you write programs that use threads operating in multiuser systems, multiprocessing sys-
tems, or a combination of the two, you may often discover that you have critical sections of code,
where you need to ensure that a single process (or a single thread of execution) has exclusive
access to a resource.

Semaphores have a complex programming interface. Fortunately, you can easily provide a much-
simplified interface that is sufficient for most semaphore-programming problems.

In the first example application in Chapter 7 — using dbm to access a database — the data could
be corrupted if multiple programs tried to update the database at exactly the same time. There’s

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 577

no trouble with two different programs asking different users to enter data for the database; the only
potential problem is in the parts of the code that update the database. These sections of code, which
actually perform data updates and need to execute exclusively, are called critical sections. Frequently they
are just a few lines of code from much larger programs.

To prevent problems caused by more than one program simultaneously accessing a shared resource, you
need a way of generating and using a token that grants access to only one thread of execution in a criti-
cal section at a time. You saw briefly in Chapter 12 some thread-specific ways you could use a mutex or
semaphores to control access to critical sections in a threaded program. In this chapter, we return to the
topic of semaphores, but look more generally at how they are used between different processes.

The semaphore functions used with threads that you saw in Chapter 12 are not the more general ones
we discuss in this chapter, so be careful not to confuse the two types.

It’s surprisingly difficult to write general-purpose code that ensures that one program has exclusive
access to a particular resource, although there’s a solution known as Dekker’s Algorithm. Unfortunately,
this algorithm relies on a “busy wait,” or “spin lock,” where a process runs continuously, waiting for a
memory location to be changed. In a multitasking environment such as Linux, this is an undesirable
waste of CPU resources. The situation is much easier if hardware support, generally in the form of spe-
cific CPU instructions, is available to support exclusive access. An example of hardware support would
be an instruction to access and increment a register in an atomic way, such that no other instruction (not
even an interrupt) could occur between the read/increment/write operations.

One possible solution that you’ve already seen is to create files using the O_EXCL flag with the open func-
tion, which provides atomic file creation. This allows a single process to succeed in obtaining a token: the
newly created file. This method is fine for simple problems, but rather messy and very inefficient for more
complex examples.

An important step forward in this area of concurrent programming occurred when Edsger Dijkstra, a
Dutch computer scientist, introduced the concept of the semaphore. As briefly mentioned in Chapter 12,
a semaphore is a special variable that takes only whole positive numbers and upon which programs can
only act atomically. In this chapter we expand on that earlier simplified definition. We show in more
detail how semaphores function, and how the more general-purpose functions can be used between
separate processes, rather than the special case of multi-threaded programs you saw in Chapter 12.

A more formal definition of a semaphore is a special variable on which only two operations are allowed;
these operations are officially termed wait and signal. Because “wait” and “signal” already have special
meanings in Linux programming, we’ll use the original notation:

❑ P(semaphore variable) for wait

❑ V(semaphore variable) for signal

These letters come from the Dutch words for wait (passeren: to pass, as in a checkpoint before the critical
section) and signal (vrijgeven: to give or release, as in giving up control of the critical section). You may
also come across the terms “up” and “down” used in relation to semaphores, taken from the use of sig-
naling flags.

578

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 578

Semaphore Definition
The simplest semaphore is a variable that can take only the values 0 and 1, a binary semaphore. This is the
most common form. Semaphores that can take many positive values are called general semaphores. For the
remainder of this chapter, we concentrate on binary semaphores.

The definitions of P and V are surprisingly simple. Suppose you have a semaphore variable sv. The two
operations are then defined as follows:

Another way of thinking about semaphores is that the semaphore variable, sv, is true when the critical
section is available, is decremented by P(sv) so it’s false when the critical section is busy, and is incre-
mented by V(sv) when the critical section is again available. Be aware that simply having a normal vari-
able that you decrement and increment is not good enough, because you can’t express in C, C++, C#, or
almost any conventional programming language the need to make a single, atomic operation of the test
to see whether the variable is true, and if so change the variable to make it false. This is what makes
the semaphore operations special.

A Theoretical Example
You can see how this works with a simple theoretical example. Suppose you have two processes proc1
and proc2, both of which need exclusive access to a database at some point in their execution. You define
a single binary semaphore, sv, which starts with the value 1 and can be accessed by both processes. Both
processes then need to perform the same processing to access the critical section of code; indeed, the
two processes could simply be different invocations of the same program.

The two processes share the sv semaphore variable. Once one process has executed P(sv), it has
obtained the semaphore and can enter the critical section. The second process is prevented from enter-
ing the critical section because when it attempts to execute P(sv), it’s made to wait until the first
process has left the critical section and executed V(sv) to release the semaphore.

The required pseudocode is identical for both processes:

semaphore sv = 1;

loop forever {
P(sv);
critical code section;
V(sv);
noncritical code section;

}

The code is surprisingly simple because the definition of the P and V operations is very powerful.
Figure 14-1 shows a diagram showing how the P and V operations act as a gate into critical sections of code.

P(sv) If sv is greater than zero, decrement sv. If sv is zero, suspend execution
of this process.

V(sv) If some other process has been suspended waiting for sv, make it resume
execution. If no process is suspended waiting for sv, increment sv.

579

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 579

Figure 14-1

Linux Semaphore Facilities
Now that you’ve seen what semaphores are and how they work in theory, you can look at how the fea-
tures are implemented in Linux. The interface is rather elaborate and offers far more facilities than are
generally required. All the Linux semaphore functions operate on arrays of general semaphores rather
than a single binary semaphore. At first sight, this just seems to make things more complicated, but in
complex cases where a process needs to lock multiple resources, the ability to operate on an array of
semaphores is a big advantage. In this chapter, we concentrate on using single semaphores, because in
most cases that’s all you will need to use.

The semaphore function definitions are

#include <sys/sem.h>

int semctl(int sem_id, int sem_num, int command, ...);
int semget(key_t key, int num_sems, int sem_flags);
int semop(int sem_id, struct sembuf *sem_ops, size_t num_sem_ops);

The header file sys/sem.h usually relies on two other header files, sys/types.h and sys/ipc.h.
Normally they are automatically included by sys/sem.h and you do not need to explicitly add a
#include for them.

As you work through each function in turn, remember that these functions were designed to work for
arrays of semaphore values, which makes their operation significantly more complex than would have
been required for a single semaphore.

Notice that key acts very much like a filename in that it represents a resource that programs may use
and cooperate in using if they agree on a common name. Similarly, the identifier returned by semget
and used by the other shared memory functions is very much like the FILE * file stream returned
by fopen in that it’s a value used by the process to access the shared file. Just as with files different
processes will have different semaphore identifiers, though they refer to the same semaphore. This use
of a key and identifiers is common to all of the IPC facilities discussed here, although each facility uses
independent keys and identifiers.

P semaphore operation

V semaphore operation

Non-critical section
of process A

Critical
section

Non-critical section
of process B

Only a single
thread of execution
can enter the critical
section at any
one time

Process A thread
of execution

Process B thread
of execution

580

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 580

semget
The semget function creates a new semaphore or obtains the semaphore key of an existing semaphore:

int semget(key_t key, int num_sems, int sem_flags);

The first parameter, key, is an integral value used to allow unrelated processes to access the same sema-
phore. All semaphores are accessed indirectly by the program supplying a key, for which the system then
generates a semaphore identifier. The semaphore key is used only with semget. All other semaphore
functions use the semaphore identifier returned from semget.

There is a special semaphore key value, IPC_PRIVATE, that is intended to create a semaphore that only
the creating process could access, but this rarely has any useful purpose. You should provide a unique,
non-zero integer value for key when you want to create a new semaphore.

The num_sems parameter is the number of semaphores required. This is almost always 1.

The sem_flags parameter is a set of flags, very much like the flags to the open function. The lower nine
bits are the permissions for the semaphore, which behave like file permissions. In addition, these can be bit-
wise ORed with the value IPC_CREAT to create a new semaphore. It’s not an error to have the IPC_CREAT
flag set and give the key of an existing semaphore. The IPC_CREAT flag is silently ignored if it is not
required. You can use IPC_CREAT and IPC_EXCL together to ensure that you obtain a new, unique sema-
phore. It will return an error if the semaphore already exists.

The semget function returns a positive (nonzero) value on success; this is the semaphore identifier used
in the other semaphore functions. On error, it returns –1.

semop
The function semop is used for changing the value of the semaphore:

int semop(int sem_id, struct sembuf *sem_ops, size_t num_sem_ops);

The first parameter, sem_id, is the semaphore identifier, as returned from semget. The second parameter,
sem_ops, is a pointer to an array of structures, each of which will have at least the following members:

struct sembuf {
short sem_num;
short sem_op;
short sem_flg;

}

The first member, sem_num, is the semaphore number, usually 0 unless you’re working with an array
of semaphores. The sem_op member is the value by which the semaphore should be changed. (You can
change a semaphore by amounts other than 1.) In general, only two values are used, –1, which is your P
operation to wait for a semaphore to become available, and +1, which is your V operation to signal that a
semaphore is now available.

The final member, sem_flg, is usually set to SEM_UNDO. This causes the operating system to track the
changes made to the semaphore by the current process and, if the process terminates without releasing
the semaphore, allows the operating system to automatically release the semaphore if it was held by this

581

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 581

process. It’s good practice to set sem_flg to SEM_UNDO, unless you specifically require different behavior.
If you do decide you need a value other than SEM_UNDO, it’s important to be consistent, or you can get very
confused as to whether the kernel is attempting to “tidy up” your semaphores when your process exits.

All actions called for by semop are taken together to avoid a race condition implied by the use of multiple
semaphores. You can find full details of the processing of semop in the manual pages.

semctl
The semctl function allows direct control of semaphore information:

int semctl(int sem_id, int sem_num, int command, ...);

The first parameter, sem_id, is a semaphore identifier, obtained from semget. The sem_num parameter
is the semaphore number. You use this when you’re working with arrays of semaphores. Usually, this is
0, the first and only semaphore. The command parameter is the action to take, and a fourth parameter, if
present, is a union semun, which according to the X/OPEN specification must have at least the follow-
ing members:

union semun {
int val;
struct semid_ds *buf;
unsigned short *array;

}

Most versions of Linux have a definition of the semun union in a header file (usually sem.h), though
X/Open does say that you have to declare your own. If you do find that you need to declare your own,
check the manual pages for semctl to see if there is a definition given. If there is, we suggest you use
exactly the definition given in your manual, even if it differs from that given here.

There are many different possible values of command allowed for semctl. Only the two that we describe
here are commonly used. For full details of the semctl function, you should consult the manual page.

The two common values of command are:

❑ SETVAL: Used for initializing a semaphore to a known value. The value required is passed as the
val member of the union semun. This is required to set the semaphore up before it’s used for
the first time.

❑ IPC_RMID: Used for deleting a semaphore identifier when it’s no longer required.

The semctl function returns different values depending on the command parameter. For SETVAL and
IPC_RMID it returns 0 for success and –1 on error.

Using Semaphores
As you can see from the previous section’s descriptions, semaphore operations can be rather complex.
This is most unfortunate, because programming multiple processes or threads with critical sections is
quite a difficult problem on its own and having a complex programming interface simply adds to the
intellectual burden.

582

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 582

Fortunately you can solve most problems that require semaphores using only a single binary semaphore,
the simplest type. In the following example, you use the full programming interface to create a much
simpler P and V type interface for a binary semaphore. You then use this much simpler interface to
demonstrate how semaphores function.

To experiment with semaphores, you use a single program, sem1.c, that you can invoke several times.
You use an optional parameter to specify whether the program is responsible for creating and destroying
the semaphore.

You use the output of two different characters to indicate entering and leaving the critical section. The
program invoked with a parameter prints an X on entering and exiting its critical section. Other invoca-
tions of the program print an O on entering and exiting their critical sections. Because only one process
should be able to enter its critical section at any given time, all X and O characters should appear in pairs.

Try It Out Semaphores
1. After the system #includes, you include a file semun.h. This defines the union semun, as

required by X/OPEN, if the system include sys/sem.h doesn’t already define it. Then come the
function prototypes, and the global variable, before you come to the main function. There the sem-
aphore is created with a call to semget, which returns the semaphore ID. If the program is the first
to be called (that is, it’s called with a parameter and argc > 1), a call is made to set_semvalue to
initialize the semaphore and op_char is set to X:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#include <sys/sem.h>

#include “semun.h”

static int set_semvalue(void);
static void del_semvalue(void);
static int semaphore_p(void);
static int semaphore_v(void);

static int sem_id;

int main(int argc, char *argv[])
{

int i;
int pause_time;
char op_char = ‘O’;

srand((unsigned int)getpid());

sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);

if (argc > 1) {

583

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 583

if (!set_semvalue()) {
fprintf(stderr, “Failed to initialize semaphore\n”);
exit(EXIT_FAILURE);

}
op_char = ‘X’;
sleep(2);

}

2. Then you have a loop that enters and leaves the critical section 10 times. There you first make a
call to semaphore_p, which sets the semaphore to wait as this program is about to enter the
critical section:

for(i = 0; i < 10; i++) {

if (!semaphore_p()) exit(EXIT_FAILURE);
printf(“%c”, op_char);fflush(stdout);
pause_time = rand() % 3;
sleep(pause_time);
printf(“%c”, op_char);fflush(stdout);

3. After the critical section, you call semaphore_v, setting the semaphore as available, before
going through the for loop again after a random wait. After the loop, the call to del_semvalue
is made to clean up the code:

if (!semaphore_v()) exit(EXIT_FAILURE);

pause_time = rand() % 2;
sleep(pause_time);

}

printf(“\n%d - finished\n”, getpid());

if (argc > 1) {
sleep(10);
del_semvalue();

}

exit(EXIT_SUCCESS);
}

4. The function set_semvalue initializes the semaphore using the SETVAL command in a semctl
call. You need to do this before you can use the semaphore:

static int set_semvalue(void)
{

union semun sem_union;

sem_union.val = 1;
if (semctl(sem_id, 0, SETVAL, sem_union) == -1) return(0);
return(1);

}

584

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 584

5. The del_semvalue function has almost the same form, except that the call to semctl uses the
command IPC_RMID to remove the semaphore’s ID:

static void del_semvalue(void)
{

union semun sem_union;

if (semctl(sem_id, 0, IPC_RMID, sem_union) == -1)
fprintf(stderr, “Failed to delete semaphore\n”);

}

6. semaphore_p changes the semaphore by –1. This is the “wait” operation:

static int semaphore_p(void)
{

struct sembuf sem_b;

sem_b.sem_num = 0;
sem_b.sem_op = -1; /* P() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1) {

fprintf(stderr, “semaphore_p failed\n”);
return(0);

}
return(1);

}

7. semaphore_v is similar except for setting the sem_op part of the sembuf structure to 1. This is
the “release” operation, so that the semaphore becomes available:

static int semaphore_v(void)
{

struct sembuf sem_b;

sem_b.sem_num = 0;
sem_b.sem_op = 1; /* V() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1) {

fprintf(stderr, “semaphore_v failed\n”);
return(0);

}
return(1);

}

Notice that this simple program allows only a single binary semaphore per program, although you
could extend it to pass the semaphore variable if you need more semaphores. Normally, a single binary
semaphore is sufficient.

You can test your program by invoking it several times. The first time, you pass a parameter to tell
the program that it’s responsible for creating and deleting the semaphore. The other invocations have
no parameter.

585

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 585

Here’s some sample output, with two invocations of the program.

$ cc sem1.c -o sem1
$./sem1 1 &
[1] 1082
$./sem1
OOXXOOXXOOXXOOXXOOXXOOOOXXOOXXOOXXOOXXXX
1083 - finished
1082 - finished
$

Remember that “O” represents the first invocation of the program, and “X” the second invocation of the
program. Because each program prints a character as it enters and again as it leaves the critical section,
each character should only appear as part of a pair. As you can see, the Os and Xs are indeed properly
paired, indicating that the critical section is being correctly processed. If this doesn’t work on your par-
ticular system, you may have to use the command stty –tostop before invoking the program to
ensure that the background program generating tty output does not cause a signal to be generated.

How It Works
The program starts by obtaining a semaphore identity from the (arbitrary) key that you’ve chosen using
the semget function. The IPC_CREAT flag causes the semaphore to be created if one is required.

If the program has a parameter, it’s responsible for initializing the semaphore, which it does with the func-
tion set_semvalue, a simplified interface to the more general semctl function. It also uses the presence of
the parameter to determine which character it should print out. The sleep simply allows you some time to
invoke other copies of the program before this copy gets to execute too many times around its loop. You
use srand and rand to introduce some pseudo-random timing into the program.

The program then loops 10 times, with pseudo-random waits in its critical and noncritical sections. The
critical section is guarded by calls to your semaphore_p and semaphore_v functions, which are simpli-
fied interfaces to the more general semop function.

Before it deletes the semaphore, the program that was invoked with a parameter then waits to allow
other invocations to complete. If the semaphore isn’t deleted, it will continue to exist in the system even
though no programs are using it. In real programs, it’s very important to ensure you don’t unintention-
ally leave semaphores around after execution. It may cause problems next time you run the program,
and semaphores are a limited resource that you must conserve.

Shared Memory
Shared memory is the second of the three IPC facilities. It allows two unrelated processes to access the
same logical memory. Shared memory is a very efficient way of transferring data between two running
processes. Although the X/Open standard doesn’t require it, it’s probable that most implementations
of shared memory arrange for the memory being shared between different processes to be the same
physical memory.

586

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 586

Shared memory is a special range of addresses that is created by IPC for one process and appears in the
address space of that process. Other processes can then “attach” the same shared memory segment into
their own address space. All processes can access the memory locations just as if the memory had been
allocated by malloc. If one process writes to the shared memory, the changes immediately become visible
to any other process that has access to the same shared memory.

Shared memory provides an efficient way of sharing and passing data between multiple processes. By
itself, shared memory doesn’t provide any synchronization facilities. Because it provides no synchro-
nization facilities, you usually need to use some other mechanism to synchronize access to the shared
memory. Typically, you might use shared memory to provide efficient access to large areas of memory
and pass small messages to synchronize access to that memory.

There are no automatic facilities to prevent a second process from starting to read the shared memory
before the first process has finished writing to it. It’s the responsibility of the programmer to synchronize
access. Figure 14-2 shows an illustration of how shared memory works.

Figure 14-2

Logical address space
for process A

Logical address space
for process B

Physical memory

Shared
Memory
Shared
Memory

587

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 587

The arrows show the mapping of the logical address space of each process to the physical memory
available. In practice, the situation is more complex because the available memory actually consists of
a mix of physical memory and memory pages that have been swapped out to disk.

The functions for shared memory resemble those for semaphores:

#include <sys/shm.h>

void *shmat(int shm_id, const void *shm_addr, int shmflg);
int shmctl(int shm_id, int cmd, struct shmid_ds *buf);
int shmdt(const void *shm_addr);
int shmget(key_t key, size_t size, int shmflg);

As with semaphores, the include files sys/types.h and sys/ipc.h are normally automatically
included by shm.h.

shmget
You create shared memory using the shmget function:

int shmget(key_t key, size_t size, int shmflg);

As with semaphores, the program provides key, which effectively names the shared memory segment,
and the shmget function returns a shared memory identifier that is used in subsequent shared memory
functions. There’s a special key value, IPC_PRIVATE, that creates shared memory private to the process.
You wouldn’t normally use this value, and you may find the private shared memory is not actually pri-
vate on some Linux systems.

The second parameter, size, specifies the amount of memory required in bytes.

The third parameter, shmflg, consists of nine permission flags that are used in the same way as the mode
flags for creating files. A special bit defined by IPC_CREAT must be bitwise ORed with the permissions to
create a new shared memory segment. It’s not an error to have the IPC_CREAT flag set and pass the key of
an existing shared memory segment. The IPC_CREAT flag is silently ignored if it is not required.

The permission flags are very useful with shared memory because they allow a process to create shared
memory that can be written by processes owned by the creator of the shared memory, but only read by
processes that other users have created. You can use this to provide efficient read-only access to data
by placing it in shared memory without the risk of its being changed by other users.

If the shared memory is successfully created, shmget returns a nonnegative integer, the shared memory
identifier. On failure, it returns –1.

shmat
When you first create a shared memory segment, it’s not accessible by any process. To enable access to the
shared memory, you must attach it to the address space of a process. You do this with the shmat function:

void *shmat(int shm_id, const void *shm_addr, int shmflg);

588

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 588

The first parameter, shm_id, is the shared memory identifier returned from shmget.

The second parameter, shm_addr, is the address at which the shared memory is to be attached to the
current process. This should almost always be a null pointer, which allows the system to choose the
address at which the memory appears.

The third parameter, shmflg, is a set of bitwise flags. The two possible values are SHM_RND, which, in con-
junction with shm_addr, controls the address at which the shared memory is attached, and SHM_RDONLY,
which makes the attached memory read-only. It’s very rare to need to control the address at which shared
memory is attached; you should normally allow the system to choose an address for you, because doing
otherwise will make the application highly hardware-dependent.

If the shmat call is successful, it returns a pointer to the first byte of shared memory. On failure –1
is returned.

The shared memory will have read or write access depending on the owner (the creator of the shared
memory), the permissions, and the owner of the current process. Permissions on shared memory are
similar to the permissions on files.

An exception to this rule arises if shmflg & SHM_RDONLY is true. Then the shared memory won’t be
writable, even if permissions would have allowed write access.

shmdt
The shmdt function detaches the shared memory from the current process. It takes a pointer to the address
returned by shmat. On success, it returns 0, on error –1. Note that detaching the shared memory doesn’t
delete it; it just makes that memory unavailable to the current process.

shmctl
The control functions for shared memory are (thankfully) somewhat simpler than the more complex
ones for semaphores:

int shmctl(int shm_id, int command, struct shmid_ds *buf);

The shmid_ds structure has at least the following members:

struct shmid_ds {
uid_t shm_perm.uid;
uid_t shm_perm.gid;
mode_t shm_perm.mode;

}

The first parameter, shm_id, is the identifier returned from shmget.

The second parameter, command, is the action to take. It can take three values, shown in the following table.

589

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 589

The third parameter, buf, is a pointer to the structure containing the modes and permissions for the
shared memory.

On success, it returns 0, on failure, –1. X/Open doesn’t specify what happens if you attempt to delete a
shared memory segment while it’s attached. Generally, a shared memory segment that is attached but
deleted continues to function until it has been detached from the last process. However, because this
behavior isn’t specified, it’s best not to rely on it.

Try It Out Shared Memory
Now that you’ve seen the shared memory functions, you can write some code to use them. In this Try
It Out, you write a pair of programs, shm1.c and shm2.c. The first (the consumer) will create a shared
memory segment and then display any data that is written into it. The second (the producer) will attach
to an existing shared memory segment and allow you to enter data into that segment.

1. First create a common header file to describe the shared memory you want to pass around. Call
this shm_com.h:

#define TEXT_SZ 2048

struct shared_use_st {
int written_by_you;
char some_text[TEXT_SZ];

};

This defines a structure to use in both the consumer and producer programs. You use an int
flag written_by_you to tell the consumer when data has been written to the rest of the struc-
ture and arbitrarily decide that you need to transfer up to 2k of text.

2. The first program, shm1.c, is the consumer. After the headers, the shared memory segment
(the size of your shared memory structure) is created with a call to shmget, with the IPC_CREAT
bit specified:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <sys/shm.h>

Command Description

IPC_STAT Sets the data in the shmid_ds structure to reflect the values associated
with the shared memory.

IPC_SET Sets the values associated with the shared memory to those provided in
the shmid_ds data structure, if the process has permission to do so.

IPC_RMID Deletes the shared memory segment.

590

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 590

#include “shm_com.h”

int main()
{

int running = 1;
void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
int shmid;

srand((unsigned int)getpid());

shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);

if (shmid == -1) {
fprintf(stderr, “shmget failed\n”);
exit(EXIT_FAILURE);

}

3. You now make the shared memory accessible to the program:

shared_memory = shmat(shmid, (void *)0, 0);
if (shared_memory == (void *)-1) {

fprintf(stderr, “shmat failed\n”);
exit(EXIT_FAILURE);

}

printf(“Memory attached at %X\n”, (int)shared_memory);

4. The next portion of the program assigns the shared_memory segment to shared_stuff,
which then prints out any text in written_by_you. The loop continues until end is found in
written_by_you. The call to sleep forces the consumer to sit in its critical section, which
makes the producer wait:

shared_stuff = (struct shared_use_st *)shared_memory;
shared_stuff->written_by_you = 0;
while(running) {

if (shared_stuff->written_by_you) {
printf(“You wrote: %s”, shared_stuff->some_text);
sleep(rand() % 4); /* make the other process wait for us ! */
shared_stuff->written_by_you = 0;
if (strncmp(shared_stuff->some_text, “end”, 3) == 0) {

running = 0;
}

}
}

5. Finally, the shared memory is detached and then deleted:

if (shmdt(shared_memory) == -1) {
fprintf(stderr, “shmdt failed\n”);
exit(EXIT_FAILURE);

}

if (shmctl(shmid, IPC_RMID, 0) == -1) {

591

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 591

fprintf(stderr, “shmctl(IPC_RMID) failed\n”);
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

6. The second program, shm2.c, is the producer; it allows you to enter data for consumers. It’s
very similar to shm1.c and looks like this:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <sys/shm.h>

#include “shm_com.h”

int main()
{

int running = 1;
void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
char buffer[BUFSIZ];
int shmid;

shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);

if (shmid == -1) {
fprintf(stderr, “shmget failed\n”);
exit(EXIT_FAILURE);

}
shared_memory = shmat(shmid, (void *)0, 0);
if (shared_memory == (void *)-1) {

fprintf(stderr, “shmat failed\n”);
exit(EXIT_FAILURE);

}

printf(“Memory attached at %X\n”, (int)shared_memory);

shared_stuff = (struct shared_use_st *)shared_memory;
while(running) {

while(shared_stuff->written_by_you == 1) {
sleep(1);
printf(“waiting for client...\n”);

}
printf(“Enter some text: “);
fgets(buffer, BUFSIZ, stdin);

strncpy(shared_stuff->some_text, buffer, TEXT_SZ);
shared_stuff->written_by_you = 1;

592

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 592

if (strncmp(buffer, “end”, 3) == 0) {
running = 0;

}
}

if (shmdt(shared_memory) == -1) {
fprintf(stderr, “shmdt failed\n”);
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

When you run these programs, you get sample output such as this:

$./shm1 &
[1] 294
Memory attached at 40017000
$./shm2
Memory attached at 40017000
Enter some text: hello
You wrote: hello
waiting for client...
waiting for client...
Enter some text: Linux!
You wrote: Linux!
waiting for client...
waiting for client...
waiting for client...
Enter some text: end
You wrote: end
$

How It Works
The first program, shm1, creates the shared memory segment and then attaches it to its address
space. You impose a structure, shared_use_st on the first part of the shared memory. This has a flag,
written_by_you, which is set when data is available. When this flag is set, the program reads the
text, prints it out, and clears the flag to show it has read the data. Use the special string, end, to allow
a clean exit from the loop. The program then detaches the shared memory segment and deletes it.

The second program, shm2, gets and attaches the same shared memory segment, because it uses the
same key, 1234. It then prompts the user to enter some text. If the flag written_by_you is set, shm2
knows that the client process hasn’t yet read the previous data and waits for it. When the other process
clears this flag, shm2 writes the new data and sets the flag. It also uses the magic string end to terminate
and detach the shared memory segment.

Notice that you had to provide your own, rather crude synchronization flag, written_by_you, which
involves a very inefficient busy wait (by continuously looping). This keeps the example simple, however in
real programs you would have used a semaphore, or perhaps passed a message, either using a pipe or IPC
messages (which we discuss in the next section), or generated a signal (as shown in Chapter 11) to provide
a more efficient synchronization mechanism between the reading and writing parts of the application.

593

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 593

Message Queues
We’ll now take a look at the third and final System V IPC facility: message queues. In many ways, message
queues are like named pipes, but without the complexity associated with opening and closing the pipe.
However, using messages doesn’t get you away from the problems that you have with named pipes,
such as blocking on full pipes.

Message queues provide a reasonably easy and efficient way of passing data between two unrelated
processes. They have the advantage over named pipes that the message queue exists independently of
both the sending and receiving processes, which removes some of the difficulties that occur in synchro-
nizing the opening and closing of named pipes.

Message queues provide a way of sending a block of data from one process to another. Additionally,
each block of data is considered to have a type, and a receiving process may receive blocks of data
having different type values independently. The good news is that you can almost totally avoid the
synchronization and blocking problems of named pipes by sending messages. Even better, you can
“look ahead” for messages that are urgent in some way. The bad news is that, just like pipes, there’s a
maximum size limit imposed on each block of data and also a limit on the maximum total size of all
blocks on all queues throughout the system.

While stating that these limits are imposed, the X/Open specification offers no way of discovering what
the limits are, except that exceeding them is a valid reason for some message queue functions to fail.
Linux does have two defines, MSGMAX and MSGMNB, which define the maximum size in bytes of an indi-
vidual message and the maximum size of a queue, respectively. These macros may be different or, for
that matter, not even present on other systems.

The message queue function definitions are:

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);
int msgget(key_t key, int msgflg);
int msgrcv(int msqid, void *msg_ptr, size_t msg_sz, long int msgtype, int msgflg);
int msgsnd(int msqid, const void *msg_ptr, size_t msg_sz, int msgflg);

As with semaphores and shared memory, the include files sys/types.h and sys/ipc.h are normally
automatically included by msg.h.

msgget
You create and access a message queue using the msgget function:

int msgget(key_t key, int msgflg);

The program must provide a key value that, as with other IPC facilities, names a particular message queue.
The special value IPC_PRIVATE creates a private queue, which in theory is accessible only by the current
process. As with semaphores and messages, on some Linux systems the message queue may not actually
be private. Because a private queue has very little purpose, that’s not a significant problem. As before, the
second parameter, msgflg, consists of nine permission flags. A special bit defined by IPC_CREAT must be
bitwise ORed with the permissions to create a new message queue. It’s not an error to set the IPC_CREAT

594

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 594

flag and give the key of an existing message queue. The IPC_CREAT flag is silently ignored if the message
queue already exists.

The msgget function returns a positive number, the queue identifier, on success or –1 on failure.

msgsnd
The msgsnd function allows you to add a message to a message queue:

int msgsnd(int msqid, const void *msg_ptr, size_t msg_sz, int msgflg);

The structure of the message is constrained in two ways. First, it must be smaller than the system limit,
and second, it must start with a long int, which will be used as a message type in the receive function.
When you’re using messages, it’s best to define your message structure something like this:

struct my_message {
long int message_type;
/* The data you wish to transfer */

}

Because the message_type is used in message reception, you can’t simply ignore it. You must declare
your data structure to include it, and it’s also wise to initialize it so that it contains a known value.

The first parameter, msqid, is the message queue identifier returned from a msgget function.

The second parameter, msg_ptr, is a pointer to the message to be sent, which must start with a long
int type as described previously.

The third parameter, msg_sz, is the size of the message pointed to by msg_ptr. This size must not
include the long int message type.

The fourth parameter, msgflg, controls what happens if either the current message queue is full or
the systemwide limit on queued messages has been reached. If msgflg has the IPC_NOWAIT flag
set, the function will return immediately without sending the message and the return value will be –1.
If the msgflg has the IPC_NOWAIT flag clear, the sending process will be suspended, waiting for space
to become available in the queue.

On success, the function returns 0, on failure –1. If the call is successful, a copy of the message data has
been taken and placed on the message queue.

msgrcv
The msgrcv function retrieves messages from a message queue:

int msgrcv(int msqid, void *msg_ptr, size_t msg_sz, long int msgtype, int msgflg);

The first parameter, msqid, is the message queue identifier returned from a msgget function.

The second parameter, msg_ptr, is a pointer to the message to be received, which must start with a long
int type as described previously in the msgsnd function.

595

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 595

The third parameter, msg_sz, is the size of the message pointed to by msg_ptr, not including the long
int message type.

The fourth parameter, msgtype, is a long int, which allows a simple form of reception priority to be
implemented. If msgtype has the value 0, the first available message in the queue is retrieved. If it’s
greater than zero, the first message with the same message type is retrieved. If it’s less than zero, the first
message that has a type the same as or less than the absolute value of msgtype is retrieved.

This sounds more complicated than it actually is in practice. If you simply want to retrieve messages in
the order in which they were sent, set msgtype to 0. If you want to retrieve only messages with a specific
message type, set msgtype equal to that value. If you want to receive messages with a type of n or
smaller, set msgtype to -n.

The fifth parameter, msgflg, controls what happens when no message of the appropriate type is waiting
to be received. If the IPC_NOWAIT flag in msgflg is set, the call will return immediately with a return
value of –1. If the IPC_NOWAIT flag of msgflg is clear, the process will be suspended, waiting for an
appropriate type of message to arrive.

On success, msgrcv returns the number of bytes placed in the receive buffer, the message is copied into
the user-allocated buffer pointed to by msg_ptr, and the data is deleted from the message queue. It
returns –1 on error.

msgctl
The final message queue function is msgctl, which is very similar to that of the control function for
shared memory:

int msgctl(int msqid, int command, struct msqid_ds *buf);

The msqid_ds structure has at least the following members:

struct msqid_ds {
uid_t msg_perm.uid;
uid_t msg_perm.gid
mode_t msg_perm.mode;

}

The first parameter, msqid, is the identifier returned from msgget.

The second parameter, command, is the action to take. It can take three values, described in the follow-
ing table:

Command Description

IPC_STAT Sets the data in the msqid_ds structure to reflect the values associated with
the message queue.

IPC_SET If the process has permission to do so, this sets the values associated with
the message queue to those provided in the msqid_ds data structure.

IPC_RMID Deletes the message queue.

596

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 596

0 is returned on success, –1 on failure. If a message queue is deleted while a process is waiting in a
msgsnd or msgrcv function, the send or receive function will fail.

Try It Out Message Queues
Now that you’ve seen the definitions for message queues, you can see how they work in practice. As
before, you’ll write two programs: msg1.c to receive and msg2.c to send. You’ll allow either program
to create the message queue, but use the receiver to delete it after it receives the last message.

1. Here’s the receiver program, msg1.c:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include <sys/msg.h>

struct my_msg_st {
long int my_msg_type;
char some_text[BUFSIZ];

};

int main()
{

int running = 1;
int msgid;
struct my_msg_st some_data;
long int msg_to_receive = 0;

2. First, set up the message queue:

msgid = msgget((key_t)1234, 0666 | IPC_CREAT);

if (msgid == -1) {
fprintf(stderr, “msgget failed with error: %d\n”, errno);
exit(EXIT_FAILURE);

}

3. Then the messages are retrieved from the queue until an end message is encountered. Finally,
the message queue is deleted:

while(running) {
if (msgrcv(msgid, (void *)&some_data, BUFSIZ,

msg_to_receive, 0) == -1) {
fprintf(stderr, “msgrcv failed with error: %d\n”, errno);
exit(EXIT_FAILURE);

}
printf(“You wrote: %s”, some_data.some_text);
if (strncmp(some_data.some_text, “end”, 3) == 0) {

running = 0;

597

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 597

}
}

if (msgctl(msgid, IPC_RMID, 0) == -1) {
fprintf(stderr, “msgctl(IPC_RMID) failed\n”);
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

4. The sender program, msg2.c, is very similar to msg1.c. In the main setup, delete the
msg_to_receive declaration, and replace it with buffer[BUFSIZ]. Remove the message
queue delete, and make the following changes to the running loop. You now have a call to
msgsnd to send the entered text to the queue. The program msg2.c is shown here with the
differences from msg1.c highlighted:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include <sys/msg.h>

#define MAX_TEXT 512

struct my_msg_st {
long int my_msg_type;
char some_text[MAX_TEXT];

};

int main()
{

int running = 1;
struct my_msg_st some_data;
int msgid;
char buffer[BUFSIZ];

msgid = msgget((key_t)1234, 0666 | IPC_CREAT);

if (msgid == -1) {
fprintf(stderr, “msgget failed with error: %d\n”, errno);
exit(EXIT_FAILURE);

}

while(running) {
printf(“Enter some text: “);
fgets(buffer, BUFSIZ, stdin);
some_data.my_msg_type = 1;
strcpy(some_data.some_text, buffer);

598

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 598

if (msgsnd(msgid, (void *)&some_data, MAX_TEXT, 0) == -1) {
fprintf(stderr, “msgsnd failed\n”);
exit(EXIT_FAILURE);

}
if (strncmp(buffer, “end”, 3) == 0) {

running = 0;
}

}

exit(EXIT_SUCCESS);
}

Unlike in the pipes example, there’s no need for the processes to provide their own synchronization
method. This is a significant advantage of messages over pipes.

Providing there’s room in the message queue, the sender can create the queue, put some data into
the queue, and then exit before the receiver even starts. You’ll run the sender, msg2, first. Here’s some
sample output:

$./msg2
Enter some text: hello
Enter some text: How are you today?
Enter some text: end
$./msg1
You wrote: hello
You wrote: How are you today?
You wrote: end
$

How It Works
The sender program creates a message queue with msgget; then it adds messages to the queue with
msgsnd. The receiver obtains the message queue identifier with msgget and then receives messages
until the special text end is received. It then tidies up by deleting the message queue with msgctl.

The CD Database Application
You’re now in a position to modify your CD database application to use the IPC facilities that you’ve
seen in this chapter.

You could use many different combinations of the three IPC facilities, but because the information you
need to pass is quite small, it’s sensible to implement the passing of requests and responses directly
using message queues.

If the amounts of data that you needed to pass were large, you could have considered passing the actual
data in shared memory and using either semaphores or messages to pass a “token” to inform the other
process that data was available in shared memory.

599

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 599

The message queue interface removes the problem that you had in Chapter 11, where you needed both
processes to have the pipe open while data was passed. Using message queues allows one process to put
messages in the queue, even if that process is currently the only user of the queue.

The only significant decision you need to make is how to return answers to clients. A simple choice would
be to have one queue for the server and one queue for each client. If there were a large number of simulta-
neous clients, this could cause problems by requiring a large number of message queues. By using the mes-
sage ID field in the message, you can allow all the clients to use a single queue and “address” response
messages to particular client processes by using the client process ID in the message. Each client can then
retrieve messages addressed only to itself, leaving messages for other clients in the queue.

To convert your CD application to use IPC facilities, you need to replace only the file pipe_imp.c from
the code accompanying Chapter 13. In the following pages, we describe the principal sections of the
replacement file, ipc_imp.c.

Revising the Server Functions
First you need to update the server functions.

1. First, include the appropriate headers, declare some message queue keys, and define a structure
to hold your message data:

#include “cd_data.h”
#include “cliserv.h”

#include <sys/msg.h>

#define SERVER_MQUEUE 1234
#define CLIENT_MQUEUE 4321

struct msg_passed {
long int msg_key; /* used for client pid */
message_db_t real_message;

};

2. Two variables with file scope hold the two queue identifiers returned from the msgget function:

static int serv_qid = -1;
static int cli_qid = -1;

3. Make the server responsible for creating both message queues:

int server_starting()
{

#if DEBUG_TRACE
printf(“%d :- server_starting()\n”, getpid());

#endif

serv_qid = msgget((key_t)SERVER_MQUEUE, 0666 | IPC_CREAT);
if (serv_qid == -1) return(0);

600

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 600

cli_qid = msgget((key_t)CLIENT_MQUEUE, 0666 | IPC_CREAT);
if (cli_qid == -1) return(0);

return(1);
}

4. The server is also responsible for tidying up if it ever exits. When the server ends, you set your
file-scope variables to illegal values. This will catch any bugs if the server attempts to send mes-
sages after it has called server_ending.

void server_ending()
{

#if DEBUG_TRACE
printf(“%d :- server_ending()\n”, getpid());

#endif

(void)msgctl(serv_qid, IPC_RMID, 0);
(void)msgctl(cli_qid, IPC_RMID, 0);

serv_qid = -1;
cli_qid = -1;

}

5. The server read function reads a message of any type (that is, from any client) from the queue,
and it returns the data part (ignoring the type) of the message:

int read_request_from_client(message_db_t *rec_ptr)
{

struct msg_passed my_msg;
#if DEBUG_TRACE

printf(“%d :- read_request_from_client()\n”, getpid());
#endif

if (msgrcv(serv_qid, (void *)&my_msg, sizeof(*rec_ptr), 0, 0) == -1) {
return(0);

}
*rec_ptr = my_msg.real_message;
return(1);

}

6. Sending a response uses the client process ID that was stored in the request to address the message:

int send_resp_to_client(const message_db_t mess_to_send)
{

struct msg_passed my_msg;
#if DEBUG_TRACE

printf(“%d :- send_resp_to_client()\n”, getpid());
#endif

my_msg.real_message = mess_to_send;
my_msg.msg_key = mess_to_send.client_pid;

if (msgsnd(cli_qid, (void *)&my_msg, sizeof(mess_to_send), 0) == -1) {
return(0);

601

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:36 PM Page 601

}
return(1);

}

Revising the Client Functions
Next, you perform the changes to the client functions.

1. When the client starts, it needs to find the server and client queue identifiers. The client doesn’t
create the queues. This function will fail if the server isn’t running, because the message queues
won’t exist.

int client_starting()
{

#if DEBUG_TRACE
printf(“%d :- client_starting\n”, getpid());

#endif

serv_qid = msgget((key_t)SERVER_MQUEUE, 0666);
if (serv_qid == -1) return(0);

cli_qid = msgget((key_t)CLIENT_MQUEUE, 0666);
if (cli_qid == -1) return(0);
return(1);

}

2. As with the server, when the client ends, you set your file-scope variables to illegal values. This
will catch any bugs where the client attempts to send messages after it has called client_ending.

void client_ending()
{

#if DEBUG_TRACE
printf(“%d :- client_ending()\n”, getpid());

#endif

serv_qid = -1;
cli_qid = -1;

}

3. To send a message to the server, store the data inside your structure. Notice that you must set
the message key. Because 0 is an illegal value for the key, leaving the key undefined would
mean that it takes an (apparently) random value, so this function could occasionally fail if the
value happens to be 0.

int send_mess_to_server(message_db_t mess_to_send)
{

struct msg_passed my_msg;
#if DEBUG_TRACE

printf(“%d :- send_mess_to_server()\n”, getpid());
#endif

my_msg.real_message = mess_to_send;
my_msg.msg_key = mess_to_send.client_pid;

602

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:37 PM Page 602

if (msgsnd(serv_qid, (void *)&my_msg, sizeof(mess_to_send), 0) == -1) {
perror(“Message send failed”);
return(0);

}
return(1);

}

4. When the client retrieves a message from the server, it uses its process ID to receive only mes-
sages addressed to itself, ignoring any messages for other clients.

int read_resp_from_server(message_db_t *rec_ptr)
{

struct msg_passed my_msg;
#if DEBUG_TRACE

printf(“%d :- read_resp_from_server()\n”, getpid());
#endif

if (msgrcv(cli_qid, (void *)&my_msg, sizeof(*rec_ptr), getpid(), 0) == -1) {
return(0);

}
*rec_ptr = my_msg.real_message;
return(1);

}

5. To retain complete compatibility with pipe_imp.c, you need to define four extra functions. In
your new program, however, the functions are empty. The operations they implemented when
using pipes are simply not needed anymore.

int start_resp_to_client(const message_db_t mess_to_send)
{

return(1);
}

void end_resp_to_client(void)
{
}

int start_resp_from_server(void)
{

return(1);
}

void end_resp_from_server(void)
{
}

You can now simply start the server, which does the actual data storage and retrieval, in the background,
and then run the client application to connect to it using messages.

All you have had to do here is replace the interface functions from Chapter 11 with a different imple-
mentation using message queues. The conversion of the application to message queues illustrates the
power of IPC message queues, because you require fewer functions than the pipes application, and even
those functions that you do need are much simpler than they were in the earlier implementation.

603

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:37 PM Page 603

IPC Status Commands
Although they’re not required for X/Open compliance, most Linux systems provide a set of commands
that allow command-line access to IPC information, and to tidy up stray IPC facilities. These are the
ipcs and ipcrm commands, which are very useful when you’re developing programs.

One of the irritations of the IPC facilities is that a poorly written program, or a program that fails for
some reason, can leave its IPC resources (such as data in a message queue) loitering on the system long
after the program completes. This can cause a new invocation of the program to fail, because the pro-
gram expects to start with a clean system, but actually finds some leftover resource. The status (ipcs)
and remove (ipcrm) commands provide a way of checking and tidying up IPC facilities.

Displaying Semaphore Status
To examine the state of semaphores on the system, use the ipcs -s command. If any semaphores are
present, the output will have this form:

$./ipcs -s

------ Semaphore Arrays --------
key semid owner perms nsems
0x4d00df1a 768 rick 666 1

You can use the ipcrm command to remove any semaphores accidentally left by programs. To delete the
preceding semaphore, the command (on Linux) is

$./ipcrm -s 768

Some much older Linux systems used to use a slightly different syntax:

$./ipcrm sem 768

but that style is now rare. Check the manual pages for your system to see which format is valid on your
particular system.

Displaying Shared Memory Status
Like semaphores, many systems provide command-line programs for accessing the details of shared
memory. These are ipcs -m and ipcrm -m <id> (or ipcrm shm <id>).

Here’s some sample output from ipcs -m:

$ ipcs -m

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 384 rick 666 4096 2 dest

This shows a single shared memory segment of 4 KB attached by two processes.

604

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:37 PM Page 604

The ipcrm -m <id> command allows shared memory to be removed. This is sometimes useful when a
program has failed to tidy up shared memory.

Displaying Message Queue Status
For message queues the commands are ipcs -q and ipcrm -q <id> (or ipcrm msg <id>).

Here’s some sample output from ipcs -q:

$ ipcs -q

------ Message Queues --------
key msqid owner perms used-bytes messages
0x000004d2 3384 rick 666 2048 2

This shows two messages, with a total size of 2,048 bytes in a message queue.

The ipcrm -q <id> command allows a message queue to be removed.

Summary
In this chapter, you looked at the three inter-process communication facilities that first became widely
available in UNIX System V.2 and have been available in Linux from the early distributions. These facili-
ties are semaphores, shared memory, and message queues. You’ve seen the sophisticated functionality
that they offer and how, once these functions are understood, they offer a powerful solution to many
inter-process communication requirements.

605

Chapter 14: Semaphores, Shared Memory, and Message Queues

47627c14.qxd:WroxBeg 9/29/07 3:37 PM Page 605

47627c14.qxd:WroxBeg 9/29/07 3:37 PM Page 606

15
Sockets

In this chapter, you look at yet another method of process communication, but one with a crucial
difference from those we’ve discussed in Chapters 13 and 14. Until now, all the facilities we’ve dis-
cussed have relied on shared resources on a single computer system. The resource varies; it can be
file system space, shared physical memory, or message queues, but only processes running on a
single machine can use them.

The Berkeley versions of UNIX introduced a new communication tool, the socket interface, which is
an extension of the concept of a pipe, covered in Chapter 13. Socket interfaces are available on Linux.
You can use sockets in much the same way as pipes, but they include communication across a net-
work of computers. A process on one machine can use sockets to communicate with a process on
another, which allows for client/server systems that are distributed across a network. Sockets may
also be used between processes on the same machine.

Also, the sockets interface has been made available for Windows via a publicly available specifica-
tion called Windows Sockets, or WinSock. Windows socket services are provided by a Winsock.dll
system file. So, Windows programs can communicate across a network to Linux and UNIX com-
puters and vice versa, thus implementing client/server systems. Although the programming inter-
face for WinSock isn’t quite the same as UNIX sockets, it still has sockets as its basis.

We can’t cover the extensive Linux networking capabilities in a single chapter, so you’ll find here a
description of the principal programmatic networking interfaces. These should allow you to write
your own network programs. Specifically, we look at the following:

❑ How a socket connection operates

❑ Socket attributes, addresses, and communications

❑ Network information and the Internet daemon (inetd/xinetd)

❑ Clients and servers

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 607

What Is a Socket?
A socket is a communication mechanism that allows client/server systems to be developed either locally,
on a single machine, or across networks. Linux functions such as printing, connecting to databases, and
serving web pages as well as network utilities such as rlogin for remote login and ftp for file transfer
usually use sockets to communicate.

Sockets are created and used differently from pipes because they make a clear distinction between client
and server. The socket mechanism can implement multiple clients attached to a single server.

Socket Connections
You can think of socket connections as telephone calls into a busy building. A call comes into an organiza-
tion and is answered by a receptionist who puts the call through to the correct department (the server
process) and from there to the right person (the server socket). Each incoming call (client) is routed to an
appropriate end point and the intervening operators are free to deal with further calls. Before you look at
the way socket connections are established in Linux systems, you need to understand how they operate
for socket applications that maintain a connection.

First, a server application creates a socket, which like a file descriptor is a resource assigned to the server
process and that process alone. The server creates it using the system call socket, and it can’t be shared
with other processes.

Next, the server process gives the socket a name. Local sockets are given a filename in the Linux file sys-
tem, often to be found in /tmp or /usr/tmp. For network sockets, the filename will be a service identi-
fier (port number/access point) relevant to the particular network to which the clients can connect. This
identifier allows Linux to route incoming connections specifying a particular port number to the correct
server process. For example, a web server typically creates a socket on port 80, an identifier reserved for
the purpose. Web browsers know to use port 80 for their HTTP connections to web sites the user wants
to read. A socket is named using the system call bind. The server process then waits for a client to con-
nect to the named socket. The system call, listen, creates a queue for incoming connections. The server
can accept them using the system call accept.

When the server calls accept, a new socket is created that is distinct from the named socket. This
new socket is used solely for communication with this particular client. The named socket remains for
further connections from other clients. If the server is written appropriately, it can take advantage of
multiple connections. A web server will do this so that it can serve pages to many clients at once. For a
simple server, further clients wait on the listen queue until the server is ready again.

The client side of a socket-based system is more straightforward. The client creates an unnamed socket
by calling socket. It then calls connect to establish a connection with the server by using the server’s
named socket as an address.

Once established, sockets can be used like low-level file descriptors, providing two-way data
communications.

608

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 608

Try It Out A Simple Local Client
Here’s an example of a very simple socket client program, client1.c. It creates an unnamed socket and
connects it to a server socket called server_socket. We cover the details of the socket system call a lit-
tle later, after we’ve discussed some addressing issues.

1. Make the necessary includes and set up the variables:

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <sys/un.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{

int sockfd;
int len;
struct sockaddr_un address;
int result;
char ch = ‘A’;

2. Create a socket for the client:

sockfd = socket(AF_UNIX, SOCK_STREAM, 0);

3. Name the socket as agreed with the server:

address.sun_family = AF_UNIX;
strcpy(address.sun_path, “server_socket”);
len = sizeof(address);

4. Connect your socket to the server’s socket:

result = connect(sockfd, (struct sockaddr *)&address, len);

if(result == -1) {
perror(“oops: client1”);
exit(1);

}

5. You can now read and write via sockfd:

write(sockfd, &ch, 1);
read(sockfd, &ch, 1);
printf(“char from server = %c\n”, ch);
close(sockfd);
exit(0);

}

609

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 609

This program fails when you run it because you haven’t yet created the server-side named socket. (The
exact error message may differ from system to system.)

$./client1
oops: client1: No such file or directory
$

Try It Out A Simple Local Server
Here’s a very simple server program, server1.c, that accepts connections from the client. It creates the
server socket, binds it to a name, creates a listen queue, and accepts connections.

1. Make the necessary includes and set up the variables:

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <sys/un.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{

int server_sockfd, client_sockfd;
int server_len, client_len;
struct sockaddr_un server_address;
struct sockaddr_un client_address;

2. Remove any old sockets and create an unnamed socket for the server:

unlink(“server_socket”);
server_sockfd = socket(AF_UNIX, SOCK_STREAM, 0);

3. Name the socket:

server_address.sun_family = AF_UNIX;
strcpy(server_address.sun_path, “server_socket”);
server_len = sizeof(server_address);
bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

4. Create a connection queue and wait for clients:

listen(server_sockfd, 5);
while(1) {

char ch;

printf(“server waiting\n”);

610

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 610

5. Accept a connection:

client_len = sizeof(client_address);
client_sockfd = accept(server_sockfd,

(struct sockaddr *)&client_address, &client_len);

6. Read and write to client on client_sockfd:

read(client_sockfd, &ch, 1);
ch++;
write(client_sockfd, &ch, 1);
close(client_sockfd);

}
}

How It Works
The server program in this example can serve only one client at a time. It just reads a character from the
client, increments it, and writes it back. In more sophisticated systems, where the server has to perform
more work on the client’s behalf, this wouldn’t be acceptable, because other clients would be unable to
connect until the server had finished. You’ll see a couple of ways to allow multiple connections later.

When you run the server program, it creates a socket and waits for connections. If you start it in the
background so that it runs independently, you can then start clients in the foreground.

$./server1 &
[1] 1094
$ server waiting

As it waits for connections, the server prints a message. In the preceding example, the server waits for a
file system socket and you can see it with the normal ls command.

Remember that it’s good practice to remove a socket when you’ve finished with it, even if the
program terminates abnormally via a signal. This keeps the file system from getting cluttered with
unused files.

$ ls -lF server_socket
srwxr-xr-x 1 neil users 0 2007-06-23 11:41 server_socket=

The device type is “socket,” shown by the s at the front of the permissions and the = at the end of the
name. The socket has been created just as an ordinary file would be, with permissions modified by
the current umask. If you use the ps command, you can see the server running in the background. It’s
shown sleeping (STAT is S) and is therefore not consuming CPU resources.

$ ps lx
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
0 1000 23385 10689 17 0 1424 312 361800 S pts/1 0:00 ./server1

611

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 611

Now, when you run the client program, you are successful in connecting to the server. Because the
server socket exists, you can connect to it and communicate with the server.

$./client1
server waiting
char from server = B
$

The output from the server and the client get mixed on the terminal, but you can see that the server has
received a character from the client, incremented it, and returned it. The server then continues and waits
for the next client. If you run several clients together, they will be served in sequence, although the out-
put you see may be more mixed up.

$./client1 & ./client1 & ./client1 &
[2] 23412
[3] 23413
[4] 23414
server waiting
char from server = B
server waiting
char from server = B
server waiting
char from server = B
server waiting
[2] Done client1
[3]- Done client1
[4]+ Done client1
$

Socket Attributes
To fully understand the system calls used in this example, you need to learn a little about UNIX
networking.

Sockets are characterized by three attributes: domain, type, and protocol. They also have an address used
as their name. The formats of the addresses vary depending on the domain, also known as the protocol
family. Each protocol family can use one or more address families to define the address format.

Socket Domains
Domains specify the network medium that the socket communication will use. The most common socket
domain is AF_INET, which refers to Internet networking that’s used on many Linux local area networks
and, of course, the Internet itself. The underlying protocol, Internet Protocol (IP), which only has one address
family, imposes a particular way of specifying computers on a network. This is called the IP address.

The “next generation” Internet Protocol, IPv6, has been designed to overcome some of the problems
with the standard IP, notably the limited number of addresses that are available. IPv6 uses a different
socket domain, AF_INET6, and a different address format. It is expected to eventually replace IP, but
this process will take many years. Although there are implementations of IPv6 for Linux, it is beyond
the scope of this book.

612

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 612

Although names almost always refer to networked machines on the Internet, these are translated into
lower-level IP addresses. An example IP address is 192.168.1.99. All IP addresses are represented by four
numbers, each less than 256, a so-called dotted quad. When a client connects across a network via sockets,
it needs the IP address of the server computer.

There may be several services available at the server computer. A client can address a particular service on a
networked machine by using an IP port. A port is identified within the system by assigning a unique 16-bit
integer and externally by the combination of IP address and port number. The sockets are communication
end points that must be bound to ports before communication is possible.

Servers wait for connections on particular ports. Well-known services have allocated port numbers that
are used by all Linux and UNIX machines. These are usually, but not always, numbers less than 1024.
Examples are the printer spooler (515), rlogin (513), ftp (21), and httpd (80). The last of these is the
standard port for web servers. Usually, port numbers less than 1024 are reserved for system services and
may only be served by processes with superuser privileges. X/Open defines a constant in netdb.h,
IPPORT_RESERVED, to stand for the highest reserved port number.

Because there is a standard set of port numbers for standard services, computers can easily connect to each
other without having to figure out the correct port. Local services may use nonstandard port addresses.

The domain in the first example is the UNIX file system domain, AF_UNIX, which can be used by sockets
based on a single computer that perhaps isn’t networked. When this is so, the underlying protocol is
file input/output and the addresses are filenames. The address that you used for the server socket was
server_socket, which you saw appear in the current directory when you ran the server application.

Other domains that might be used include AF_ISO for networks based on ISO standard protocols and
AF_XNS for the Xerox Network System. We won’t cover these here.

Socket Types
A socket domain may have a number of different ways of communicating, each of which might have
different characteristics. This isn’t an issue with AF_UNIX domain sockets, which provide a reliable two-
way communication path. In networked domains, however, you need to be aware of the characteristics
of the underlying network and how different communication mechanisms are affected by them.

Internet protocols provide two communication mechanisms with distinct levels of service: streams
and datagrams.

Stream Sockets
Stream sockets (in some ways similar to standard input/output streams) provide a connection that is a
sequenced and reliable two-way byte stream. Thus, data sent is guaranteed not to be lost, duplicated, or
reordered without an indication that an error has occurred. Large messages are fragmented, transmitted,
and reassembled. This is similar to a file stream, which also accepts large amounts of data and splits it
up for writing to the low-level disk in smaller blocks. Stream sockets have predictable behavior.

Stream sockets, specified by the type SOCK_STREAM, are implemented in the AF_INET domain by TCP/IP
connections. They are also the usual type in the AF_UNIX domain. We concentrate on SOCK_STREAM sockets
in this chapter because they are more commonly used in programming network applications.

613

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 613

TCP/IP stands for Transmission Control Protocol/Internet Protocol. IP is the low-level protocol
for packets that provides routing through the network from one computer to another. TCP provides
sequencing, flow control, and retransmission to ensure that large data transfers arrive with all of the
data present and correct or with an appropriate error condition reported.

Datagram Sockets
In contrast, a datagram socket, specified by the type SOCK_DGRAM, doesn’t establish and maintain a con-
nection. There is also a limit on the size of a datagram that can be sent. It’s transmitted as a single network
message that may get lost, duplicated, or arrive out of sequence — ahead of datagrams sent after it.

Datagram sockets are implemented in the AF_INET domain by UDP/IP connections and provide an
unsequenced, unreliable service. (UDP stands for User Datagram Protocol.) However, they are relatively
inexpensive in terms of resources, because network connections need not be maintained. They’re fast
because there is no associated connection setup time.

Datagrams are useful for “single-shot” inquiries to information services, for providing regular status
information, or for performing low-priority logging. They have the advantage that the death of a server
doesn’t unduly inconvenience a client and would not require a client restart. Because datagram-based
servers usually retain no connection information, they can be stopped and restarted without disturbing
their clients.

For now, we leave the topic of datagrams; see the “Datagrams” section near the end of this chapter for
more information.

Socket Protocols
Where the underlying transport mechanism allows for more than one protocol to provide the requested
socket type, you can select a specific protocol for a socket. In this chapter, we concentrate on UNIX net-
work and file system sockets, which don’t require you to choose a protocol other than the default.

Creating a Socket
The socket system call creates a socket and returns a descriptor that can be used for accessing the socket.

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The socket created is one end point of a communication channel. The domain parameter specifies the
address family, the type parameter specifies the type of communication to be used with this socket, and
protocol specifies the protocol to be employed.

Domains include those in the following table:

Domain Description

AF_UNIX UNIX internal (file system sockets)

AF_INET ARPA Internet protocols (UNIX network sockets)

614

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 614

The most common socket domains are AF_UNIX, which is used for local sockets implemented via the
UNIX and Linux file systems, and AF_INET, which is used for UNIX network sockets. The AF_INET
sockets may be used by programs communicating across a TCP/IP network including the Internet. The
Windows Winsock interface also provides access to this socket domain.

The socket parameter type specifies the communication characteristics to be used for the new socket.
Possible values include SOCK_STREAM and SOCK_DGRAM.

SOCK_STREAM is a sequenced, reliable, connection-based two-way byte stream. For an AF_INET domain
socket, this is provided by default by a TCP connection that is established between the two end points of
the stream socket when it’s connected. Data may be passed in both directions along the socket connec-
tion. The TCP protocols include facilities to fragment and reassemble long messages and to retransmit
any parts that may be lost in the network.

SOCK_DGRAM is a datagram service. You can use this socket to send messages of a fixed (usually small) max-
imum size, but there’s no guarantee that the message will be delivered or that messages won’t be reordered
in the network. For AF_INET sockets, this type of communication is provided by UDP datagrams.

The protocol used for communication is usually determined by the socket type and domain. There is nor-
mally no choice. The protocol parameter is used where there is a choice. 0 selects the default protocol,
which is used in all the examples in this chapter.

The socket system call returns a descriptor that is in many ways similar to a low-level file descriptor.
When the socket has been connected to another end-point socket, you can use the read and write sys-
tem calls with the descriptor to send and receive data on the socket. The close system call is used to
end a socket connection.

Socket Addresses
Each socket domain requires its own address format. For an AF_UNIX socket, the address is described by
a structure, sockaddr_un, defined in the sys/un.h include file.

struct sockaddr_un {
sa_family_t sun_family; /* AF_UNIX */
char sun_path[]; /* pathname */

};

Domain Description

AF_ISO ISO standard protocols

AF_NS Xerox Network Systems protocols

AF_IPX Novell IPX protocol

AF_APPLETALK Appletalk DDS

615

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 615

So that addresses of different types may be passed to the socket-handling system calls, each address for-
mat is described by a similar structure that begins with a field (in this case, sun_family) that specifies
the address type (the socket domain). In the AF_UNIX domain, the address is specified by a filename in
the sun_path field of the structure.

On current Linux systems, the type sa_family_t, defined by X/Open as being declared in sys/un.h,
is taken to be a short. Also, the pathname specified in sun_path is limited in size (Linux specifies 108
characters; others may use a manifest constant such as UNIX_MAX_PATH). Because address structures
may vary in size, many socket calls require or provide as an output a length to be used for copying the
particular address structure.

In the AF_INET domain, the address is specified using a structure called sockaddr_in, defined in
netinet/in.h, which contains at least these members:

struct sockaddr_in {
short int sin_family; /* AF_INET */
unsigned short int sin_port; /* Port number */
struct in_addr sin_addr; /* Internet address */

};

The IP address structure, in_addr, is defined as follows:

struct in_addr {
unsigned long int s_addr;

};

The four bytes of an IP address constitute a single 32-bit value. An AF_INET socket is fully described
by its domain, IP address, and port number. From an application’s point of view, all sockets act like file
descriptors and are addressed by a unique integer value.

Naming a Socket
To make a socket (as created by a call to socket) available for use by other processes, a server program
needs to give the socket a name. Thus, AF_UNIX sockets are associated with a file system pathname, as
you saw in the server1 example. AF_INET sockets are associated with an IP port number.

#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address, size_t address_len);

The bind system call assigns the address specified in the parameter, address, to the unnamed
socket associated with the file descriptor socket. The length of the address structure is passed as
address_len.

The length and format of the address depend on the address family. A particular address structure
pointer will need to be cast to the generic address type (struct sockaddr *) in the call to bind.

On successful completion, bind returns 0. If it fails, it returns -1 and sets errno to one of the follow-
ing values:

616

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 616

There are some more values for AF_UNIX sockets:

Creating a Socket Queue
To accept incoming connections on a socket, a server program must create a queue to store pending
requests. It does this using the listen system call.

#include <sys/socket.h>

int listen(int socket, int backlog);

A Linux system may limit the maximum number of pending connections that may be held in a queue.
Subject to this maximum, listen sets the queue length to backlog. Incoming connections up to this
queue length are held pending on the socket; further connections will be refused and the client’s connec-
tion will fail. This mechanism is provided by listen to allow incoming connections to be held pending
while a server program is busy dealing with a previous client. A value of 5 for backlog is very common.

The listen function will return 0 on success or -1 on error. Errors include EBADF, EINVAL, and ENOT-
SOCK, as for the bind system call.

Accepting Connections
Once a server program has created and named a socket, it can wait for connections to be made to the
socket by using the accept system call.

#include <sys/socket.h>

int accept(int socket, struct sockaddr *address, size_t *address_len);

Errno value Description

EACCESS Can’t create the file system name due to permissions.

ENOTDIR, ENAMETOOLONG Indicates a poor choice of filename.

Errno Value Description

EBADF The file descriptor is invalid.

ENOTSOCK The file descriptor doesn’t refer to a socket.

EINVAL The file descriptor refers to an already-named socket.

EADDRNOTAVAIL The address is unavailable.

EADDRINUSE The address has a socket bound to it already.

617

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 617

The accept system call returns when a client program attempts to connect to the socket specified by the
parameter socket. The client is the first pending connection from that socket’s queue. The accept func-
tion creates a new socket to communicate with the client and returns its descriptor. The new socket will
have the same type as the server listen socket.

The socket must have previously been named by a call to bind and had a connection queue allocated by
listen. The address of the calling client will be placed in the sockaddr structure pointed to by address.
A null pointer may be used here if the client address isn’t of interest.

The address_len parameter specifies the length of the client structure. If the client address is longer than
this value, it will be truncated. Before calling accept, address_len must be set to the expected address
length. On return, address_len will be set to the actual length of the calling client’s address structure.

If there are no connections pending on the socket’s queue, accept will block (so that the program won’t
continue) until a client does make connection. You can change this behavior by using the O_NONBLOCK
flag on the socket file descriptor, using the fcntl function in your code like this:

int flags = fcntl(socket, F_GETFL, 0);

fcntl(socket, F_SETFL, O_NONBLOCK|flags);

The accept function returns a new socket file descriptor when there is a client connection pending or
-1 on error. Possible errors are similar to those for bind and listen, with the addition of EWOULDBLOCK,
where O_NONBLOCK has been specified and there are no pending connections. The error EINTR will occur
if the process is interrupted while blocked in accept.

Requesting Connections
Client programs connect to servers by establishing a connection between an unnamed socket and the
server listen socket. They do this by calling connect.

#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address, size_t address_len);

The socket specified by the parameter socket is connected to the server socket specified by the parame-
ter address, which is of length address_len. The socket must be a valid file descriptor obtained by a
call to socket.

If it succeeds, connect returns 0, and -1 is returned on error. Possible errors this time include the
following:

Errno Value Description

EBADF An invalid file descriptor was passed in socket.

EALREADY A connection is already in progress for this socket.

ETIMEDOUT A connection timeout has occurred.

ECONNREFUSED The requested connection was refused by the server.

618

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 618

If the connection can’t be set up immediately, connect will block for an unspecified timeout period. Once
this timeout has expired, the connection will be aborted and connect will fail. However, if the call to con-
nect is interrupted by a signal that is handled, the connect call will fail (with errno set to EINTR), but the
connection attempt won’t be aborted — it will be set up asynchronously, and the program will have to
check later to see if the connection was successful.

As with accept, the blocking nature of connect can be altered by setting the O_NONBLOCK flag on the
file descriptor. In this case, if the connection can’t be made immediately, connect will fail with errno
set to EINPROGRESS and the connection will be made asynchronously.

Though asynchronous connections can be tricky to handle, you can use a call to select on the socket
file descriptor to check that the socket is ready for writing. We cover select later in this chapter.

Closing a Socket
You can terminate a socket connection at the server and client by calling close, just as you would for low-
level file descriptors. You should always close the socket at both ends. For the server, you should do this
when read returns zero. Note that the close call may block if the socket has untransmitted data, is of a
connection-oriented type, and has the SOCK_LINGER option set. You learn about setting socket options
later in this chapter.

Socket Communications
Now that we have covered the basic system calls associated with sockets, let’s take a closer look at the
example programs. You’ll try to convert them to use a network socket rather than a file system socket. The
file system socket has the disadvantage that, unless the author uses an absolute pathname, it’s created in
the server program’s current directory. To make it more generally useful, you need to create it in a globally
accessible directory (such as /tmp) that is agreed between the server and its clients. For network sockets,
you need only choose an unused port number.

For the example, select port number 9734. This is an arbitrary choice that avoids the standard services
(you can’t use port numbers below 1024 because they are reserved for system use). Other port numbers
are often listed, with the services provided on them, in the system file /etc/services. When you’re
writing socket-based applications, always choose a port number not listed in this configuration file.

You’ll run your client and server across a local network, but network sockets are not only useful on a
local area network; any machine with an Internet connection (even a modem dial-up) can use network
sockets to communicate with others. You can even use a network-based program on a stand-alone UNIX
computer because a UNIX computer is usually configured to use a loopback network that contains only
itself. For illustration purposes, this example uses this loopback network, which can also be useful for
debugging network applications because it eliminates any external network problems.

Be aware that there is a deliberate error in the programs client2.c and server2.c
that you will fix in client3.c and server3.c. Please do not use the code from
client2.c and server2.c in your own programs.

619

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 619

The loopback network consists of a single computer, conventionally called localhost, with a standard
IP address of 127.0.0.1. This is the local machine. You’ll find its address listed in the network hosts file,
/etc/hosts, with the names and addresses of other hosts on shared networks.

Each network with which a computer communicates has a hardware interface associated with it. A com-
puter may have different network names on each network and certainly will have different IP addresses.
For example, Neil’s machine tilde has three network interfaces and therefore three addresses. These
are recorded in /etc/hosts as follows:

127.0.0.1 localhost # Loopback
192.168.1.1 tilde.localnet # Local, private Ethernet
158.152.X.X tilde.demon.co.uk # Modem dial-up

The first is the simple loopback network, the second is a local area network accessed via an Ethernet
adapter, and the third is the modem link to an Internet service provider. You can write a network socket-
based program to communicate with servers accessed via any of these interfaces without alteration.

Try It Out Network Client
Here’s a modified client program, client2.c, to connect to a network socket via the loopback network.
It contains a subtle bug concerned with hardware dependency, but we’ll discuss that later in this chapter.

1. Make the necessary includes and set up the variables:

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{

int sockfd;
int len;
struct sockaddr_in address;
int result;
char ch = ‘A’;

2. Create a socket for the client:

sockfd = socket(AF_INET, SOCK_STREAM, 0);

3. Name the socket, as agreed with the server:

address.sin_family = AF_INET;
address.sin_addr.s_addr = inet_addr(“127.0.0.1”);
address.sin_port = 9734;
len = sizeof(address);

620

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 620

The rest of this program is the same as client1.c from earlier in this chapter. When you run this version,
it fails to connect because there isn’t a server running on port 9734 on this machine.

$./client2
oops: client2: Connection refused
$

How It Works
The client program used the sockaddr_in structure from the include file netinet/in.h to specify an
AF_INET address. It tries to connect to a server on the host with IP address 127.0.0.1. It uses a function,
inet_addr, to convert the text representation of an IP address into a form suitable for socket addressing.
The manual page for inet has more information on other address translation functions.

Try It Out Network Server
You also need to modify the server program to wait for connections on your chosen port number. Here’s
a modified server: server2.c.

1. Make the necessary includes and set up the variables:

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{

int server_sockfd, client_sockfd;
int server_len, client_len;
struct sockaddr_in server_address;
struct sockaddr_in client_address;

2. Create an unnamed socket for the server:

server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

3. Name the socket:

server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = inet_addr(“127.0.0.1”);
server_address.sin_port = 9734;
server_len = sizeof(server_address);
bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

From here on, the listing follows server1.c exactly. Running client2 and server2 will show the
same behavior you saw earlier with client1 and server1.

621

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 621

How It Works
The server program creates an AF_INET domain socket and arranges to accept connections on it. The
socket is bound to your chosen port. The address specified determines which computers are allowed to
connect. By specifying the loopback address, as in the client program, you are restricting communica-
tions to the local machine.

If you want to allow the server to communicate with remote clients, you must specify a set of IP addresses
that you are willing to allow. You can use the special value, INADDR_ANY, to specify that you’ll accept con-
nections from all of the interfaces your computer may have. If you chose to, you could distinguish between
different network interfaces to separate, for example, internal Local Area Network and external Wide Area
Network connections. INADDR_ANY is a 32-bit integer value that you can use in the sin_addr.s_addr field
of the address structure. However, you have a problem to resolve first.

Host and Network Byte Ordering
When we run these versions of the server and client programs on an Intel processor–based Linux
machine, we can see the network connections by using the netstat command. This command will also
be available on most UNIX systems configured for networking. It shows the client/server connection
waiting to close down. The connection closes down after a small timeout. (Again, the exact output may
vary among different versions of Linux.)

$./server2 & ./client2
[3] 23770
server waiting
server waiting
char from server = B
$ netstat –A inet
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address (State) User
tcp 1 0 localhost:1574 localhost:1174 TIME_WAIT root

You can see the port numbers that have been assigned to the connection between the server and the
client. The local address shows the server, and the foreign address is the remote client. (Even though it’s
on the same machine, it’s still connected over a network.) To ensure that all sockets are distinct, these
client ports are typically different from the server listen socket and unique to the computer.

Before you try out further examples in this book, be sure to terminate running exam-
ple server programs, because they will compete to accept connections from clients
and you’ll see confusing results. You can kill them all (including ones covered later
in the chapter) with the following command:

killall server1 server2 server3 server4 server5

622

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 622

However, the local address (the server socket) is given as 1574 (or you may see mvel-lm as a service name),
but the port chosen in the example is 9734. Why are they different? The answer is that port numbers and
addresses are communicated over socket interfaces as binary numbers. Different computers use different
byte ordering for integers. For example, an Intel processor stores the 32-bit integer as four consecutive bytes
in memory in the order 1-2-3-4, where 1 is the most significant byte. IBM PowerPC processors would store
the integer in the byte order 4-3-2-1. If the memory used for integers were simply copied byte-by-byte, the
two different computers would not be able to agree on integer values.

To enable computers of different types to agree on values for multibyte integers transmitted over a net-
work, you need to define a network ordering. Client and server programs must convert their internal
integer representation to the network ordering before transmission. They do this by using functions
defined in netinet/in.h. These are

#include <netinet/in.h>

unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int hostshort);
unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int netshort);

These functions convert 16-bit and 32-bit integers between native host format and the standard network
ordering. Their names are abbreviations for conversions — for example, “host to network, long” (htonl)
and “host to network, short” (htons). For computers where the native ordering is the same as network
ordering, these represent null operations.

To ensure correct byte ordering of the 16-bit port number, your server and client need to apply these
functions to the port address. The change to server3.c is

server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_address.sin_port = htons(9734);

You don’t need to convert the function call, inet_addr(“127.0.0.1”), because inet_addr is defined
to produce a result in network order. The change to client3.c is

address.sin_port = htons(9734);

The server has also been changed to allow connections from any IP address by using INADDR_ANY.

Now, when you run server3 and client3, you see the correct port being used for the local connection.

$ netstat
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (State) User
tcp 1 0 localhost:9734 localhost:1175 TIME_WAIT root

Remember that if you’re using a computer that has the same native and network byte ordering, you
won’t see any difference. It’s still important always to use the conversion functions to allow correct
operation with clients and servers on computers with a different architecture.

623

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 623

Network Information
So far, your client and server programs have had addresses and port numbers compiled into them. For
a more general server and client program, you can use network information functions to determine
addresses and ports to use.

If you have permission to do so, you can add your server to the list of known services in /etc/services,
which assigns a name to port numbers so that clients can use symbolic services rather than numbers.

Similarly, given a computer’s name, you can determine the IP address by calling host database functions
that resolve addresses for you. They do this by consulting network configuration files, such as /etc/hosts,
or network information services, such as NIS (Network Information Services, formerly known as Yellow
Pages) and DNS (Domain Name Service).

Host database functions are declared in the interface header file netdb.h.

#include <netdb.h>

struct hostent *gethostbyaddr(const void *addr, size_t len, int type);
struct hostent *gethostbyname(const char *name);

The structure returned by these functions must contain at least these members:

struct hostent {
char *h_name; /* name of the host */
char **h_aliases; /* list of aliases (nicknames) */
int h_addrtype; /* address type */
int h_length; /* length in bytes of the address */
char **h_addr_list /* list of address (network order) */

};

If there is no database entry for the specified host or address, the information functions return a
null pointer.

Similarly, information concerning services and associated port numbers is available through some
service information functions.

#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);

The proto parameter specifies the protocol to be used to connect to the service, either “tcp” for
SOCK_STREAM TCP connections or “udp” for SOCK_DGRAM UDP datagrams.

The structure servent contains at least these members:

struct servent {
char *s_name; /* name of the service */
char **s_aliases; /* list of aliases (alternative names) */
int s_port; /* The IP port number */
char *s_proto; /* The service type, usually “tcp” or “udp” */

};

624

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 624

You can gather host database information about a computer by calling gethostbyname and printing the
results. Note that the address list needs to be cast to the appropriate address type and converted from net-
work ordering to a printable string using the inet_ntoa conversion, which has the following definition:

#include <arpa/inet.h>

char *inet_ntoa(struct in_addr in)

The function converts an Internet host address to a string in dotted quad format. It returns -1 on error,
but POSIX doesn’t define any specific errors. The other new function you use is gethostname.

#include <unistd.h>

int gethostname(char *name, int namelength);

This function writes the name of the current host into the string given by name. The hostname will be
null-terminated. The argument namelength indicates the length of the string name, and the returned
hostname will be truncated if it’s too long to fit. gethostname returns 0 on success and -1 on error, but
again no errors are defined in POSIX.

Try It Out Network Information
This program, getname.c, gets information about a host computer.

1. As usual, make the appropriate includes and declare the variables:

#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

char *host, **names, **addrs;
struct hostent *hostinfo;

2. Set the host to the argument supplied with the getname call, or by default to the user’s machine:

if(argc == 1) {
char myname[256];
gethostname(myname, 255);
host = myname;

}
else

host = argv[1];

3. Call gethostbyname and report an error if no information is found:

hostinfo = gethostbyname(host);
if(!hostinfo) {

625

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 625

fprintf(stderr, “cannot get info for host: %s\n”, host);
exit(1);

}

4. Display the hostname and any aliases that it may have:

printf(“results for host %s:\n”, host);
printf(“Name: %s\n”, hostinfo -> h_name);
printf(“Aliases:”);
names = hostinfo -> h_aliases;
while(*names) {

printf(“ %s”, *names);
names++;

}
printf(“\n”);

5. Warn and exit if the host in question isn’t an IP host:

if(hostinfo -> h_addrtype != AF_INET) {
fprintf(stderr, “not an IP host!\n”);
exit(1);

}

6. Otherwise, display the IP address(es):

addrs = hostinfo -> h_addr_list;
while(*addrs) {

printf(“ %s”, inet_ntoa(*(struct in_addr *)*addrs));
addrs++;

}
printf(“\n”);
exit(0);

}

Alternatively, you could use the function gethostbyaddr to determine which host has a given IP address.
You might use this in a server to find out where the client is calling from.

How It Works
The getname program calls gethostbyname to extract the host information from the host database. It
prints out the hostname, its aliases (other names the computer is known by), and the IP addresses that
the host uses on its network interfaces. On one of the authors’ systems, running the example and speci-
fying tilde gave the two interfaces: Ethernet and modem.

$./getname tilde
results for host tilde:
Name: tilde.localnet
Aliases: tilde
192.168.1.1 158.152.x.x

626

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 626

When you use the hostname, localhost, the loopback network is given.

$./getname localhost
results for host localhost:
Name: localhost
Aliases:
127.0.0.1

You can now modify your client to connect to any named host. Instead of connecting to your example
server, you’ll connect to a standard service so that you can extract the port number.

Most UNIX and some Linux systems make their system time and date available as a standard service
called daytime. Clients may connect to this service to discover the server’s idea of the current time and
date. Here’s a client program, getdate.c, that does just that.

Try It Out Connecting to a Standard Service
1. Start with the usual includes and declarations:

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

char *host;
int sockfd;
int len, result;
struct sockaddr_in address;
struct hostent *hostinfo;
struct servent *servinfo;
char buffer[128];

if(argc == 1)
host = “localhost”;

else
host = argv[1];

2. Find the host address and report an error if none is found:

hostinfo = gethostbyname(host);
if(!hostinfo) {

fprintf(stderr, “no host: %s\n”, host);
exit(1);

}

627

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 627

3. Check that the daytime service exists on the host:

servinfo = getservbyname(“daytime”, “tcp”);
if(!servinfo) {

fprintf(stderr,”no daytime service\n”);
exit(1);

}
printf(“daytime port is %d\n”, ntohs(servinfo -> s_port));

4. Create a socket:

sockfd = socket(AF_INET, SOCK_STREAM, 0);

5. Construct the address for use with connect:

address.sin_family = AF_INET;
address.sin_port = servinfo -> s_port;
address.sin_addr = *(struct in_addr *)*hostinfo -> h_addr_list;
len = sizeof(address);

6. Then connect and get the information:

result = connect(sockfd, (struct sockaddr *)&address, len);
if(result == -1) {

perror(“oops: getdate”);
exit(1);

}

result = read(sockfd, buffer, sizeof(buffer));
buffer[result] = ‘\0’;
printf(“read %d bytes: %s”, result, buffer);

close(sockfd);
exit(0);

}

You can use getdate to get the time of day from any known host.

$./getdate localhost
daytime port is 13
read 26 bytes: 24 JUN 2007 06:03:03 BST
$

If you receive an error message such as

oops: getdate: Connection refused

or

oops: getdate: No such file or directory

it may be because the computer you are connecting to has not enabled the daytime service. This has
become the default behavior in more recent Linux systems. In the next section, you see how to enable
this and other services.

628

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 628

How It Works
When you run this program, you can specify a host to connect to. The daytime service port number is
determined from the network database function getservbyname, which returns information about net-
work services in a similar way to host information. The program getdate tries to connect to the address
given first in the list of alternate addresses for the specified host. If successful, it reads the information
returned by the daytime service, a character string representing the UNIX time and date.

The Internet Daemon (xinetd/inetd)
UNIX systems providing a number of network services often do so by way of a super-server. This pro-
gram (the Internet daemon, xinetd or inetd) listens for connections on many port addresses at once.
When a client connects to a service, the daemon program runs the appropriate server. This cuts down on
the need for servers to be running all the time; they can be started as required.

The Internet daemon is implemented in modern Linux systems by xinetd. This implementation has
replaced the original UNIX program, inetd, although you will still see inetd in older Linux systems
and on other UNIX-like systems.

xinetd is usually configured through a graphical user interface for managing network services, but it is
also possible to modify its configuration files directly. These are typically /etc/xinetd.conf and files
in the /etc/xinetd.d directory.

Each service that is to be provided via xinetd has a configuration file in /etc/xinetd.d. xinetd will
read all of these configuration files when it starts up, and again if instructed to do so.

Here are a couple of example xinetd configuration files, first for the daytime service:

#default: off
description: A daytime server. This is the tcp version.
service daytime
{

socket_type = stream
protocol = tcp
wait = no
user = root
type = INTERNAL
id = daytime-stream
FLAGS = IPv6 IPv4

}

The following configuration is for the file transfer service:

default: off
description:
The vsftpd FTP server serves FTP connections. It uses
normal, unencrypted usernames and passwords for authentication.
vsftpd is designed to be secure.
#

629

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 629

NOTE: This file contains the configuration for xinetd to start vsftpd.
the configuration file for vsftp itself is in /etc/vsftpd.conf
service ftp
{
server_args =
log_on_success += DURATION USERID
log_on_failure += USERID
nice = 10
socket_type = stream
protocol = tcp
wait = no
user = root
server = /usr/sbin/vsftpd
}

The daytime service that the getdate program connects to is actually handled by xinetd itself (it
is marked as internal) and can be made available using both SOCK_STREAM (tcp) and SOCK_DGRAM
(udp) sockets.

The ftp file transfer service is available only via SOCK_STREAM sockets and is provided by an external
program, in this case vsftpd. The daemon will start these external programs when a client connects to
the ftp port.

To activate service configuration changes, you can edit the xinetd configuration and send a hang-up sig-
nal to the daemon process, but we recommend that you use a more friendly way of configuring services.
To allow your time-of-day client to connect, enable the daytime service using the tools provided on your
Linux system. On SUSE and openSUSE the services may be configured from the SUSE Control Center as
shown in Figure 15-1. Red Hat versions (both Enterprise Linux and Fedora) have a similar configuration
interface. Here, the daytime service is being enabled for both TCP and UDP queries.

For systems that use inetd rather than xinetd , here’s the equivalent extract from the inetd configura-
tion file, /etc/inetd.conf, which is used by inetd to decide which servers to run:

#
<service_name> <sock_type> <proto> <flags> <user> <server_path> <args>
#
Echo, discard, daytime, and chargen are used primarily for testing.
#
daytime stream tcp nowait root internal
daytime dgram udp wait root internal
#
These are standard services.
#
ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/wu.ftpd
telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd
#
End of inetd.conf.

630

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 630

Figure 15-1

Note that in this example the ftp service is provided by the external program wu.ftpd. If your system is
running inetd, you can change the services provided by editing /etc/inetd.conf (a # at the start of a
line indicates that the line is a comment) and restarting the inetd process. This can be done by sending
it a hang-up signal using kill. To make this easier, some systems are configured so that inetd writes its
process ID to a file. Alternatively, killall can be used:

killall –HUP inetd

Socket Options
There are many options that you can use to control the behavior of socket connections — too many to
detail here. The setsockopt function is used to manipulate options.

#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name,
const void *option_value, size_t option_len);

631

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 631

You can set options at various levels in the protocol hierarchy. To set options at the socket level, you
must set level to SOL_SOCKET. To set options at the underlying protocol level (TCP, UDP, and so on),
set level to the number of the protocol (from either the header file netinet/in.h or as obtained by the
function getprotobyname).

The option_name parameter selects an option to set; the option_value parameter is an arbitrary value
of length option_len bytes passed unchanged to the underlying protocol handler.

Socket level options defined in sys/socket.h include the following.

SO_DEBUG and SO_KEEPALIVE take an integer option_value used to turn the option on (1) or off (0).
SO_LINGER requires a linger structure defined in sys/socket.h to define the state of the option and the
linger interval.

setsockopt returns 0 if successful, -1 otherwise. The manual pages describe further options and errors.

Multiple Clients
So far in this chapter, you’ve seen how you can use sockets to implement client/server systems both
locally and across networks. Once established, socket connections behave like low-level open file
descriptors and in many ways like bi-directional pipes.

You might need to consider the case of multiple, simultaneous clients connecting to a server. You’ve seen
that when a server program accepts a new connection from a client, a new socket is created and the original
listen socket remains available for further connections. If the server doesn’t immediately accept further con-
nections, they will be held pending in a queue.

The fact that the original socket is still available and that sockets behave as file descriptors gives you a
method of serving multiple clients at the same time. If the server calls fork to create a second copy of
itself, the open socket will be inherited by the new child process. It can then communicate with the con-
necting client while the main server continues to accept further client connections. This is, in fact, a fairly
easy change to make to your server program, which is shown in the following Try It Out section.

Because you’re creating child processes but not waiting for them to complete, you must arrange for the
server to ignore SIGCHLD signals to prevent zombie processes.

Try It Out A Server for Multiple Clients
1. This program, server4.c, begins in a similar vein to the last server, with the notable addition

of an include for the signal.h header file. The variables and the procedure of creating and
naming a socket are the same:

OPTION DESCRIPTION

SO_DEBUG Turn on debugging information.

SO_KEEPALIVE Keep connections active with periodic transmissions.

SO_LINGER Complete transmission before close.

632

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 632

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{

int server_sockfd, client_sockfd;
int server_len, client_len;
struct sockaddr_in server_address;
struct sockaddr_in client_address;

server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_address.sin_port = htons(9734);
server_len = sizeof(server_address);
bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

2. Create a connection queue, ignore child exit details, and wait for clients:

listen(server_sockfd, 5);

signal(SIGCHLD, SIG_IGN);

while(1) {
char ch;

printf(“server waiting\n”);

3. Accept the connection:

client_len = sizeof(client_address);
client_sockfd = accept(server_sockfd,

(struct sockaddr *)&client_address, &client_len);

4. Fork to create a process for this client and perform a test to see whether you’re the parent or
the child:

if(fork() == 0) {

5. If you’re the child, you can now read/write to the client on client_sockfd. The five-second
delay is just for this demonstration:

read(client_sockfd, &ch, 1);
sleep(5);
ch++;
write(client_sockfd, &ch, 1);
close(client_sockfd);
exit(0);

}

633

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 633

6. Otherwise, you must be the parent and your work for this client is finished:

else {
close(client_sockfd);

}
}

}

The code inserts a five-second delay in the processing of the client’s request to simulate server calcula-
tion or database access. If you had done this with the previous server, each run of client3 would have
taken five seconds. With the new server, you can handle multiple client3 programs concurrently, with
an overall elapsed time of just over five seconds.

$./server4 &
[1] 26566
server waiting
$./client3 & ./client3 & ./client3 & ps x
[2] 26581
[3] 26582
[4] 26583
server waiting
server waiting
server waiting
PID TTY STAT TIME COMMAND

26566 pts/1 S 0:00 ./server4
26581 pts/1 S 0:00 ./client3
26582 pts/1 S 0:00 ./client3
26583 pts/1 S 0:00 ./client3
26584 pts/1 R+ 0:00 ps x
26585 pts/1 S 0:00 ./server4
26586 pts/1 S 0:00 ./server4
26587 pts/1 S 0:00 ./server4
$ char from server = B
char from server = B
char from server = B
ps x
PID TTY STAT TIME COMMAND

26566 pts/1 S 0:00 ./server4
26590 pts/1 R+ 0:00 ps x
[2] Done ./client3
[3]- Done ./client3
[4]+ Done ./client3
$

How It Works
The server program now creates a new child process to handle each client, so you see several server
waiting messages as the main program continues to wait for new connections. The ps output (edited
here) shows the main server4 process, PID 26566, waiting for new clients while the three client3
processes are being served by three children of the server. After a five-second pause, all of the clients
get their results and finish. The child server processes exit to leave just the main server alone again.

634

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 634

The server program uses fork to handle multiple clients. In a database application, this may not be the
best solution, because the server program may be quite large and there is still the problem of coordinat-
ing database accesses from multiple server copies. In fact, what you really need is a way for a single
server to handle multiple clients without blocking and waiting on client requests to arrive. The solution
to this problem involves handling multiple open file descriptors at once and isn’t limited to socket appli-
cations. Enter select.

select
Quite often when you’re writing Linux applications, you may need to examine the state of a number of
inputs to determine the next action to take. For example, a communication program such as a terminal
emulator needs to read the keyboard and the serial port effectively at the same time. In a single-user sys-
tem, it might be acceptable to run in a “busy wait” loop, repeatedly scanning the input for data and
reading it if it arrives. This behavior is expensive in terms of CPU time.

The select system call allows a program to wait for input to arrive (or output to complete) on a num-
ber of low-level file descriptors at once. This means that the terminal emulator program can block until
there is something to do. Similarly, a server can deal with multiple clients by waiting for a request on
many open sockets at the same time.

The select function operates on data structures, fd_set, that are sets of open file descriptors. A number
of macros are defined for manipulating these sets:

#include <sys/types.h>
#include <sys/time.h>

void FD_ZERO(fd_set *fdset);
void FD_CLR(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);

As suggested by their names, FD_ZERO initializes an fd_set to the empty set, FD_SET and FD_CLR set
and clear elements of the set corresponding to the file descriptor passed as fd, and FD_ISSET returns
nonzero if the file descriptor referred to by fd is an element of the fd_set pointed to by fdset. The
maximum number of file descriptors in an fd_set structure is given by the constant FD_SETSIZE.

The select function can also use a timeout value to prevent indefinite blocking. The timeout value is
given using a struct timeval. This structure, defined in sys/time.h, has the following members:

struct timeval {
time_t tv_sec; /* seconds */
long tv_usec; /* microseconds */

}

The time_t type is defined in sys/types.h as an integral type.

635

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 635

The select system call has the following prototype:

#include <sys/types.h>
#include <sys/time.h>

int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *errorfds, struct timeval *timeout);

A call to select is used to test whether any one of a set of file descriptors is ready for reading or writing
or has an error condition pending and will optionally block until one is ready.

The nfds argument specifies the number of file descriptors to be tested, and descriptors from 0 to nfds-1
are considered. Each of the three descriptor sets may be a null pointer, in which case the associated test
isn’t carried out.

The select function will return if any of the descriptors in the readfds set are ready for reading, if any
in the writefds set are ready for writing, or if any in errorfds have an error condition. If none of these
conditions apply, select will return after an interval specified by timeout. If the timeout parameter is
a null pointer and there is no activity on the sockets, the call will block forever.

When select returns, the descriptor sets will have been modified to indicate which descriptors are
ready for reading or writing or have errors. You should use FD_ISSET to test them, to determine the
descriptor(s) needing attention. You can modify the timeout value to indicate the time remaining until
the next timeout, but this behavior isn’t specified by X/Open. In the case of a timeout occurring, all
descriptor sets will be empty.

The select call returns the total number of descriptors in the modified sets. It returns –1 on failure,
setting errno to describe the error. Possible errors are EBADF for invalid descriptors, EINTR for return
due to interrupt, and EINVAL for bad values for nfds or timeout.

Although Linux modifies the structure pointed to by timeout to indicate the time remaining, most
versions of UNIX do not. Much existing code that uses the select function initializes a timeval
structure and then continues to use it without ever reinitializing the contents. On Linux, this code may
operate incorrectly because Linux is modifying the timeval structure every time a timeout occurs. If
you’re writing or porting code that uses the select function, you should watch out for this difference
and always reinitialize the timeout. Note that both behaviors are correct; they’re just different!

Try It Out select
Here is a program, select.c, to illustrate the use of select. You’ll see a more complete example a little
later. This program reads the keyboard (standard input — file descriptor 0) with a timeout of 2.5 seconds.
It reads the keyboard only when input is ready. It’s quite straightforward to extend it to include other
descriptors, such as serial lines or pipes and sockets, depending on the application.

1. Begin as usual with the includes and declarations and then initialize inputs to handle input
from the keyboard:

#include <sys/types.h>
#include <sys/time.h>
#include <stdio.h>
#include <fcntl.h>

636

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 636

#include <sys/ioctl.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{

char buffer[128];
int result, nread;

fd_set inputs, testfds;
struct timeval timeout;

FD_ZERO(&inputs);
FD_SET(0,&inputs);

2. Wait for input on stdin for a maximum of 2.5 seconds:

while(1) {
testfds = inputs;
timeout.tv_sec = 2;
timeout.tv_usec = 500000;

result = select(FD_SETSIZE, &testfds, (fd_set *)NULL, (fd_set *)NULL,
&timeout);

3. After this time, test result. If there has been no input, the program loops again. If there has
been an error, the program exits:

switch(result) {
case 0:

printf(“timeout\n”);
break;

case -1:
perror(“select”);
exit(1);

4. If, during the wait, you have some action on the file descriptor, read the input on stdin and
echo it whenever an <end of line> character is received, until that input is Ctrl+D:

default:
if(FD_ISSET(0,&testfds)) {

ioctl(0,FIONREAD,&nread);
if(nread == 0) {

printf(“keyboard done\n”);
exit(0);

}
nread = read(0,buffer,nread);
buffer[nread] = 0;
printf(“read %d from keyboard: %s”, nread, buffer);

}
break;

}
}

}

637

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 637

When you run this program, it prints timeout every two and a half seconds. If you type at the key-
board, it reads the standard input and reports what was typed. With most shells, the input will be sent to
the program when the user presses the Enter (or Return) key or keys in a control sequence, so your pro-
gram will print the input whenever you press Enter. Note that the Enter key itself is read and processed
like any other character (try this by not pressing Enter, but a number of characters followed by Ctrl+D).

$./select
timeout
hello
read 6 from keyboard: hello
fred
read 5 from keyboard: fred
timeout
^D
keyboard done
$

How It Works
The program uses the select call to examine the state of the standard input. By arranging a timeout
value, the program resumes every 2.5 seconds to print a timeout message. This is indicated by select
returning zero. On end of file, the standard input descriptor is flagged as ready for input, but there are
no characters to be read.

Multiple Clients
Your simple server program can benefit by using select to handle multiple clients simultaneously,
without resorting to child processes. For real applications using this technique, you must take care that
you do not make other clients wait too long while you deal with the first to connect.

The server can use select on both the listen socket and the clients’ connection sockets at the same time.
Once activity has been indicated, you can use FD_ISSET to cycle through all the possible file descriptors
to discover which one the activity is on.

If the listen socket is ready for input, this will mean that a client is attempting to connect and you can
call accept without risk of blocking. If a client descriptor is indicated ready, this means that there’s a
client request pending that you can read and deal with. A read of zero bytes will indicate that a client
process has ended and you can close the socket and remove it from your descriptor set.

Try It Out An Improved Multiple Client/Server
1. For the final example, server5.c, you’ll include the sys/time.h and sys/ioctl.h headers

instead of signal.h as in the last program, and declare some extra variables to deal with
select:

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>

638

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 638

#include <netinet/in.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{

int server_sockfd, client_sockfd;
int server_len, client_len;
struct sockaddr_in server_address;
struct sockaddr_in client_address;
int result;
fd_set readfds, testfds;

2. Create and name a socket for the server:

server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_address.sin_port = htons(9734);
server_len = sizeof(server_address);

bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

3. Create a connection queue and initialize readfds to handle input from server_sockfd:

listen(server_sockfd, 5);

FD_ZERO(&readfds);
FD_SET(server_sockfd, &readfds);

4. Now wait for clients and requests. Because you have passed a null pointer as the timeout
parameter, no timeout will occur. The program will exit and report an error if select returns a
value less than 1:

while(1) {
char ch;
int fd;
int nread;

testfds = readfds;

printf(“server waiting\n”);
result = select(FD_SETSIZE, &testfds, (fd_set *)0,

(fd_set *)0, (struct timeval *) 0);

if(result < 1) {
perror(“server5”);
exit(1);

}

639

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 639

5. Once you know you’ve got activity, you can find which descriptor it’s on by checking each in
turn using FD_ISSET:

for(fd = 0; fd < FD_SETSIZE; fd++) {
if(FD_ISSET(fd,&testfds)) {

6. If the activity is on server_sockfd, it must be a request for a new connection, and you add the
associated client_sockfd to the descriptor set:

if(fd == server_sockfd) {
client_len = sizeof(client_address);
client_sockfd = accept(server_sockfd,

(struct sockaddr *)&client_address, &client_len);
FD_SET(client_sockfd, &readfds);
printf(“adding client on fd %d\n”, client_sockfd);

}

7. If it isn’t the server, it must be client activity. If close is received, the client has gone away, and
you remove it from the descriptor set. Otherwise, you “serve” the client as in the previous
examples.

else {
ioctl(fd, FIONREAD, &nread);

if(nread == 0) {
close(fd);
FD_CLR(fd, &readfds);
printf(“removing client on fd %d\n”, fd);

}

else {
read(fd, &ch, 1);
sleep(5);
printf(“serving client on fd %d\n”, fd);
ch++;
write(fd, &ch, 1);

}
}

}
}

}
}

In a real-world program, it would be advisable to include a variable holding the largest fd number con-
nected (not necessarily the most recent fd number connected). This would prevent looping through
potentially thousands of fds that aren’t even connected and couldn’t possibly be ready for reading.
We’ve omitted it here simply for brevity’s sake and to make the code simpler.

640

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 640

When you run this version of the server, it deals with multiple clients sequentially in a single process.

$./server5 &
[1] 26686
server waiting
$./client3 & ./client3 & ./client3 & ps x
[2] 26689
[3] 26690
adding client on fd 4
server waiting
[4] 26691
PID TTY STAT TIME COMMAND

26686 pts/1 S 0:00 ./server5
26689 pts/1 S 0:00 ./client3
26690 pts/1 S 0:00 ./client3
26691 pts/1 S 0:00 ./client3
26692 pts/1 R+ 0:00 ps x
$ serving client on fd 4
server waiting
adding client on fd 5
server waiting
adding client on fd 6
char from server = B
serving client on fd 5
server waiting
removing client on fd 4
char from server = B
serving client on fd 6
server waiting
removing client on fd 5
server waiting
char from server = B
removing client on fd 6
server waiting

[2] Done ./client3
[3]- Done ./client3
[4]+ Done ./client3
$

To complete the analogy at the start of the chapter, the following table shows the parallels between
socket connections and a telephone exchange.

Continued on next page

Telephone Network Sockets

Call company on 555-0828 Connect to IP address 127.0.0.1.

Call answered by reception Connection established to remote host.

Ask for finance department Route using specified port (9734).

641

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 641

Datagrams
In this chapter, we have concentrated on programming applications that maintain connections to their
clients, using connection-oriented TCP socket connections. There are cases where the overhead of estab-
lishing and maintaining a socket connection is unnecessary.

The daytime service used in getdate.c earlier provides a good example. You create a socket, make a
connection, read a single response, and close the connection. That’s a lot of operations just to get the date.

The daytime service is also available by UDP using datagrams. To use it, you send a single datagram to
the service and get a single datagram containing the date and time in response. It’s simple.

Services provided by UDP are typically used where a client needs to make a short query of a server and
expects a single short response. If the cost in terms of processing time is low enough, the server is able to
provide this service by dealing with requests from clients one at a time, allowing the operating system
to hold incoming requests in a queue. This simplifies the coding of the server.

Because UDP is not a guaranteed service, however, you may find that your datagram or your response goes
missing. So if the data is important to you, you would need to code your UDP clients carefully to check for
errors and retry if necessary. In practice, on a local area network, UDP datagrams are very reliable.

To access a service provided by UDP, you need to use the socket and close system calls as before, but
rather than using read and write on the socket, you use two datagram-specific system calls, sendto
and recvfrom.

Here’s a modified version of getdate.c that gets the date via a UDP datagram service. Changes from
the earlier version are highlighted.

/* Start with the usual includes and declarations. */

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

char *host;
int sockfd;

Telephone Network Sockets

Call answered by finance administration Server returns from select.

Call put through to free account manager Server calls accept, creating new socket on
extension 456.

642

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 642

int len, result;
struct sockaddr_in address;
struct hostent *hostinfo;
struct servent *servinfo;
char buffer[128];

if(argc == 1)
host = “localhost”;

else
host = argv[1];

/* Find the host address and report an error if none is found. */

hostinfo = gethostbyname(host);
if(!hostinfo) {

fprintf(stderr, “no host: %s\n”, host);
exit(1);

}

/* Check that the daytime service exists on the host. */

servinfo = getservbyname(“daytime”, “udp”);
if(!servinfo) {

fprintf(stderr,”no daytime service\n”);
exit(1);

}
printf(“daytime port is %d\n”, ntohs(servinfo -> s_port));

/* Create a UDP socket. */

sockfd = socket(AF_INET, SOCK_DGRAM, 0);

/* Construct the address for use with sendto/recvfrom... */

address.sin_family = AF_INET;
address.sin_port = servinfo -> s_port;
address.sin_addr = *(struct in_addr *)*hostinfo -> h_addr_list;
len = sizeof(address);

result = sendto(sockfd, buffer, 1, 0, (struct sockaddr *)&address, len);
result = recvfrom(sockfd, buffer, sizeof(buffer), 0,

(struct sockaddr *)&address, &len);
buffer[result] = ‘\0’;
printf(“read %d bytes: %s”, result, buffer);

close(sockfd);
exit(0);

}

As you can see, the changes required are very small. You find the daytime service with getservbyname
as before, but you specify the datagram service by requesting the UDP protocol. You create a datagram
socket using socket with a SOCK_DGRAM parameter. You set up the destination address as before, but now
you have to send a datagram rather than just read from the socket.

643

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 643

Because you are not making an explicit connection to services provided by UDP, you have to have some
way of letting the server know that you want to receive a response. In this case, you send a datagram
(here you send a single byte from the buffer you are going to receive the response into) to the service,
and it responds with the date and time.

The sendto system call sends a datagram from a buffer on a socket using a socket address and address
length. Its prototype is essentially

int sendto(int sockfd, void *buffer, size_t len, int flags,
struct sockaddr *to, socklen_t tolen);

In normal use, the flags parameter can be kept zero.

The recvfrom system call waits on a socket for a datagram from a specified address and receives it into
a buffer. Its prototype is essentially

int recvfrom(int sockfd, void *buffer, size_t len, int flags,
struct sockaddr *from, socklen_t *fromlen);

Again, in normal use, the flags parameter can be kept zero.

To keep the example short, we have omitted error handling. Both sendto and recvfrom will return |1 if
an error occurs and will set errno appropriately. Possible errors include the following:

To keep the example short we have omitted error

Unless the socket is set nonblocking using fcntl (as you saw for accepting TCP connections earlier), the
recvfrom call will block indefinitely. The socket can, however, be used with select and a timeout to deter-
mine whether any data has arrived in the same way that you have seen with the connection-based servers
earlier. Alternatively, an alarm clock signal can be used to interrupt a receive operation (see Chapter 11).

Summary
In this chapter, we’ve covered another method of inter-process communication: sockets. These allow you
to develop true distributed client/server applications to run across networks. We briefly covered some
of the host database information functions and how Linux handles standard system services with the
Internet daemon. You worked through a number of client/server example programs that demonstrate
networking and handling multiple clients.

Finally, you learned about the select system call that allows a program to be advised of input and
output activity on several open file descriptors and sockets at once.

Errno Value Description

EBADF An invalid file descriptor was passed.

EINTR A signal occurred.

644

Chapter 15: Sockets

47627c15.qxd:WroxPro 9/29/07 3:38 PM Page 644

16
Programming

GNOME Using GTK+

So far in this book, we’ve covered the major topics in Linux programming that deal with complex,
under-the-hood stuff. Now it’s time to breathe some life into your applications and look at how to
add a Graphical User Interface (GUI) to them. In this chapter and Chapter 17, we’re going to look
at the two most popular GUI libraries for Linux: GTK+ and KDE/Qt. These libraries correspond to
the two most popular Linux desktop environments: GNOME (GTK+) and KDE.

All GUI libraries in Linux sit on top of the underlying windowing system called the X Window
System (or more commonly X11 or just X), so before we delve into GNOME/GTK+ details we pro-
vide an overview of how X operates and help you understand how the various layers of the win-
dowing system fit together to create what we call the desktop.

In this chapter, we cover

❑ The X Window System

❑ An introduction to GNOME/GTK+

❑ GTK+ widgets

❑ GNOME widgets and menus

❑ Dialogs

❑ CD Database GUI using GNOME/GTK+

Introducing X
If you’ve ever used a desktop windowing system on Linux, then you’ve most likely used X, an open
source graphics system. One of the most innovative, and ultimately frustrating, features of X is the
rigid adherence to the mantra of mechanism, not policy. That means X defines no user interface, but
provides the means to make one. This means you’re free to create your own entire desktop environ-
ment, experimenting and innovating at will. But, it also hindered user interfaces on Linux and
UNIX for a long time. Into this relative void, two desktop projects emerged as the favorites of Linux

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 645

users: GNOME and KDE. The Linux desktop does not begin and end with X, however. In truth, the desk-
top in Linux is a rather nebulous thing, with no single project or group releasing a definitive version. A
modern installation contains a myriad of libraries, utilities, and applications that collectively are called
“the desktop.”

X has a long and illustrious history, having been originally developed at MIT in the early 1980s. X was
developed to provide a unified windowing system for the high-end scientific workstations of the day,
which were hugely expensive, number-crunching beasts.

As the 1990s came and hardware prices dropped, X was ported by enthusiasts to run on inexpensive
home PCs, a project that became known as XFree86 (PC processors made by Intel and other companies
are known as x86 processors), and it is the descendants of XFree86 that are distributed today with Linux,
with most Linux distributions using an X variant called X.Org.

The X Window System is separated into hardware-level and application-level components known as
the X server and the X client. These components communicate using the aptly named X Protocol. The
following sections look at each of these in turn.

X Server
The X server runs on the user’s local machine and is the part that performs the low-level operation of
drawing the graphics onscreen. The server part of the name often confuses: the X server runs on your
desktop PC. X clients may run on your desktop PC, or X clients can actually run on other systems on
your network — including servers. The reversed terminology actually makes sense when you think
about it, but it often seems backwards.

Because the X server talks directly to the graphics card, you must use an X server specific to your graphics
card, and it must be configured with appropriate resolution, refresh rate, color depth, and so on. The con-
figuration file is named xorg.conf or Xfree86Config. In the past, you usually had to manually edit the
configuration file to get X working properly. Thankfully, modern Linux distributions autodetect the cor-
rect settings, saving users time and a great deal of head scratching!

The X server listens for user input via the mouse and keyboard and relays keyboard presses and mouse
clicks to X client applications. These messages are called events; they form a key element of GUI pro-
gramming. We look at events and their logical GTK+ extension, signals, in detail later in this chapter.

X Client
An X client is any program that uses the X Window System as a GUI. Examples are xterm, xcalc,
and more advanced applications, like Abiword. An X client typically waits for user events sent by
the X server and responds by sending redraw messages back to the server.

The X client need not be on the same machine as the X server.

X Protocol
The X client and X server communicate using the X Protocol, which enables the client and server to be
separated over a network. For instance, you can run an X client application from a remote computer on
the Internet or over an encrypted Virtual Private Network (VPN). For the vast majority of personal
Linux systems, X clients and the X server run on the same system.

646

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 646

Xlib
Xlib is the library used indirectly by an X client to generate the X Protocol messages. It provides a very low-
level API to allow the client to draw very basic elements on the X server and to respond to the simplest of
inputs. We must emphasize that Xlib is very low level — to create something even as simple as a menu
using Xlib is an incredibly laborious process that needs hundreds of lines of code.

A GUI programmer cannot sensibly program directly with Xlib. You need an API that makes GUI
elements such as menus, buttons, and drop-down lists easy and simple to create. In a nutshell, this
is the role of the toolkit.

Toolkits
A toolkit is a GUI library that X clients utilize to greatly simplify the creation of windows, menus, but-
tons, and so on. Using a toolkit, you can create buttons, menus, frames, and the like with single func-
tion calls. The generic term for GUI elements such as these is widgets, a universal term you’ll find in all
modern GUI libraries.

There are dozens of toolkits for X to choose from, each with their defining strengths and weaknesses.
Which one you choose is an important design decision for your application, and some of the factors you
should consider are

❑ Who are you targeting with your application?

❑ Will your users have the toolkit libraries installed?

❑ Does the toolkit have a port for other popular operating systems?

❑ What software license does the toolkit use, and is it compatible with your intended use?

❑ Does the toolkit support your programming language?

❑ Does the toolkit have a modern look and feel?

Historically, the most popular toolkits were Motif, OpenLook, and Xt, but these have been largely
superceded by the technically superior GTK+ and Qt toolkits that form the basis of the GNOME and
KDE desktops, respectively.

Window Managers
The final piece in the X puzzle is the window manager, which is responsible for positioning windows
onscreen. Window managers often support separate “workspaces” that divide the desktop, increasing the
area with which you can interact. The window manager is also responsible for adding decoration around
each window, which usually consists of a frame and title bar with maximize, minimize, and close icons.
Window managers provide part of the look and feel of the desktop, such as the window title bars.

Common window managers include:

❑ Metacity, the default window manager for the GNOME desktop.

❑ KWin, the default window manager for the KDE desktop.

647

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 647

❑ Openbox, designed to conserve resources and run on older, slower systems.

❑ Enlightenment, a window manager that displays awesome graphics and effects.

As with everything in X, you can switch window managers. Most users, though, run the window man-
ager that comes with their desktop environment.

Other Ways to Create a GUI — Platform-Independent
Windowing APIs

It’s worth mentioning other ways to create GUIs that are not specific to Linux — there are languages that
have native GUI support that function under Linux:

❑ The Java Language supports programming GUIs using the Swing and older AWT APIs. The
look and feel of Java GUIs isn’t to everybody’s taste, and on older machines the interface can
feel clunky and unresponsive. A great advantage of Java is that once you’ve compiled your Java
code, it runs unchanged on any platform with a Java Virtual Machine, which includes Linux,
Windows, Mac OS, and mobile devices. See http://java.sun.com for more information.

❑ C# is a programming language very similar to Java. On Linux, the C# Common Language
Runtime, or CLR, platform comes from the Mono project at http://www.mono-project.com.
C# on the Mono platform supports both Windows. Forms, also used on Windows, and a special
binding to the GTK+ toolkit, called Gtk#.

❑ Tcl/Tk is a scripting language that is excellent for rapid development of GUIs and works with X,
Windows, and Mac OS. It’s great for rapid prototyping or for small utilities where you want the
simplicity and maintainability of a script. You can find all the details at http://tcl.tk.

❑ Python is also a scripting language. You can use the Tk part of Tcl/Tk from Python, or you can
program to the Python GTK+ binding, writing GTK+ programs in Python. You can find more
about Python at http://www.python.org.

❑ Perl is another common Linux scripting language. You can use the Tk part of Tcl/Tk from Perl,
as Perl/Tk. You can find more about Perl at http://www.perl.org/.

With the platform independence that these languages bring there is a price to pay. Sharing informa-
tion with native applications — for instance, using “drag and drop” — is difficult, and saving config-
uration usually has to be done in a proprietary rather than the desktop standard way. Sometimes
vendors of Java software cheat by shipping with platform-specific extensions to get around these
sorts of problems.

Introducing GTK+
Now that you’ve looked at the X Window System, it’s time to look at the GTK+ Toolkit. GTK+ started
out life as part of the popular GNU Image Manipulation Program, The GIMP, which is how GTK derives
its name (The Gimp ToolKit). The GIMP programmers clearly had great foresight in making GTK+ a
project in its own right because it has grown and developed into one of the most powerful and popular
toolkits around. The homepage of the GTK+ project is http://www.gtk.org.

648

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 648

To recap, GTK+ is a library that greatly simplifies the creation of Graphical User Interfaces (GUIs) by
providing a set of ready-made components called widgets that you bolt together with easy-to-use func-
tion calls to your application logic.

Although GTK+ is a GNU project like The GIMP, it is released under the terms of the more liberal LGPL
(Lesser General Public License) that permits software (including closed source proprietary software) to
be written using GTK+ without payment of fees, royalties, or other restrictions. The freedom offered by
the GTK+ license is in contrast to its competitor Qt (the subject of the next chapter), whose GPL license
prohibits commercial software from being developed using Qt (you must instead purchase a commercial
Qt license in that case).

GTK+ is written entirely in C, and the majority of GTK+ software is also written in C. Fortunately there
are a number of language bindings that allow you to use GTK+ in your preferred language, be it C++,
Python, PHP, Ruby, Perl, C#, or Java.

GTK+ itself is built on top of a number of other libraries. These include:

❑ GLib — provides low-level data structures, types, thread support, the event loop, and
dynamic loading.

❑ GObject — implements an object-oriented system in C without requiring C++.

❑ Pango — supports text rendering and layout.

❑ ATK — helps you create accessible applications and allows users to run your applications with
screen readers and other accessibility tools.

❑ GDK, the GIMP Drawing Kit — handles low-level graphics rendering on top of the Xlib.

❑ GdkPixbuf — helps manipulate images within GTK+ programs.

❑ Xlib — provides the low-level graphics on Linux and UNIX systems.

GLib Type System
If you’ve ever browsed through GTK+ code, you may have wondered why you saw a lot of C data types
prefixed with the letter g, such as gint, gchar, gshort, as well as unfamiliar types such as gint32 and
gpointer. This is because GTK+ is based on C portability libraries called GLib and GObject that define
these types to aid in cross-platform development.

GLib and GObject aid cross-platform development by providing a standard set of replacement data
types, functions, and macros to handle memory management and common tasks. These types, functions,
and macros mean that as GTK+ programmers we can be confident that our code will port reliably to
other platforms and architectures.

GLib also defines some convenient constants:

#include <glib/gmacros.h>

#define FALSE 0
#define TRUE !FALSE

649

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 649

The additional data types are essentially those that are replacements for the standard C types (for consis-
tency and readability) and those that guarantee byte length across all platforms:

❑ gint, guint, gchar, guchar, glong, gulong, gfloat, and gdouble are simple replacements
for the standard C types for consistency.

❑ gpointer is synonymous with (void *).

❑ gboolean is useful for representing boolean values and is a wrapper for int.

❑ gint8, guint8, gint16, guint16, gint32, and guint32 are signed and unsigned types with a
guaranteed byte length.

Usefully, using GLib and GObject is almost transparent. GLib is used extensively in GTK+, so if you
have a working GTK+ setup, you’ll find GLib installed. When programming with GTK+ you don’t even
need to explicitly include the glib.h header file, as you’ll see later in the chapter.

GTK+ Object System
Anybody who has experimented with GUI programming before will probably understand when we
write that GUI libraries strongly lend themselves to the paradigm of object-oriented (OO) programming;
so much so that all modern toolkits are written in an object-oriented fashion, including GTK+.

Despite GTK+ being written purely in C, it supports objects and OO programming through the GObject
library. This library supports object inheritance and polymorphism using macros.

Let’s look at an example of inheritance and polymorphism by looking at the GtkWindow object hierarchy
taken from the GTK+ API documentation:

GObject
+----GInitiallyUnowned
+----GtkObject

+----GtkWidget
+----GtkContainer

+----GtkBin
+----GtkWindow

This list of objects tells you that GtkWindow is a child of GtkBin, and therefore any function you can call
with a GtkBin can be called with GtkWindow. Similarly, GtkWindow inherits from GtkContainer, which
inherits from GtkWidget.

As a matter of convenience, all widget creation functions return a GtkWidget type. For example:

GtkWidget* gtk_window_new (GtkWindowType type);

Suppose you create a GtkWindow, and want to pass the returned value to a function that expects a
GtkContainer such as gtk_container_add:

void gtk_container_add (GtkContainer *container, GtkWidget *widget);

650

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 650

You use the GTK_CONTAINER macro to cast between a GtkWidget and GtkContainer:

GtkWidget * window = gtk_window_new(GTK GTK_WINDOW_TOPLEVEL);
gtk_container_add(GTK_CONTAINER(window), awidget);

You’ll see the meaning of these functions later; for now, notice that macros are frequently used. Macros
exist for every conceivable cast.

Don’t worry if all this is a little unclear; you don’t need to understand OO programming in any detail
to come to grips with GNOME/GTK+. In fact, it’s a painless way to learn the ideas and benefits behind
OO programming while still in the comfort zone of C.

Introducing GNOME
GNOME is the name given to a project started in 1997 by programmers working on the GNU Image
Manipulation Program (The GIMP) to create a unified desktop for Linux. There was a general consensus
that adoption of Linux as a desktop platform was being held back by the lack of a coherent strategy. At that
time, the Linux desktop resembled the Wild West, with no overall standards or agreed-upon practices and
an “anything goes” programmer mentality. With no overarching group controlling things such as desktop
menus, a consistent look and feel, documentation, translation, and so on, the newbie experience on the
desktop was at best confusing and at worst unusable.

The GNOME team set out to create a desktop for Linux licensed entirely under the GPL, developing
utilities and configuration programs in a uniform and consistent style while promoting standards for
inter-application communication, printing, session-management, and best-practices in GUI application
programming.

The results of their efforts are clear for all to see — GNOME is the basis of the default Linux desktop for
the Fedora, Red Hat, Ubuntu, and openSUSE distributions, among others (see Figure 16-1).

Figure 16-1

651

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 651

GNOME originally stood for the GNU Network Object Model Environment — this reflects one of the
early goals, which was to introduce an object framework to Linux like the Microsoft OLE, so that you
could embed, for example, a spreadsheet in a word processor document. Now the design goals have
moved on, and what we know as GNOME refers to the complete desktop environment, which consists
of a panel for launching apps, a suite of programs and utilities, programming libraries, and developer
support features.

Before you start programming, you need to make sure you’ve got all the libraries installed.

Installing the GNOME/GTK+ Development Libraries
The complete GNOME desktop with its standard applications and the GNOME/GTK+ development
libraries stretches over more than 60 packages; as a result, installing GNOME from scratch either manually
or from source code is a daunting prospect. Thankfully, modern Linux distributions have excellent package
management utilities that make installing GNOME/GTK+ and the development libraries a breeze.

In Red Hat and Fedora Linux you open the Package Management tool by clicking the Applications menu
button (in the top left) and choosing Add/Remove Software. When the Package Management tool appears
(see Figure 16-2), make sure that the GNOME Software Development checkbox is checked. Look in the
Development area for this setting.

Figure 16-2

In this chapter, you will be working with GNOME/GTK+ 2, so make sure your
installation contains the version 2.x libraries.

652

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 652

For distributions that use RPM packages, you should have at least the following RPM packages installed:

gtk2-2.10.11-7.fc7.rpm
gtk2-devel-2.10.11-7.fc7.rpm
gtk2-engines-2.10.0-3.fc7.rpm
libgnome-2.18.0-4.fc7.rpm
libgnomeui-2.18.1-2.fc7.rpm
libgnome-devel-2.18.0-4.fc7.rpm
libgnomeui-devel-2.18.1-2.fc7.rpm

In this example, the fc7 in the file names references the Fedora 7 Linux distribution. On your system,
you may see slightly different names.

In Debian or Debian-based systems like Ubuntu, you can use apt-get to install the GNOME/GTK+
packages from various mirrors — follow the links from http://www.gnome.org for details.

Also try out the GTK+ demo application that shows off all the widgets in their finery (see Figure 16-3):

$ gtk-demo

Figure 16-3

With each widget, you can see both an Info tab and a Source tab. The Source tab shows actual C source
code for using the given widget. This can provide a great set of examples.

Try It Out A Plain GtkWindow
Let’s start programming GTK+ with the simplest of GUI programs: displaying a window. You’ll see the
GTK+ libraries in action, and see how much functionality you get from surprisingly little code.

1. Type this program and call it gtk1.c:

#include <gtk/gtk.h>

int main (int argc, char *argv[])

653

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 653

{
GtkWidget *window;

gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_widget_show(window);
gtk_main ();

return 0;
}

2. To compile gtk1.c type:

$ gcc gtk1.c –o gtk1 `pkg-config --cflags --libs gtk+-2.0`

Take care to type backticks, not apostrophes — remember that backticks are instructions to the shell to
execute and append the output of the enclosed command.

When you run this program with the following command, your window should pop up (see Figure 16-4):

$./gtk1

Figure 16-4

Note that you can move, resize, minimize, and maximize the window.

How It Works
You include the necessary GTK+ and related library headers (including GLib) with a single #include
<gtk/gtk.h> statement. Next, you declare the window to be a pointer to a GtkWidget.

Next, to initialize the GTK+ libraries, you must make a call to gtk_init, passing in the command-line
arguments argc and argv. This gives GTK+ a chance to parse any command-line parameters it needs to
know about. Note that you must always initialize GTK+ in this way before calling any GTK+ functions.

The core of the example is the call you make to gtk_window_new. The prototype is

GtkWidget* gtk_window_new (GtkWindowType type);

type can take one of two values depending on the purpose of the window:

❑ GTK_WINDOW_TOPLEVEL: A standard framed window

❑ GTK_WINDOW_POPUP: A frameless window suitable for dialog boxes

654

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 654

You’ll almost always use GTK_WINDOW_TOPLEVEL, because there are far more convenient ways of creat-
ing dialogs, as you’ll see later.

The call to gtk_window_new sets up the window in memory, so you have a chance to populate it with
widgets, resize it, change the window title, and so forth, before actually displaying it onscreen. To make
the window actually appear onscreen, call gtk_widget_show:

gtk_widget_show(window);

Conveniently, this takes a GtkWidget pointer, so you simply pass in the reference to your window.

The final call you make is to gtk_main. This key function starts up the interactivity process by passing
control to GTK+ and doesn’t return until a call to gtk_main_quit is made. As you can see, in gtk1.c this
never happens, so the application doesn’t end even after the window is closed. Try this out by clicking
the close icon and seeing that the command prompt doesn’t return. You’ll rectify this after you’ve learned
about signals and callbacks in the next section. For now, quit the application by typing Ctrl+C in the shell
window you used to launch the gtk1 program.

Events, Signals, and Callbacks
All GUI libraries have one thing in common: Some mechanism must exist to execute code in response
to a user action. A command-line program has the luxury of halting execution to wait for input and can
then use something like a switch statement to branch execution based on the input. This approach is
impractical with a GUI application because the application must continually respond to user input; for
example, it needs to continually update areas of the window.

Modern windowing systems have systems of events and event listeners that address this problem. The
idea is that each user input, usually from the mouse or keyboard, triggers an event. A keyboard press
would trigger a “keyboard event,” for example. Code is then written to listen for these events and to
execute when such an event is triggered.

As you saw earlier, the X Window System emits these events, but they aren’t much help to you as a GTK+
programmer, because they’re very low level. When a mouse button is clicked, X emits an event that con-
tains the coordinates of the pointer — what you really need to know is when a user activates a widget.

Accordingly, GTK+ has its own system of events and event listeners, known as signals and callbacks.
They’re very easy to use because you can use a very useful feature of C, a pointer to a function, to set
the signal handler.

First some definitions: A GTK+ signal is emitted by a GtkObject when something such as user input
occurs. A function that is connected to a signal, and therefore called whenever that signal is emitted, is
known as a callback function.

Note that a GTK+ signal is quite separate from a UNIX signal, discussed in Chapter 11.

655

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 655

As a GTK+ programmer, all you need to worry about is writing and connecting callback functions,
because the signal-emitting code is internal to the particular widget.

The callback function prototype is typically like this:

void a_callback_function (GtkWidget *widget, gpointer user_data);

You are passed two parameters, the first a pointer to the widget that emitted the signal and the second
an arbitrary pointer that you pick yourself when you connect the callback. You can use this pointer for
any purpose.

Connecting the callback is just as simple. You simply call g_signal_connect and pass in the widget, a
signal name as a string, a callback function pointer, and your arbitrary pointer:

gulong g_signal_connect(gpointer *object, const gchar *name, GCallback func,
gpointer user_data);

One point worthy of noting — there are no restrictions in connecting callbacks. You can have multiple
signals to a single callback function, and multiple callback functions connected to a single signal. You
can see in detail the signals that each widget emits by reading the GTK+ API documentation.

You try out g_signal_connect in your next example.

Try It Out A Callback Function
In gtk2.c, add a button to your window and attach the button’s “clicked” signal to your callback
function to print a short message:

#include <gtk/gtk.h>
#include <stdio.h>

static int count = 0;

void button_clicked(GtkWidget *button, gpointer data)
{
printf(“%s pressed %d time(s) \n”, (char *) data, ++count);

}

int main (int argc, char *argv[])
{
GtkWidget *window;
GtkWidget *button;

gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

Prior to GTK+ 2, the function to connect callback functions was gtk_signal_con-
nect. This function has been replaced by g_signal_connect and should not be
used in new code.

656

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 656

button = gtk_button_new_with_label(“Hello World!”);
gtk_container_add(GTK_CONTAINER(window), button);

g_signal_connect(GTK_OBJECT (button), “clicked”,
GTK_SIGNAL_FUNC (button_clicked),
“Button 1”);

gtk_widget_show(button);
gtk_widget_show(window);

gtk_main ();

return 0;
}

Enter the program source code and save the file under the name gtk2.c. Compile and link the program
similarly to the previous gtk1.c example. When running this program, you’ll get a window with a button.
Each time you click the button, it prints out a short message (see Figure 16-5).

Figure 16-5

How It Works
You’ve introduced two new features in gtk2.c: a GtkButton and a callback function. A GtkButton is a
simple button widget that can contain text, in this case “Hello World,” and emits a signal called “clicked”
whenever the button is pressed with the mouse.

The callback function button_clicked is connected to the “clicked” signal of the button widget
using the g_signal_connect function:

g_signal_connect(GTK_OBJECT (app), “clicked”,
GTK_SIGNAL_FUNC (button_clicked),
“Button 1”);

657

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 657

Note that the name of the button — “Button 1” — is passed as user data to the callback function.

The rest of the additional code deals with the button widget, which is created in the same way as the win-
dow — a call to a gtk_button_new_with_label function — and gtk_widget_show makes it visible.

To place the button on the window, you call gtk_container_add. This simple function places a
GtkWidget inside a GtkContainer and takes the container and widget as arguments:

void gtk_container_add (GtkContainer *container, GtkWidget *widget);

As you saw before, GtkWindow is a child of GtkContainer, so you can cast your window object to a
GtkContainer type using the GTK_CONTAINER macro:

gtk_container_add(GTK_CONTAINER(window), button);

gtk_container_add is great for placing a single widget inside a container, but more often you’ll need to
arrange several widgets in various positions in a window to create a decent interface. GTK+ has special
widgets just for this purpose, called box or container widgets.

Packing Box Widgets
The layout of a GUI is of key importance to its usability and one of the hardest things to get right. The real
difficulty with arranging widgets is that you can’t rely on all users to have the same screen resolution, or
to have the same window size, theme, font, or color scheme. What might be a pleasing interface on one
system might be impossible to read on another.

To create a GUI that appears uniform on all systems, you need to avoid placing widgets using absolute
coordinates and instead use a more flexible system of layout. GTK+ has container widgets for this purpose.
Container widgets allow you to control the layout of widgets within your application windows. Box widgets
provide a very useful type of container widget. GTK+ offers many other types of container widgets, covered
in the GTK+ online documentation discussed previously.

Box widgets are invisible widgets whose job it is to contain other widgets and control their layout. To
control the size of the individual widgets contained inside the box widget, you specify rules instead of
coordinates. Because box widgets contain any GtkWidget, and a GtkBox is itself a GtkWidget, you can
nest box widgets inside one another to create complex layouts.

There are two main subclasses of GtkBox:

❑ GtkHBox is a single row horizontal packing box widget.

❑ GtkVBox is a single column vertical packing box widget.

When the packing boxes are created, you should specify two parameters, homogeneous and spacing:

GtkWidget* gtk_hbox_new (gboolean homogeneous, gint spacing);
GtkWidget* gtk_vbox_new (gboolean homogeneous, gint spacing);

658

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 658

These parameters control layout for all of the widgets in that particular packing box. homogeneous is a
boolean that, when set to TRUE, forces contained widgets to occupy equal space, regardless of individual
size. spacing sets the gap between widgets in pixels.

Once you’ve created the packing box, add widgets using gtk_box_pack_start and
gtk_box_pack_end functions:

void gtk_box_pack_start (GtkBox *box, GtkWidget *child,
gboolean expand, gboolean fill,
guint padding);

void gtk_box_pack_end (GtkBox *box, GtkWidget *child,
gboolean expand, gboolean fill,
guint padding);

gtk_box_pack_start adds widgets to the left side of a GtkHBox and to the bottom of a GtkVBox; con-
versely gtk_box_pack_end from the right and top. Their parameters control the spacing and format of
each widget within the packing box.

The following table describes the parameters you can pass to gtk_box_pack_start or
gtk_box_pack_end.

Let’s take a look at these packing box widgets now and create a more complex user interface, showing
off nested packing boxes.

Try It Out Widget Container Layout
In this example, you lay out some simple GtkLabel widgets using GtkHBox and GtkVBox. Label widgets
are simple widgets that are useful for displaying short amounts of text. Call this program container.c.

#include <gtk/gtk.h>

void closeApp (GtkWidget *window, gpointer data)
{
gtk_main_quit();

}

Parameter Description

GtkBox *box The packing box to be filled.

GtkWidget *child The widget to be placed in the packing box.

gboolean expand If TRUE, this widget fills all available space shared between the other
widgets with this flag also set to TRUE.

gboolean fill If TRUE, this widget will fill the space allocated to it, rather than use it
as padding around the edges. Only valid when expand is TRUE.

guint padding Padding size in pixels around widget.

659

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 659

/* Callback allows the application to cancel

a close/destroy event. (Return TRUE to cancel.) */

gboolean delete_event(GtkWidget *widget, GdkEvent *event, gpointer data)

{

printf(“In delete_event\n”);

return FALSE;

}

int main (int argc, char *argv[])
{
GtkWidget *window;
GtkWidget *label1, *label2, *label3;
GtkWidget *hbox;
GtkWidget *vbox;

gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

gtk_window_set_title(GTK_WINDOW(window), “The Window Title”);
gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER);
gtk_window_set_default_size(GTK_WINDOW(window), 300, 200);

g_signal_connect (GTK_OBJECT (window), “destroy”,
GTK_SIGNAL_FUNC (closeApp), NULL);

g_signal_connect (GTK_OBJECT (window), “delete_event”,

GTK_SIGNAL_FUNC (delete_event), NULL);

label1 = gtk_label_new(“Label 1”);
label2 = gtk_label_new(“Label 2”);
label3 = gtk_label_new(“Label 3”);

hbox = gtk_hbox_new (TRUE, 5);
vbox = gtk_vbox_new (FALSE, 10);

gtk_box_pack_start(GTK_BOX(vbox), label1, TRUE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(vbox), label2, TRUE, FALSE, 5);

gtk_box_pack_start(GTK_BOX(hbox), vbox, FALSE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(hbox), label3, FALSE, FALSE, 5);

gtk_container_add(GTK_CONTAINER(window), hbox);
gtk_widget_show_all(window);
gtk_main ();

return 0;
}

660

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 660

When you run this program, you see the layout of label widgets in your window (see Figure 16-6).

Figure 16-6

How It Works
You create two packing box widgets, hbox and vbox. You fill vbox with label1 and label2 using
gtk_box_pack_start, so label2 appears at the bottom because it is added after label1. Next vbox
itself is added to hbox along with label3.

hbox is finally added to the window and is shown onscreen using gtk_widget_show_all.

The packing box layout is understood best with a diagram, as shown in Figure 16-7.

Figure 16-7

Now that you’ve looked at widgets, signals, callbacks, and container widgets, you’ve seen the essentials
of GTK+. Becoming a knowledgeable GTK+ programmer involves understanding how best to use the
available widgets.

GTK+ Widgets
In this section, we look at the API of the common GTK+ widgets you’ll use most often in your applications.

Label1

Label3

Label2

vbox
hbox

window

661

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 661

GtkWindow
GtkWindow is the basic element of all GTK+ applications. You’ve used it so far to hold your widgets:

GtkWidget
+----GtkContainer

+----GtkBin
+----GtkWindow

There are dozens of GtkWindow API calls, but here are the functions worthy of special attention:

GtkWidget* gtk_window_new (GtkWindowType type);
void gtk_window_set_title (GtkWindow *window, const gchar *title);
void gtk_window_set_position (GtkWindow *window, GtkWindowPosition position);
void gtk_window_set_default_size (GtkWindow *window, gint width, gint height);
void gtk_window_resize (GtkWindow *window, gint width, gint height);
void gtk_window_set_resizable (GtkWindow *window, gboolean resizable);
void gtk_window_present (GtkWindow *window);
void gtk_window_maximize (GtkWindow *window);
void gtk_window_unmaximize (GtkWindow *window);

As you’ve just seen, gtk_window_new creates a new, empty window in memory. The window title is
unset, and the size and screen position of the window are undefined. You will normally populate the
window with widgets and set up a menu and toolbar before making the window visible onscreen with
a call to gtk_widget_show.

The gtk_window_set_title function changes the text of the title bar by informing the window
manager of the request.

Note that because it is the window manager, not GTK+, that is responsible for painting the window
surround, the font, color, and size of the text are dependent on your choice of window manager.

gtk_window_set_position controls the position of the initial placement onscreen. The position
parameter can take five values, described in the following table.

Position Parameter Description

GTK_WIN_POS_NONE The window is placed at the discretion of the
window manager.

GTK_WIN_POS_CENTER The window is positioned centrally onscreen.

GTK_WIN_POS_MOUSE The window is positioned at the mouse pointer.

GTK_WIN_POS_CENTER_ALWAYS Keeps the window centered regardless of size.

GTK_WIN_POS_CENTER_ON_PARENT Sets the window centrally on its parent (useful for
dialog boxes).

662

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 662

gtk_window_set_default_size sets the size of the window onscreen in GTK+ drawing units. Explicitly
setting the size of the window ensures that the contents of the window aren’t obscured or hidden. To force
a resize of the window once it’s onscreen, you can use gtk_window_resize. By default, the user is able to
resize the window by dragging the frame in the usual way. To prevent this, you can call
gtk_window_set_resizeable set to FALSE.

To ensure that your window is onscreen and visible to the user — that is, not minimized or hidden —
gtk_window_present fits the bill. gtk_window_present is useful for dialog boxes to make sure they’re
not minimized when you need some user input. Alternatively, to force maximizing and minimizing you
have gtk_window_maximize and gtk_window_minimize.

GtkEntry
The GtkEntry widget is a single-line text entry widget that is commonly used to enter simple textual
information, for example an e-mail address, a username, or a hostname. There are API calls that enable
you to set as well as read the entered text, set the maximum number of allowed characters, and set other
things to control the positioning and selection of the text:

GtkWidget
+----GtkEntry

GtkEntry can be set to display asterisks (or any other user-definable character) in place of the literal
typed characters, which can be very useful for entering passwords when you don’t want anybody to
lean over your shoulder and read the text.

We’ll describe the most useful GtkEntry functions:

GtkWidget* gtk_entry_new (void);
GtkWidget* gtk_entry_new_with_max_length (gint max);
void gtk_entry_set_max_length (GtkEntry *entry, gint max);
G_CONST_RETURN gchar* gtk_entry_get_text (GtkEntry *entry);
void gtk_entry_set_text (GtkEntry *entry, const gchar *text);
void gtk_entry_append_text (GtkEntry *entry, const gchar *text);
void gtk_entry_prepend_text (GtkEntry *entry, const gchar *text);
void gtk_entry_set_visibility (GtkEntry *entry, gboolean visible);
void gtk_entry_set_invisible_char (GtkEntry *entry, gchar invch);
void gtk_entry_set_editable (GtkEntry *entry, gboolean editable);

You can create a GtkEntry with either gtk_entry_new, or with a fixed maximum length of input text
with gtk_entry_new_with_max_length. Restricting the input to a certain length saves you the effort
of validating the input length and possibly having to inform the user that the text is too long.

To get the contents of the GtkEntry, you call gtk_entry_get_text, which returns a const char
pointer internal to the GtkEntry (G_CONST_RETURN is a GLib-defined macro). If you want to modify the
text, or pass it to a function that might modify it, you must copy the string using, for example, strcpy.

You can manually set and modify the contents of the GtkEntry using the _set_text, _append_text,
and _modify_text functions. Note that these take const pointers.

663

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 663

To use GtkEntry as a password entry box that displays asterisks in place of characters, use
gtk_entry_set_visibilility passing FALSE as the visible parameter. The invisible character
can be changed using gtk_entry_set_invisible_char to suit your requirements.

Try It Out Username and Password Entry
Now that you’ve seen the GtkEntry functions, let’s look at them in action with a short program.
entry.c will create a username and password entry window and compare the entered password with
a secret password.

1. First define the secret password, cunningly chosen to be secret:

#include <gtk/gtk.h>
#include <stdio.h>
#include <string.h>

const char * password = “secret”;

2. You have two callback functions that are called when the window is destroyed and the OK but-
ton is clicked:

void closeApp (GtkWidget *window, gpointer data)
{
gtk_main_quit();

}

void button_clicked (GtkWidget *button, gpointer data)
{
const char *password_text = gtk_entry_get_text(GTK_ENTRY((GtkWidget *) data));

if (strcmp(password_text, password) == 0)
printf(“Access granted!\n”);

else
printf(“Access denied!\n”);

}

3. In main, the interface is created and laid out, and the callbacks connected. Use hbox and vbox
container widgets to lay out the label and entry widgets.

int main (int argc, char *argv[])
{
GtkWidget *window;
GtkWidget *username_label, *password_label;
GtkWidget *username_entry, *password_entry;
GtkWidget *ok_button;
GtkWidget *hbox1, *hbox2;
GtkWidget *vbox;

gtk_init(&argc, &argv);

window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_title(GTK_WINDOW(window), “GtkEntryBox”);

664

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 664

gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER);
gtk_window_set_default_size(GTK_WINDOW(window), 200, 200);

g_signal_connect (GTK_OBJECT (window), “destroy”,
GTK_SIGNAL_FUNC (closeApp), NULL);

username_label = gtk_label_new(“Login:”);
password_label = gtk_label_new(“Password:”);

username_entry = gtk_entry_new();
password_entry = gtk_entry_new();
gtk_entry_set_visibility(GTK_ENTRY (password_entry), FALSE);

ok_button = gtk_button_new_with_label(“Ok”);

g_signal_connect (GTK_OBJECT (ok_button), “clicked”,
GTK_SIGNAL_FUNC(button_clicked), password_entry);

hbox1 = gtk_hbox_new (TRUE, 5);
hbox2 = gtk_hbox_new (TRUE, 5);

vbox = gtk_vbox_new (FALSE, 10);

gtk_box_pack_start(GTK_BOX(hbox1), username_label, TRUE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(hbox1), username_entry, TRUE, FALSE, 5);

gtk_box_pack_start(GTK_BOX(hbox2), password_label, TRUE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(hbox2), password_entry, TRUE, FALSE, 5);

gtk_box_pack_start(GTK_BOX(vbox), hbox1, FALSE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(vbox), hbox2, FALSE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(vbox), ok_button, FALSE, FALSE, 5);

gtk_container_add(GTK_CONTAINER(window), vbox);

gtk_widget_show_all(window);
gtk_main ();

return 0;
}

When you run this program, you get a window that appears as in Figure 16-8.

How It Works
The program creates two GtkEntry widgets, username_entry and password_entry, and sets
password_entry with a visibility of FALSE to hide the entered password. It then creates a GtkButton
with which you connect the “clicked” signal to the button_clicked callback function.

Once in the callback function, the program retrieves the entered password and compares it to the secret
password, printing the appropriate message.

Notice that you have repeated gtk_box_pack_start statements to add the widgets to their containers.
To reduce this repeated code, you’ll define a helper function in later examples.

665

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 665

Figure 16-8

GtkSpinButton
Sometimes you’ll want the user to enter a numeric value such as a maximum speed or length of
device, and in these situations, a GtkSpinButton is ideal. GtkSpinButton restricts a user to entering
numeric characters only, and you can set the range for allowed values between a lower and upper
bound. The widget also provides up and down arrows so the user can “spin” the value using only
the mouse for convenience:

GtkWidget
+----GtkEntry

+----GtkSpinButton

Again, the API is straightforward, and we’ll list the most commonly used calls:

GtkWidget* gtk_spin_button_new (GtkAdjustment *adjustment, gdouble climb_rate,
guint digits);

GtkWidget* gtk_spin_button_new_with_range (gdouble min, gdouble max, gdouble step);
void gtk_spin_button_set_digits (GtkSpinButton *spin_button, guint digits);
void gtk_spin_button_set_increments (GtkSpinButton *spin_button, gdouble step,

gdouble page);
void gtk_spin_button_set_range (GtkSpinButton *spin_button, gdouble min,

gdouble max);
gdouble gtk_spin_button_get_value (GtkSpinButton *spin_button);
gint gtk_spin_button_get_value_as_int (GtkSpinButton *spin_button);
void gtk_spin_button_set_value (GtkSpinButton *spin_button, gdouble value);

666

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 666

To create a GtkSpinButton using gtk_spin_button_new, you first need to create a GtkAdjustment
object. A GtkAdjustment widget is an abstract object that contains logic to deal with controlling
bounded values. GtdAdjustment is also used in other widgets, such as GtkHScale and GtkVScale.

To create a GtkAdjustment, pass in an initial value, lower and upper bounds, and increment sizes:

GtkObject* gtk_adjustment_new (gdouble value, gdouble lower, gdouble upper,
gdouble step_increment, gdouble page_increment,
gdouble page_size);

The values of step_increment and page_increment set the size of minor and major size increments. In
the case of GtkSpinButton, the step_increment sets how much the value changes when the arrows are
clicked. page_increment and page_size are not important when used with GtkSpinButton widgets.

climb_rate, the second parameter of gtk_spin_button_new, controls how quickly the values “spin”
when you press and hold the arrow buttons. Finally, digits sets the precision of the widget, so a digit
of 3 would set the spin button to display 0.00.

gtk_spin_button_new_with_range is a convenience method that creates a GtkAdjustment for you.
Simply pass in the lower bound, upper bound, and step rate.

Reading the current value is easy with gtk_spin_button_get_value, and if you want an integer
value, you can use gtk_spin_button_get_value_as_int.

Try It Out GtkSpinButton
You’ll now see a GtkSpinButton in action with a short example. Name this file spin.c.

#include <gtk/gtk.h>

void closeApp (GtkWidget *window, gpointer data)
{
gtk_main_quit();

}

int main (int argc, char *argv[])
{
GtkWidget *window;
GtkWidget *spinbutton;
GtkObject *adjustment;

gtk_init (&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_default_size (GTK_WINDOW(window), 300, 200);
g_signal_connect (GTK_OBJECT (window), “destroy”,

GTK_SIGNAL_FUNC (closeApp), NULL);

adjustment = gtk_adjustment_new(100.0, 50.0, 150.0, 0.5, 0.05, 0.05);
spinbutton = gtk_spin_button_new(GTK_ADJUSTMENT(adjustment), 0.01, 2);

667

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 667

gtk_container_add(GTK_CONTAINER(window), spinbutton);
gtk_widget_show_all(window);
gtk_main ();

return 0;
}

When you run this program, you get a spin button bounded between 50 and 150 (see Figure 16-9).

Figure 16-9

GtkButton
You’ve already seen GtkButton in action, but there are more button widgets descended from
GtkButton that have slightly more functionality and deserve a mention:

GtkButton
+----GtkToggleButton

+----GtkCheckButton
+----GtkRadioButton

As you can see from the widget hierarchy, GtkToggleButton is descended directly from GtkButton,
GtkCheckButton from GtkToggleButton and similarly with GtkRadioButton, each child widget
specializing in purpose.

GtkToggleButton
GtkToggleButton is identical to a GtkButton except in one important regard: GtkToggleButton pos-
sesses state. That is, it can be on or off. When the user clicks a GtkToggleButton, it emits the “clicked”
signal in the usual manner and changes (or “toggles”) its state.

The API for GtkToggleButton is very straightforward:

GtkWidget* gtk_toggle_button_new (void);
GtkWidget* gtk_toggle_button_new_with_label (const gchar *label);
gboolean gtk_toggle_button_get_active (GtkToggleButton *toggle_button);
void gtk_toggle_button_set_active (GtkToggleButton *toggle_button,

gboolean is_active);

668

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 668

The interesting functions are gtk_toggle_button_get_active and gtk_toggle_button_set_active,
which you call to read and set the state of the toggle button. An activity of TRUE indicates the
GtkToggleButton is “on.”

GtkCheckButton
GtkCheckButton is a GtkToggleButton in disguise. Instead of the boring, rectangular blob of
GtkToggleButton, GtkCheckButton appears as an exciting checkbox with text at the side. There are
no functional differences.

GtkWidget* gtk_check_button_new (void);
GtkWidget* gtk_check_button_new_with_label (const gchar *label);

GtkRadioButton
This next button is rather different, because it can be grouped with other buttons of the same type.
GtkRadioButton is one of those buttons that allows you to select only one option at a time from a
group of options. The name comes from old-style radios that have mechanical buttons that pop back
out when you press in another button.

GtkWidget* gtk_radio_button_new (GSList *group);
GtkWidget* gtk_radio_button_new_from_widget (GtkRadioButton *group);
GtkWidget* gtk_radio_button_new_with_label (GSList *group, const gchar *label);
void gtk_radio_button_set_group (GtkRadioButton *radio_button, GSList *group);
GSList* gtk_radio_button_get_group (GtkRadioButton *radio_button);

The RadioButton group is represented in a GLib list object, called a GSList. To place radio
buttons in a group, you can create a GSList and pass it to each button using gtk_radio_button_new
and gtk_radio_button_get_group. There’s an easier way, however, in the shape of
gtk_radio_button_new_with_widget, which grabs the GSList out of an existing button for
you. You’ll see this in action in the next example, where you try out different GtkButtons.

Try It Out GtkCheckButton, GtkToggleButton, and GtkRadioButton
Enter the following under the file name buttons.c.

1. First, declare the button pointers as global variables:

#include <gtk/gtk.h>
#include <stdio.h>

GtkWidget *togglebutton;
GtkWidget *checkbutton;
GtkWidget *radiobutton1, *radiobutton2;

void closeApp (GtkWidget *window, gpointer data)
{
gtk_main_quit();

}

669

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 669

2. Here you define a helper function that packs a GtkWidget and GtkLabel into a GtkHbox and
then adds this GtkHbox into a given container widget. This helps cut down on repeated code.

void add_widget_with_label(GtkContainer * box, gchar * caption, GtkWidget * widget)
{
GtkWidget *label = gtk_label_new (caption);
GtkWidget *hbox = gtk_hbox_new (TRUE, 4);

gtk_container_add(GTK_CONTAINER (hbox), label);
gtk_container_add(GTK_CONTAINER (hbox), widget);

gtk_container_add(box, hbox);
}

3. print_active is another helper function that prints out the current state of the given
GtkToggleButton with a describing string. It is called from button_clicked, which is a
callback function attached to the clicked signal of the OK button. Every time this button is
clicked, you get a printout of the state of the buttons.

void print_active(char * button_name, GtkToggleButton *button)
{
gboolean active = gtk_toggle_button_get_active(button);

printf(“%s is %s\n”, button_name, active?”active”:”not active”);
}

void button_clicked(GtkWidget *button, gpointer data)
{
print_active(“Checkbutton”, GTK_TOGGLE_BUTTON(checkbutton));
print_active(“Togglebutton”, GTK_TOGGLE_BUTTON(togglebutton));
print_active(“Radiobutton1”, GTK_TOGGLE_BUTTON(radiobutton1));
print_active(“Radiobutton2”, GTK_TOGGLE_BUTTON(radiobutton2));
printf(“\n”);

}

4. In main, you create the button widgets, stack them up in a GtkVBox adding descriptive labels,
and connect the callback signal to the OK button:

gint main (gint argc, gchar *argv[])
{
GtkWidget *window;
GtkWidget *button;
GtkWidget *vbox;

gtk_init (&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_default_size(GTK_WINDOW(window), 200, 200);
g_signal_connect (GTK_OBJECT (window), “destroy”,

GTK_SIGNAL_FUNC (closeApp), NULL);

button = gtk_button_new_with_label(“Ok”);
togglebutton = gtk_toggle_button_new_with_label(“Toggle”);

670

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 670

checkbutton = gtk_check_button_new();
radiobutton1 = gtk_radio_button_new(NULL);
radiobutton2 = gtk_radio_button_new_from_widget(GTK_RADIO_BUTTON(radiobutton1));

vbox = gtk_vbox_new (TRUE, 4);
add_widget_with_label (GTK_CONTAINER(vbox), “ToggleButton:”, togglebutton);
add_widget_with_label (GTK_CONTAINER(vbox), “CheckButton:”, checkbutton);
add_widget_with_label (GTK_CONTAINER(vbox), “Radio 1:”, radiobutton1);
add_widget_with_label (GTK_CONTAINER(vbox), “Radio 2:”, radiobutton2);
add_widget_with_label (GTK_CONTAINER(vbox), “Button:”, button);

g_signal_connect(GTK_OBJECT(button), “clicked”,
GTK_SIGNAL_FUNC(button_clicked), NULL);

gtk_container_add(GTK_CONTAINER(window), vbox);
gtk_widget_show_all(window);
gtk_main ();

return 0;
}

Figure 16-10 shows buttons.c in action, with the four common types of GtkButton.

Figure 16-10

Click OK to see the state of the various buttons.

This program is a simple example of using the four types of GtkButton and shows how you can
read the state of the GtkToggleButton, GtkCheckButton, and GtkRadioButton using the single
gtk_toggle_button_get_active. This is one of the great benefits of an object-oriented approach —
because you don’t need separate get_active functions for each type of button, you can cut down the
amount of code you need.

671

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 671

GtkTreeView
Up until now, we’ve looked at some of the simple GTK+ widgets, but not all widgets are single-line
input or display devices. There are, of course, no limits to the complexity of a GtkWidget, and
GtkTreeView is a great example of a widget that encapsulates a vast amount of functionality:

GtkWidget
+----GtkContainer

+----GtkTreeView

GtkTreeView is part of a family of widgets new to GTK+ 2 that creates list and tree views of data of the
sort you find in a spreadsheet or file manager. Using GtkTreeView, you can create complex views of
data, mix text, and bitmap graphics, and even input data using GtkEntry widgets, and so forth.

The quickest way of taking GtkTreeView for a test drive is to fire up the gtk-demo application that
ships with GTK+. The demo application shows off the capability of each GTK+ widget including
GtkTreeView, which is shown in Figure 16-11.

Figure 16-11

The GtkTreeView family is made up of four components:

❑ GtkTreeView: The Tree and List View

❑ GtkTreeViewColumn: Represents a list or tree column

❑ GtkCellRenderer: Controls drawing cells

❑ GtkTreeModel: Represents Tree and List data

The first three make up what is known as the View, and the last is the Model. The concept of separating
the View from the Model (often called the Model/View/Controller design pattern, or MVC for short) is
not particular to GTK+, but a design increasingly favored in all programming circles.

672

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 672

The key advantage of the MVC design pattern is that data can be rendered simultaneously by different
views without unnecessary duplication. For example, text editors can have split panes and edit different
parts of the document without two copies of the document in memory.

The MVC pattern is also very popular in Web programming because it makes it easy to create a website
that renders differently in mobile or WAP browsers than it does in desktop browsers, simply by having
separate View components optimized for each browser type. You can also separate the logic of acquiring
the data, such as querying a database, from the logic for the user interface.

We’ll start by looking at the Model component, of which GTK+ has two. GtkTreeStore holds multilevel
data such as a directory hierarchy, and GtkListStore is for flat data.

To create a GtkTreeStore, pass in the number of columns followed by the type of each column:

Gtkwidget *store = gtk_tree_store_new (3, G_TYPE_STRING, G_TYPE_INT,
G_TYPE_BOOLEAN);

Reading, adding, editing, and removing data from the store are done with the aid of GtkTreeIter
structures. These iterator structures point to nodes in the tree (or rows in a list) and aid in locating and
manipulating parts of the potentially very large data structure. There are several API calls to get the
iterator object at various points in a tree, but we’ll look at the simplest, gtk_tree_store_append.

Before you can add any data to the tree store, you need an iterator to point to a new row.
gtk_tree_store_append fills in a GtkTreeIter object that represents a new row in the tree,
as either a top-level row (if you pass NULL to the third argument) or as a child row (if you pass the
iterator of the parent row).

GtkTreeIter iter;
gtk_tree_store_append (store, &iter, NULL);

Once you have an iterator, you can populate the row using gtk_tree_store_set:

gtk_tree_store_set (store, &iter,
0, “Def Leppard”,
1, 1987,
2, TRUE,
-1);

You pass the column number and data in pairs, terminated by –1. You’ll use an enum later to make the
column numbers descriptive.

To add a branch to this row (a child row), you just need an iterator for the child row that you get by
calling gtk_tree_store_append again, passing in the top-level row this time:

GtkTreeIter child;
gtk_tree_store_append (store, &child, &iter);

You can read more about GtkTreeStore and GtkListStore functions in the API documentation, so
let’s move on and look at the GtkTreeView View component.

673

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 673

Creating a GtkTreeView is simplicity itself; just pass in the GtkTreeStore or GtkListStore model to
the constructor:

GtkWidget *view = gtk_tree_view_new_with_model (GTK_TREE_MODEL (store));

It’s now a case of configuring the widget to display the data exactly as you want it. For each column you
must define a GtkCellRenderer and set the data source. You can choose to display only certain data
columns, for example, or swap the display order of columns.

GtkCellRenderer is the object that deals with drawing each cell onscreen, and there are three subclasses
that deal with text cells, pixmap graphic cells, and togglebutton cells:

❑ GtkCellRendererText

❑ GtkCellRendererPixBuf

❑ GtkCellRendererToggle

You’ll use the text renderer in your View, GtkCellRendererText:

GtkCellRenderer *renderer = gtk_cell_renderer_text_new ();
gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(view),

0,
“This is the column title”,
renderer,
“text”, 0,
NULL);

Here you create the renderer and pass it to the column insert function. This function enables you to set the
GtkCellRendererText properties in one go, passed as NULL-terminated key/value pairs. The parameters
are the tree view, the column number, column title, renderer, and renderer properties. You’re setting the
“text” attribute here, passing in the column number of the data source. GtkCellRendererText defines
several other attributes, including underlining, font, size, and so forth.

You’ll see how this works in practice in the next example, where you put a GtkTreeView through its paces.

Try It Out GtkTreeView
Enter the following code and name the file tree.c.

1. Use an enum to label the columns so you can refer to them by name. N_COLUMNS conveniently is
the total number of columns.

#include <gtk/gtk.h>

enum {
COLUMN_TITLE,
COLUMN_ARTIST,
COLUMN_CATALOGUE,
N_COLUMNS

};

674

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 674

void closeApp (GtkWidget *window, gpointer data)
{
gtk_main_quit();

}

int main (int argc, char *argv[])
{
GtkWidget *window;
GtkTreeStore *store;
GtkWidget *view;
GtkTreeIter parent_iter, child_iter;
GtkCellRenderer *renderer;

gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_default_size (GTK_WINDOW(window), 300, 200);
g_signal_connect (GTK_OBJECT (window), “destroy”,

GTK_SIGNAL_FUNC (closeApp), NULL);

2. Here you create the tree store, passing in the number and type of each column:

store = gtk_tree_store_new (N_COLUMNS, G_TYPE_STRING, G_TYPE_STRING,
G_TYPE_STRING);

3. The next part adds a parent and child row to the tree:

gtk_tree_store_append (store, &parent_iter, NULL);

gtk_tree_store_set (store, &parent_iter, COLUMN_TITLE, “Dark Side of the Moon”,
COLUMN_ARTIST, “Pink Floyd”,
COLUMN_CATALOGUE, “B000024D4P”,
-1);

gtk_tree_store_append (store, &child_iter, &parent_iter);

gtk_tree_store_set (store, &child_iter, COLUMN_TITLE, “Speak to Me”,
-1);

view = gtk_tree_view_new_with_model (GTK_TREE_MODEL (store));

4. Finally, add columns to the view, setting their data source and titles:

renderer = gtk_cell_renderer_text_new ();
gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(view),

COLUMN_TITLE,
“Title”, renderer,
“text”, COLUMN_TITLE,
NULL);

gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(view),
COLUMN_ARTIST,
“Artist”, renderer,
“text”, COLUMN_ARTIST,

675

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 675

NULL);
gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(view),

COLUMN_CATALOGUE,
“Catalogue”, renderer,
“text”, COLUMN_CATALOGUE,
NULL);

gtk_container_add(GTK_CONTAINER(window), view);

gtk_widget_show_all(window);
gtk_main ();

return 0;
}

You’ll use a GtkTreeView as the core of your CD application, where you’ll modify the contents of the
GtkTreeView as you query the CD database.

We’ve finished our tour of GTK+ widgets, and now we’ll turn our attention to the other half of the
story: GNOME. You’ll see how to add menus to your application using the GNOME libraries and how
the GNOME widgets make programming for the GNOME desktop even easier.

GNOME Widgets
GTK+ is designed to be desktop neutral; that is, GTK+ doesn’t make any assumptions that it’s running
in GNOME, or even that it’s running on Linux. The reason behind this is that GTK+ can be ported to run
on Windows or any other windowing system with relative ease. The upshot of this is that GTK+ lacks
the means to tie the program into the desktop, such as a means of saving program configuration, dis-
playing help files, or programming applets (applets are small utilities that run on the edge panels).

The GNOME libraries include GNOME widgets that extend GTK+ and replace parts of GTK+ with easier-
to-use widgets. In this section we look at how to program using GNOME widgets.

Before you use the GNOME libraries, you must initialize them at the start of your programs in the same
way you did GTK+. You call gnome_program_init just as you do gtk_init for purely GTK+ programs.

This function takes an app_id and app_version that you use to describe your program to GNOME,
a module_info that tells GNOME which library module to initialize, command-line parameters, and
application properties set as a NULL-terminated list of name/value pairs.

GnomeProgram* gnome_program_init (const char *app_id, const char *app_version,
const GnomeModuleInfo *module_info,
int argc, char **argv,
const char *first_property_name,
...);

676

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 676

The optional property list allows you to set things such as the directory to look for bitmap graphics.

Try It Out A GNOME Window
Let’s look at a GNOME program now, by looking at the GNOME replacement to GtkWindow, a
GnomeApp widget.

Type in this program and call it gnome1.c:

#include <gnome.h>

int main (int argc, char *argv[])
{
GtkWidget *app;

gnome_program_init (“gnome1”, “1.0”, MODULE, argc, argv, NULL);
app = gnome_app_new (“gnome1”, “The Window Title”);
gtk_widget_show(app);
gtk_main ();

return 0;
}

To compile, you need to include the GNOME headers, so pass libgnomeui and libgnome to pkg-config:

$ gcc gnome1.c –o gnome1 `pkg-config --cflags --libs libgnome-2.0 libgnomeui-2.0`

A GnomeApp widget extends GtkWindow and makes it easy to add menus, toolbars, and a status bar along
the bottom. Because it inherits from GtkWindow, you can use any GtkWindow function with a GnomeApp
widget. Next you’ll look at creating menus, and you’ll add a status bar in your final example.

You can use GTK+ to create menus, but GNOME provides helpful structures and macros that make the
job much easier. The online GTK+ documentation describes how to create menus in GTK+.

GNOME Menus
Creating a drop-down menu bar in GNOME is pleasantly simple. Each menu in the menu bar is repre-
sented by an array of GNOMEUIInfo structs with each element in the array corresponding to a single
menu item. For example, if you have File, Edit, and View menus, you will have three arrays describing
the contents of each menu.

Once you’ve defined each individual menu, you create the menu bar itself by referencing these arrays in
another array of GNOMEUIInfo structs.

The GNOMEUIInfo struct is a little complicated and needs to be explained:

typedef struct {

677

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 677

GnomeUIInfoType type;
gchar const *label;
gchar const *hint;
gpointer moreinfo;
gpointer user_data;
gpointer unused_data;
GnomeUIPixmapType pixmap_type;
gconstpointer pixmap_info;
guint accelerator_key;
GdkModifierType ac_mods;
GtkWidget *widget;

} GnomeUIInfo;

The first item in the struct, type, defines the type of the menu element that follows. It can be one of
10 GnomeUIInfoTypes defined by GNOME, described in the following table.

The second and third members of the struct define the text of the menu item and the pop-up hint. (The hint
is shown in the status bar at the bottom of the window.)

The purpose of moreinfo depends on type. For ITEM and TOGGLEITEM, it points to the callback function
to be called when the menu item is activated. For RADIOITEMS it points to an array of GnomeUIInfo
structs that are grouped radio buttons.

GnomeUIInfoType Description

GNOME_APP_UI_ENDOFINFO Denotes that this is last menu item in the array.

GNOME_APP_UI_ITEM A normal menu item or a radio button if preceded by
a GNOME_APP_UI_RADIOITEMS entry.

GNOME_APP_UI_TOGGLEITEM A toggle button or check button menu item.

GNOME_APP_UI_RADIOITEMS A radio button group.

GNOME_APP_UI_SUBTREE Denotes this element is a submenu. Set moreinfo to
point to the submenu array.

GNOME_APP_UI_SEPARATOR Inserts a separator line in the menu.

GNOME_APP_UI_HELP Creates a help topic list for use in a Help menu.

GNOME_APP_UI_BUILDER_DATA Specifies builder data for the following entries.

GNOME_APP_UI_ITEM_CONFIGURABLE A configurable menu item.

GNOME_APP_UI_SUBTREE_STOCK Same as GNOME_APP_UI_SUBTREE except that the label
text should be looked up in the gnome-libs catalog.

GNOME_APP_UI_INCLUDE Same as GNOME_APP_UI_SUBTREE except that the
items are included in the current menu and not as
a submenu.

678

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 678

user_data is an arbitrary pointer passed to the callback function. pixmap_type and pixmap_info
allow you to add a bitmap icon to the menu item, and accelerator_key and ac_mods help you define
a keyboard shortcut.

Finally, widget is used to internally hold the menu item widget pointer by the menu creation function.

Try It Out GNOME Menus
You can try out menus with this short program. Call it menu1.c.

#include <gnome.h>

void closeApp (GtkWidget *window, gpointer data)
{
gtk_main_quit();

}

1. Define a callback function for the menu items called item_clicked:

void item_clicked(GtkWidget *widget, gpointer user_data)
{
printf(“Item Clicked!\n”);

}

2. Next are the menu definitions. You have a submenu, top-level menu, and a menu bar array:

static GnomeUIInfo submenu[] = {
{GNOME_APP_UI_ITEM, “SubMenu”, “SubMenu Hint”,
GTK_SIGNAL_FUNC(item_clicked), NULL, NULL, 0, NULL, 0, 0, NULL},
{GNOME_APP_UI_ENDOFINFO, NULL, NULL, NULL, NULL, NULL, 0, NULL, 0, 0, NULL}

};

static GnomeUIInfo menu[] = {
{GNOME_APP_UI_ITEM, “Menu Item 1”, “Menu Hint”,
NULL, NULL, NULL, 0, NULL, 0, 0, NULL},
{GNOME_APP_UI_SUBTREE, “Menu Item 2”, “Menu Hint”, submenu,
NULL, NULL, 0, NULL, 0, 0, NULL},
{GNOME_APP_UI_ENDOFINFO, NULL, NULL, NULL, NULL, NULL, 0, NULL, 0, 0, NULL}

};

static GnomeUIInfo menubar[] = {
{GNOME_APP_UI_SUBTREE, “Toplevel Item”, NULL, menu, NULL,
NULL, 0, NULL, 0, 0, NULL},
{GNOME_APP_UI_ENDOFINFO, NULL, NULL, NULL, NULL, NULL, 0, NULL, 0, 0, NULL}

};

3. In main, you deal with the usual initialization and then create your GnomeApp widget and set
the menus:

int main (int argc, char *argv[])
{

679

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 679

GtkWidget *app;

gnome_program_init (“gnome1”, “0.1”, LIBGNOMEUI_MODULE,
argc, argv,
GNOME_PARAM_NONE);

app = gnome_app_new(“gnome1”, “Menus, menus, menus”);

gtk_window_set_default_size (GTK_WINDOW(app), 300, 200);
g_signal_connect (GTK_OBJECT (app), “destroy”,

GTK_SIGNAL_FUNC (closeApp), NULL);

gnome_app_create_menus (GNOME_APP(app), menubar);

gtk_widget_show(app);

gtk_main();
return 0;

}

Try running menu1 and see the menu bar, submenu, and callback GNOME menu in action, as shown in
Figure 16-12.

Figure 16-12

The GnomeUIInfo struct is hardly programmer-friendly, given that it consists of 11 entries, most of which
are normally NULL or zero valued. It’s quite easy to make a mistake typing them in, and it’s difficult to tell
one field from another in a long array of items. To improve the situation, GNOME defines macros to take
out the hard work of writing the structs by hand. These macros also add icons and keyboard accelerators
for you, all for no cost. In fact, there’s rarely any reason to use anything but these macros.

There are two sets of macros, the first of which defines individual menu items. They take two parameters,
the callback function pointer and user data.

#include <libgnomeui/libgnomeui.h>

#define GNOMEUIINFO_MENU_OPEN_ITEM (cb, data)
#define GNOMEUIINFO_MENU_SAVE_ITEM (cb, data)
#define GNOMEUIINFO_MENU_SAVE_AS_ITEM (cb, data)
#define GNOMEUIINFO_MENU_PRINT_ITEM (cb, data)
#define GNOMEUIINFO_MENU_PRINT_SETUP_ITEM(cb, data)

680

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 680

#define GNOMEUIINFO_MENU_CLOSE_ITEM (cb, data)
#define GNOMEUIINFO_MENU_EXIT_ITEM (cb, data)
#define GNOMEUIINFO_MENU_QUIT_ITEM (cb, data)
#define GNOMEUIINFO_MENU_CUT_ITEM (cb, data)
#define GNOMEUIINFO_MENU_COPY_ITEM (cb, data)
#define GNOMEUIINFO_MENU_PASTE_ITEM (cb, data)
#define GNOMEUIINFO_MENU_SELECT_ALL_ITEM(cb, data)
... etc

And the second set is for top-level definitions to which you simply pass the array:

#define GNOMEUIINFO_MENU_FILE_TREE (tree)
#define GNOMEUIINFO_MENU_EDIT_TREE (tree)
#define GNOMEUIINFO_MENU_VIEW_TREE (tree)
#define GNOMEUIINFO_MENU_SETTINGS_TREE (tree)
#define GNOMEUIINFO_MENU_FILES_TREE (tree)
#define GNOMEUIINFO_MENU_WINDOWS_TREE (tree)
#define GNOMEUIINFO_MENU_HELP_TREE (tree)
#define GNOMEUIINFO_MENU_GAME_TREE (tree)

Try It Out Menus with GNOME Macros
In this example, you make use of these menus and see how the macros work. Make the following changes
to menu1.c, and call this menu2.c. (For simplicity, the menu choices in this example do not define callback
functions. The purpose here is just to show the convenience of the GNOME menu macros.)

#include <gnome.h>

static GnomeUIInfo filemenu[] = {
GNOMEUIINFO_MENU_NEW_ITEM (“New”, “Menu Hint”, NULL, NULL),
GNOMEUIINFO_MENU_OPEN_ITEM (NULL, NULL),
GNOMEUIINFO_MENU_SAVE_AS_ITEM (NULL, NULL),
GNOMEUIINFO_SEPARATOR,
GNOMEUIINFO_MENU_EXIT_ITEM (NULL, NULL),
GNOMEUIINFO_END

};

static GnomeUIInfo editmenu[] = {
GNOMEUIINFO_MENU_FIND_ITEM (NULL, NULL),
GNOMEUIINFO_END

};

static GnomeUIInfo menubar[] = {
GNOMEUIINFO_MENU_FILE_TREE (filemenu),
GNOMEUIINFO_MENU_EDIT_TREE (editmenu),
GNOMEUIINFO_END

};

int main (int argc, char *argv[])
{
GtkWidget *app, *toolbar;

gnome_program_init (“gnome1”, “0.1”, LIBGNOMEUI_MODULE,

681

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 681

argc, argv,
GNOME_PARAM_NONE);

app = gnome_app_new(“gnome1”, “Menus, menus, menus”);
gtk_window_set_default_size (GTK_WINDOW(app), 300, 200);
gnome_app_create_menus (GNOME_APP(app), menubar);

gtk_widget_show(app);

gtk_main();
return 0;

}

By using the libgnomeui macros in menu2.c, you’ve significantly reduced the code you need to type
and made the menu code much more readable. The macros save you time and effort when creating
menus and make the wording, keyboard shortcuts, and icons consistent with other GNOME applica-
tions. Try to use them in your applications whenever you can.

Figure 16-13 shows menu3.c in action with the now standardized GNOME menu items.

Figure 16-13

Dialogs
An important part of any GUI application is interacting with and informing users of important events.
Usually, you’ll create a temporary window with OK and Cancel buttons for this, and if the information
is important enough to require an immediate response, such as deleting a file, you’ll want to block access
to all other windows until the user has made a choice (such windows are called modal dialogs).

What we’ve described here is a dialog, and GTK+ provides special dialog widgets that are descended
from GtkWindow to make your programming job that much easier.

GtkDialog
As you can see, GtkDialog is a child of GtkWindow and therefore inherits all its functions and properties:

GtkWindow
+----GtkDialog

682

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 682

GtkDialog divides the window into two areas, one for widget content and one for buttons that run
along the bottom. You can specify the buttons you want as well as other dialog settings when you create
the dialog box.

GtkWidget* gtk_dialog_new_with_buttons (const gchar *title,
GtkWindow *parent,
GtkDialogFlags flags,
const gchar *first_button_text,
...);

This function creates a dialog window complete with a title and buttons. The second parameter,
parent, should point to the main window of your application so that GTK+ can make sure the dialog
stays attached to the window and is minimized when the main window is minimized.

flags determines the combination of properties the dialog can take:

❑ GTK_DIALOG_MODAL

❑ GTK_DIALOG_DESTROY_WITH_PARENT

❑ GTK_DIALOG_NO_SEPARATOR

You can combine the flags using the bitwise OR operator; for example,
(GTK_DIALOG_MODAL|GTK_DIALOG_NO_SEPARATOR) is both a modal dialog and one with no separator
line between the main window area and the button area.

The remaining parameters are a NULL-terminated list of buttons and corresponding response code. You’ll
see exactly what this response code means when you see gtk_dialog_run. Normally you’ll pick but-
tons from the long list of stock buttons that GTK+ defines as you get ready-made icons in the buttons.

Here’s how you would create a dialog with OK and Cancel buttons that return GTK_RESPONSE_ACCEPT
and GTK_RESPONSE_REJECT when those respective buttons are clicked:

GtkWidget *dialog = gtk_dialog_new_with_buttons (“Important question”,
parent_window,
GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_STOCK_OK, GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL, GTK_RESPONSE_REJECT,
NULL);

We’ve chosen to have two buttons here, but there’s no limit to the number of buttons you can have in the
dialog. Furthermore, you can select from a number of response type flags. The accept and reject flags are
not used by standard GNOME and are therefore available for you to use in your applications as you
wish. (Keep in mind that accept ought to mean accept in your application.) Other possibilities here
include the OK and CANCEL responses shown the GtkResponseType enum in the following section.

Naturally, you’ll need to add content to your dialog, and for this GtkDialog contains a ready-made
GtkVBox to populate with widgets. You get a pointer directly from the object:

GtkWidget *vbox = GTK_DIALOG(dialog)->vbox;

You use this GtkVBox in the usual way, with gtk_box_pack_start or something similar.

683

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 683

Once you’ve created a dialog box, the next step is to present it to the user and wait for a response. This
can be done in one of two ways: in a modal fashion, which blocks all input except to the dialog box, or a
nonmodal way, which treats the dialog the same as any other window. Let’s look at running a modal
dialog first.

Modal Dialog Box
A modal dialog box forces the user to respond before any other action can take place. It’s useful in
situations where the user is about to do something with serious repercussions or to report errors and
warning messages.

You can make a dialog box modal by setting the GTK_DIALOG_MODAL flag and calling gtk_widget_show,
but there’s a better way. gtk_dialog_run does the hard work for you by stopping further program exe-
cution until a button is pressed.

When the user presses a button (or the dialog is destroyed), gtk_dialog_run returns with an int result
that indicates which button the user pressed. GTK+ usefully defines an enum to describe the possible values:

typedef enum
{

GTK_RESPONSE_NONE = -1,
GTK_RESPONSE_REJECT = -2,
GTK_RESPONSE_ACCEPT = -3,
GTK_RESPONSE_DELETE_EVENT = -4
GTK_RESPONSE_OK = -5,
GTK_RESPONSE_CANCEL = -6,
GTK_RESPONSE_CLOSE = -7,
GTK_RESPONSE_YES = -8,
GTK_RESPONSE_NO = -9,
GTK_RESPONSE_APPLY = -10,
GTK_RESPONSE_HELP = -11

} GtkResponseType;

Now we can explain the result code passed in gtk_dialog_new_with_buttons — the result code is a
GtkResponseType that gtk_dialog_run returns when that button is pressed. You get a result of
GTK_RESPONSE_NONE if the dialog is destroyed (this happens if the user clicks the close icon, for example).

The switch construction is ideal for calling the appropriate logic:

GtkWidget *dialog = create_dialog();
int result = gtk_dialog_run(GTK_DIALOG(dialog));

switch (result)
{

case GTK_RESPONSE_ACCEPT:
delete_file();
break;

case GTK_RESPONSE_REJECT:
do_nothing();
break;

default:

684

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 684

dialog_was_cancelled ();
break;

}
gtk_widget_destroy (dialog);

That’s all there is to simple modal dialogs in GTK+. As you can see, there’s very little code involved or
effort expended. All you do at the end is tidy up with a gtk_widget_destroy.

Things aren’t so straightforward, however, when you want a nonmodal dialog box. You can’t use
gtk_dialog_run — instead you must connect callback functions to the dialog buttons.

Nonmodal Dialogs
You’ve seen how to use gtk_dialog_run to create a modal (blocking) dialog. Nonmodal dialogs work
slightly differently, although you create them in the same way. Instead of calling gtk_dialog_run, you
connect a callback function to the GtkDialog “response” signal that is emitted when a button is clicked
or the window is destroyed.

Connecting the callback signal is done in the usual way, with the difference being that the callback function
has an extra response argument that plays the same role as the return value of gtk_dialog_run. This code
snippet shows the basic use of a nonmodal dialog:

void dialog_button_clicked (GtkWidget *dialog, gint response, gpointer user_data)
{
switch (response)
{

case GTK_RESPONSE_ACCEPT:
do_stuff();
break;

case GTK_RESPONSE_REJECT:
do_nothing();
break;

default:
dialog_was_cancelled ();
break;

}
gtk_widget_destroy(dialog);
}

int main()
{
…
GtkWidget *dialog = create_dialog();

g_signal_connect (GTK_OBJECT (dialog), “response”,
GTK_SIGNAL_FUNC (dialog_button_clicked), user_data);

gtk_widget_show(dialog);
…
}

685

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 685

With nonmodal dialogs, complications can arise because the user isn’t compelled to respond instantly
and can minimize and forget about the dialog. You need to consider what to do if the user tries to open
the dialog a second time before closing the first instance. What you need to do is check if the dialog
pointer is NULL, and if not to reshow the existing dialog by calling gtk_window_present. You can see
this in action in the “CD Database Application” section near the end of this chapter.

GtkMessageDialog
For very simple dialog boxes, even GtkDialog is unnecessarily complicated:

GtkDialog
+----GtkMessageDialog

With GtkMessageDialog, you can create a message dialog box in a single line of code.

GtkWidget* gtk_message_dialog_new (GtkWindow *parent, GtkDialogFlags flags,
GtkMessageType type,
GtkButtonsType buttons,
const gchar *message_format,
...);

This function creates a dialog complete with icons, a title, and configurable buttons. The parameter type
sets the stock icon and title of the dialog according to its intended purpose; for instance, the warning
type has a warning triangle icon. There are four possible values to cover the simple dialog types you
most often come across:

❑ GTK_MESSAGE_INFO

❑ GTK_MESSAGE_WARNING

❑ GTK_MESSAGE_QUESTION

❑ GTK_MESSAGE_ERROR

(You can also select a GTK_MESSAGE_OTHER value, used in cases where the preceding dialog types don’t
apply.) With a GtkMessageDialog, you can pass a GtkButtonsType rather than list each button indi-
vidually, as described in the following table.

GtkButtonsType Description

GTK_BUTTONS_OK An OK button

GTK_BUTTONS_CLOSE A Close button

GTK_BUTTONS_CANCEL A Cancel button

GTK_BUTTONS_YES_NO Yes and No buttons

GTK_BUTTONS_OK_CANCEL OK and Cancel buttons

GTK_BUTTONS_NONE No buttons

686

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 686

All that remains is the text of the dialog, which you can make up from a substituted string in the same
way you do with printf. In this example, you ask the user if she is sure she wants to delete a file:

GtkWidget *dialog = gtk_message_dialog_new (main_window,
GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_MESSAGE_QUESTION,
GTK_BUTTONS_YES_NO,
“Are you sure you wish to delete %s?”,
filename);

result = gtk_dialog_run (GTK_DIALOG (dialog));
gtk_widget_destroy (dialog);

This dialog appears like that in Figure 16-14.

Figure 16-14

GtkMessageDialog is the simplest way of communicating information or asking yes/no type questions.
You’ll make use of them in the following section, when you put your knowledge to use by creating a GUI
for your CD application.

CD Database Application
In the previous chapters you’ve developed a CD database with MySQL and a C interface. You’ll now
see how easy it is to put a GUI front end using GNOME/GTK+, and how quickly you can develop a rich
user interface.

You must have the MySQL database and the MySQL developer’s libraries installed to try out the example
CD database application, the same requirement as the CD database application in Chapter 8.

For the sake of brevity and clarity you’ll develop a basic, bare-bones interface that implements only
a subset of the features — you won’t allow adding of track information to CDs or deleting of CDs, for
example. You’ll see the widgets that were covered in this chapter in action in your application so that
you can see how they are used in a real-life situation.

The key features you’ll code are

❑ Logging on to the database from the GUI

❑ Searching for a CD

❑ Displaying CD and track information

687

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 687

❑ Adding a CD to the database

❑ Creating an About window

❑ Confirming when the user wishes to quit

You’ll divide your code into three source files that share a common header file, cdapp_gnome.h. The
source files will separate the functions that create windows and dialogs — interface generating functions —
from callback functions.

Try It Out cdapp_gnome.h
First look at cdapp_gnome.h and see the functions that you’ll be implementing.

1. Include the GNOME headers and the header file for the interface functions you developed in
Chapter 8. This example program uses the app_mysql.h and app_mysql.c files from Chapter 8,
along with the same database created in that chapter.

#include <gnome.h>
#include “app_mysql.h”

2. The enum labels the columns of the GtkTreeView widget that you’ll use to display the CDs
and tracks:

enum {
COLUMN_TITLE,
COLUMN_ARTIST,
COLUMN_CATALOGUE,
N_COLUMNS

};

3. You have three window-creation functions in interface.c:

GtkWidget *create_main_window();

GtkWidget *create_login_dialog();

GtkWidget *create_addcd_dialog();

4. Callback functions for the menu items, toolbar, dialog buttons, and search button are in
callbacks.c:

/* Callback to quit application */
void quit_app(GtkWidget * window, gpointer data);

/* Callback useful for confirming exit before quitting */
gboolean delete_event_handler (GtkWidget *window, GdkEvent *event, gpointer data);

/* Callback connected to ‘response’ signal of addcd dialog */
void addcd_dialog_button_clicked (GtkDialog * dialog, gint response,

gpointer userdata);

/* Callback for menu and toolbar ‘Add CD’ button */

688

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 688

void on_addcd_activate (GtkWidget *widget, gpointer user_data);

/* Callback for menu ‘About’ button */
void on_about_activate (GtkWidget *widget, gpointer user_data);

/* Callback for search button */
void on_search_button_clicked (GtkWidget *widget, gpointer userdata);

Try It Out interface.c
Next, take a look first at interface.c, where you define the windows and dialogs you use in the
application.

1. First, some widget pointers that you refer to in callbacks.c and main.c:

#include “app_gnome.h”

GtkWidget *treeview;
GtkWidget *appbar;
GtkWidget *artist_entry;
GtkWidget *title_entry;
GtkWidget *catalogue_entry;
GtkWidget *username_entry;
GtkWidget *password_entry;

2. app is the main window pointer that has file scope:

static GtkWidget *app;

3. Define a helper function that adds a widget with given label text to a container:

void add_widget_with_label (GtkContainer *box, gchar *caption, GtkWidget *widget)
{
GtkWidget *label = gtk_label_new (caption);
GtkWidget *hbox = gtk_hbox_new (TRUE, 4);

gtk_container_add(GTK_CONTAINER (hbox), label);
gtk_container_add(GTK_CONTAINER (hbox), widget);

gtk_container_add(box, hbox);
}

4. The menubar definitions use GNOMEUIINFO macros for convenience:

static GnomeUIInfo filemenu[] =
{
GNOMEUIINFO_MENU_NEW_ITEM (“_New CD”, NULL, on_addcd_activate, NULL),
GNOMEUIINFO_SEPARATOR,
GNOMEUIINFO_MENU_EXIT_ITEM (close_app, NULL),
GNOMEUIINFO_END

};

689

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 689

static GnomeUIInfo helpmenu[] =
{
GNOMEUIINFO_MENU_ABOUT_ITEM (on_about_activate, NULL),
GNOMEUIINFO_END

};

static GnomeUIInfo menubar[] =
{
GNOMEUIINFO_MENU_FILE_TREE (filemenu),
GNOMEUIINFO_MENU_HELP_TREE (helpmenu),
GNOMEUIINFO_END

};

5. Here you create the main window, add menu and toolbar, set its size, center onscreen, and
assemble the widgets that make up the interface. Note that the function doesn’t show the win-
dow onscreen, but returns a pointer to the window instead.

GtkWidget * create_main_window()
{
GtkWidget *toolbar;
GtkWidget *vbox;
GtkWidget *hbox;
GtkWidget *label;
GtkWidget *entry;
GtkWidget *search_button;
GtkWidget *scrolledwindow;
GtkCellRenderer *renderer;

app = gnome_app_new (“GnomeCD”, “CD Database”);

gtk_window_set_position (GTK_WINDOW(app), GTK_WIN_POS_CENTER);
gtk_window_set_default_size (GTK_WINDOW(app), 540, 480);

gnome_app_create_menus (GNOME_APP (app), menubar);

6. Create the toolbar using GTK+ stock icons and connect the callback functions:

toolbar = gtk_toolbar_new ();
gnome_app_add_toolbar (GNOME_APP (app), GTK_TOOLBAR (toolbar), “toolbar”,

BONOBO_DOCK_ITEM_BEH_EXCLUSIVE,
BONOBO_DOCK_TOP, 1, 0, 0);

gtk_container_set_border_width (GTK_CONTAINER (toolbar), 1);
gtk_toolbar_insert_stock (GTK_TOOLBAR (toolbar),

“gtk-add”,
“Add new CD”,
NULL, GTK_SIGNAL_FUNC (on_addcd_activate),

NULL, -1);
gtk_toolbar_insert_space (GTK_TOOLBAR (toolbar), 1);
gtk_toolbar_insert_stock (GTK_TOOLBAR (toolbar),

“gtk-quit”,
“Quit the Application”,
NULL, GTK_SIGNAL_FUNC (on_quit_activate),

NULL, -1);

690

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 690

7. Here you create widgets that you’ll use to search for a CD:

label = gtk_label_new(“Search String:”);
entry = gtk_entry_new ();
search_button = gtk_button_new_with_label(“Search”);

8. gtk_scrolled_window provides scrollbars to allow a widget (in this case a GtkTreeView) to
expand beyond the window size:

scrolledwindow = gtk_scrolled_window_new (NULL, NULL);
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolledwindow),

GTK_POLICY_AUTOMATIC,
GTK_POLICY_AUTOMATIC);

9. Next, arrange the interface using container widgets in the usual way:

vbox = gtk_vbox_new (FALSE, 0);
hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 5);
gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, FALSE, 5);
gtk_box_pack_start (GTK_BOX (hbox), entry, TRUE, TRUE, 6);
gtk_box_pack_start (GTK_BOX (hbox), search_button, FALSE, FALSE, 5);
gtk_box_pack_start (GTK_BOX (vbox), scrolledwindow, TRUE, TRUE, 0);

10. Then create the GtkTreeView widget, add three columns, and place it in the GtkScrolledWindow:

treeview = gtk_tree_view_new();
renderer = gtk_cell_renderer_text_new ();
gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(treeview),

COLUMN_TITLE,
“Title”, renderer,
“text”, COLUMN_TITLE,
NULL);

gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(treeview),
COLUMN_ARTIST,
“Artist”, renderer,
“text”, COLUMN_ARTIST,
NULL);

gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(treeview),
COLUMN_CATALOGUE,
“Catalogue”, renderer,
“text”, COLUMN_CATALOGUE,
NULL);

gtk_tree_view_set_search_column (GTK_TREE_VIEW (treeview),
COLUMN_TITLE);

gtk_container_add (GTK_CONTAINER (scrolledwindow), treeview);

11. Finally, set the contents of the main window, add a GnomeAppbar, and connect the necessary
callbacks:

gnome_app_set_contents (GNOME_APP (app), vbox);

691

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 691

appbar = gnome_appbar_new (FALSE, TRUE, GNOME_PREFERENCES_NEVER);
gnome_app_set_statusbar (GNOME_APP (app), appbar);

gnome_app_install_menu_hints (GNOME_APP (app), menubar);

g_signal_connect (GTK_OBJECT (search_button), “clicked”,
GTK_SIGNAL_FUNC (on_search_button_clicked),
entry);

g_signal_connect (GTK_OBJECT(app), “delete_event”,
GTK_SIGNAL_FUNC (delete_event_handler),
NULL);

g_signal_connect (GTK_OBJECT(app), “destroy”,
GTK_SIGNAL_FUNC (quit_app), NULL);

return app;
}

12. The next function creates a simple dialog box that enables you to add a new CD to the database. It
consists of entry boxes for the artist, title, and catalogue fields, as well as OK and Cancel buttons:

GtkWidget *create_addcd_dialog()
{
artist_entry = gtk_entry_new();
title_entry = gtk_entry_new();
catalogue_entry = gtk_entry_new();

GtkWidget *dialog = gtk_dialog_new_with_buttons (“Add CD”,
app,
GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_STOCK_OK,
GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL,
GTK_RESPONSE_REJECT,
NULL);

add_widget_with_label (GTK_CONTAINER (GTK_DIALOG (dialog)->vbox),
“Artist”, artist_entry);

add_widget_with_label (GTK_CONTAINER (GTK_DIALOG (dialog)->vbox),
“Title”, title_entry);

add_widget_with_label (GTK_CONTAINER (GTK_DIALOG (dialog)->vbox),
“Catalogue”, catalogue_entry);

g_signal_connect (GTK_OBJECT (dialog), “response”,
GTK_SIGNAL_FUNC (addcd_dialog_button_clicked), NULL);

return dialog;
}

13. The database requires the user to log in before she can query it, so this function creates a dialog
to enter the username and password:

GtkWidget *create_login_dialog()
{

692

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 692

GtkWidget *dialog = gtk_dialog_new_with_buttons (“Database Login”,
app,
GTK_DIALOG_MODAL,
GTK_STOCK_OK,
GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL,
GTK_RESPONSE_REJECT,
NULL);

username_entry = gtk_entry_new();
password_entry = gtk_entry_new();

gtk_entry_set_visibility(GTK_ENTRY (password_entry), FALSE);

add_widget_with_label (GTK_CONTAINER (GTK_DIALOG (dialog)->vbox) , “Username”,
username_entry);

add_widget_with_label (GTK_CONTAINER (GTK_DIALOG (dialog)->vbox) , “Password”,
password_entry);

gtk_widget_show_all(GTK_WIDGET (GTK_DIALOG (dialog)->vbox));

return dialog;
}

Try It Out callbacks.c
The file callbacks.c contains the functions set up as callbacks for the UI widgets.

1. First, you need to include the header file and reference some global variables defined in
interface.c so that you can read and update certain widget properties:

#include “app_gnome.h”

extern GtkWidget *treeview;
extern GtkWidget *app;
extern GtkWidget *appbar;
extern GtkWidget *artist_entry;
extern GtkWidget *title_entry;
extern GtkWidget *catalogue_entry;

static GtkWidget *addcd_dialog;

2. In quit_app you call database_end to tidy up and close the database before quitting:

void quit_app(GtkWidget *window, gpointer data)
{
database_end();
gtk_main_quit();

}

693

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 693

3. The next function pops up a simple dialog box to confirm that you want to exit the application,
returning the response as a gboolean:

gboolean confirm_exit()
{
gint result;
GtkWidget *dialog = gtk_message_dialog_new (NULL,

GTK_DIALOG_MODAL,
GTK_MESSAGE_QUESTION,
GTK_BUTTONS_YES_NO,
“Are you sure you want to quit?”);

result = gtk_dialog_run (GTK_DIALOG (dialog));
gtk_widget_destroy (dialog);

return (result == GTK_RESPONSE_YES);
}

4. delete_event_handler is a callback function that you connect to the Gdk delete event
of the main window. The event is emitted when you attempt to close a window, but critically
before the GTK+ destroy signal is sent.

gboolean delete_event_handler (GtkWidget *window, GdkEvent *event, gpointer data)
{
return !confirm_exit();

}

5. The next function is called when a button is clicked on the add CD dialog. If you click OK, the
program copies the strings into a non–const char array and passes the data in it to the MySQL
interface function add_cd:

void addcd_dialog_button_clicked (GtkDialog * dialog, gint response,
gpointer userdata)

{
const gchar *artist_const;
const gchar *title_const;
const gchar *catalogue_const;
gchar artist[200];
gchar title[200];
gchar catalogue[200];
gint *cd_id;

if (response == GTK_RESPONSE_ACCEPT)
{
artist_const = gtk_entry_get_text(GTK_ENTRY (artist_entry));
title_const = gtk_entry_get_text(GTK_ENTRY (title_entry));
catalogue_const = gtk_entry_get_text(GTK_ENTRY (catalogue_entry));

strcpy(artist, artist_const);
strcpy(title, title_const);
strcpy(catalogue, catalogue_const);

add_cd(artist, title, catalogue, cd_id);
}

694

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 694

addcd_dialog = NULL;
gtk_widget_destroy(GTK_WIDGET(dialog));

}

6. This is the heart of the application: retrieving the search results and populating the GtkTreeView.

void on_search_button_clicked (GtkButton *button, gpointer userdata)
{
struct cd_search_st cd_res;
struct current_cd_st cd;
struct current_tracks_st ct;
gint res1, res2, res3;
gchar track_title[110];
const gchar *search_string_const;
gchar search_string[200];
gchar search_text[200];
gint i = 0, j = 0;

GtkTreeStore *tree_store;
GtkTreeIter parent_iter, child_iter;

memset(&track_title, 0, sizeof(track_title));

7. Here you get the search string from the entry widget, copy into a non-const variable, and fetch
the matching CD IDs:

search_string_const = gtk_entry_get_text(GTK_ENTRY (userdata));
strcpy (search_string, search_string_const);
res1 = find_cds(search_string, &cd_res);

8. Next you update the appbar to display a message informing the user of the result of the search:

sprintf(search_text, “ Displaying %d result(s) for search string ‘ %s ‘“,
MIN(res1, MAX_CD_RESULT), search_string);

gnome_appbar_push (GNOME_APPBAR(appbar), search_text);

9. Now you have the search results and can populate the GtkTreeStore with the results. For each CD
ID you need to fetch the corresponding current_cd_st struct that contains the title and author of
the CD and then fetch the list of its tracks. Limit the number of entries to MAX_CD_RESULT defined
in app_mysql.h to ensure you don’t overfill the GtkTreeStore.

tree_store = gtk_tree_store_new (N_COLUMNS,
G_TYPE_STRING,
G_TYPE_STRING,
G_TYPE_STRING);

while (i < res1 && i < MAX_CD_RESULT)
{

res2 = get_cd(cd_res.cd_id[i], &cd);

/* Add a new row to the model */
gtk_tree_store_append (tree_store, &parent_iter, NULL);

695

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 695

gtk_tree_store_set (tree_store, &parent_iter,
COLUMN_TITLE, cd.title,
COLUMN_ARTIST, cd.artist_name,
COLUMN_CATALOGUE, cd.catalogue, -1
);

res3 = get_cd_tracks(cd_res.cd_id[i++], &ct);
j = 0;
/* Populate the tree with the current cd’s tracks */
while (j < res3)
{

sprintf(track_title, “ Track %d. “, j+1);
strcat(track_title, ct.track[j++]);

gtk_tree_store_append (tree_store, &child_iter, &parent_iter);
gtk_tree_store_set (tree_store, &child_iter,

COLUMN_TITLE, track_title, -1);
}

}

gtk_tree_view_set_model (GTK_TREE_VIEW (treeview), GTK_TREE_MODEL(tree_store));

}

10. The addcd dialog is nonmodal. Therefore, you check to see if it’s already active before creating
and showing it:

void on_addcd_activate (GtkMenuItem * menuitem, gpointer user_data)
{
if (addcd_dialog != NULL)

return;

addcd_dialog = create_addcd_dialog();
gtk_widget_show_all (addcd_dialog);

}

gboolean close_app (GtkWidget * window, gpointer data)
{
gboolean exit;

if ((exit = confirm_exit()))
{
quit_app(NULL, NULL);

}
return exit;

}

11. When you click the About button, a standard GNOME about box pops up:

void on_about_activate (GtkMenuItem * menuitem, gpointer user_data)
{
const char * authors[] = {“Wrox Press”, NULL};

696

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 696

GtkWidget *about = gnome_about_new (“CD Database”, “1.0”,
“(c) Wrox Press”,
“Beginning Linux Programming”,
(const char **) authors, NULL,
“Translators”, NULL);

gtk_widget_show(about);
}

Try It Out main.c
Enter the following code as main.c, which contains the main function for the program.

1. After the include statements, you reference username and password entry boxes from
interface.c:

#include <stdio.h>
#include <stdlib.h>

#include “app_gnome.h”

extern GtkWidget *username_entry;
extern GtkWidget *password_entry;

gint main(gint argc, gchar *argv[])
{
GtkWidget *main_window;
GtkWidget *login_dialog;
const char *user_const;
const char *pass_const;
gchar username[100];
gchar password[100];
gint result;

2. Initialize the GNOME libraries as usual, and then create and display the main window and your
login dialog:

gnome_program_init (“CdDatabase”, “0.1”, LIBGNOMEUI_MODULE,
argc, argv,
GNOME_PARAM_APP_DATADIR, “”,
NULL);

main_window = create_main_window();
gtk_widget_show_all(main_window);

login_dialog = create_login_dialog();

3. You loop until the user enters a correct username-password combination. The user can quit by
clicking Cancel, in which case she is then asked to confirm the action.

while (1)
{
result = gtk_dialog_run (GTK_DIALOG (login_dialog));

697

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 697

if (result != GTK_RESPONSE_ACCEPT)
{
if (confirm_exit())
return 0;

else
continue;

}
user_const = gtk_entry_get_text(GTK_ENTRY (username_entry));
pass_const = gtk_entry_get_text(GTK_ENTRY (password_entry));
strcpy(username, user_const);
strcpy(password, pass_const);

if (database_start(username, password) == TRUE)
break;

4. If database_start fails, you display an error message and the login dialog is shown again:

GtkWidget * error_dialog = gtk_message_dialog_new (GTK_WINDOW(main_window),
GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_MESSAGE_ERROR,
GTK_BUTTONS_CLOSE,
“Could not log on! - Check Username and Password”);

gtk_dialog_run (GTK_DIALOG (error_dialog));
gtk_widget_destroy (error_dialog);

}

gtk_widget_destroy (login_dialog);
gtk_main();

return 0;
}

5. You’ll write a makefile to compile this application. As in Chapter 8, you may need to add the
location of the mysqlclient library with something like the following:

-L/usr/lib/mysql

Place the directory where your system has the MySQL libraries after the -L.

all: app

app: app_mysql.c callbacks.c interface.c main.c app_gnome.h app_mysql.h
gcc -o app -I/usr/include/mysql app_mysql.c callbacks.c interface.c main.c -

lmysqlclient `pkg-config --cflags --libs libgnome-2.0 libgnomeui-2.0`

clean:
rm -f app

6. Now just use the make command to compile the CD application:

make –f Makefile

When you run app, you should get your CD application — GNOME style (see Figure 16-15)!

698

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 698

Figure 16-15

Summary
In this chapter, you’ve learned about programming with the GTK+/GNOME libraries to produce
professional-looking GUI applications. First, you looked at the X Window System and how toolkits
fit into the picture and then saw briefly how GTK+ works under the hood with its object system and
signal/callback mechanism.

You then moved on to look at the API of GTK+ widgets, showing simple and more advanced examples
in action in several program listings. In looking at the GnomeApp widget, you learned how to easily create
menus using helper macros. Finally, you saw how to create modal and nonmodal dialog boxes to interact
with the user.

Last, you created a GNOME/GTK+ GUI for your CD database, enabling you to log on to the database,
search for CDs, and add CDs to the database.

In Chapter 17, you look at the rival toolkit to GTK+ and learn how to program KDE using Qt.

699

Chapter 16: Programming GNOME Using GTK+

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 699

47627c16.qxd:WroxPro 9/29/07 3:58 PM Page 700

17
Programming KDE Using Qt

In Chapter 16, you looked at the GNOME/GTK+ GUI libraries for creating graphical user inter-
faces under X. These libraries are only half of the story; the other big player on the GUI scene in
Linux is KDE/Qt, and in this chapter you look at these libraries and see how they shape up
against the competition.

Qt is written in C++, the standard language in which to write Qt/KDE applications, so in this
chapter you’ll be obliged to take a diversion from the usual C and get your hands dirty with C++.
You might like to take this opportunity to refresh your memory on C++, especially reminding
yourself of the principles of derivation, encapsulation, method overloading, and virtual functions.

In this chapter, we cover

❑ An introduction to Qt

❑ Installing Qt

❑ Getting started

❑ Signal/slot mechanism

❑ Qt widgets

❑ Dialogs

❑ Menus and toolbars with KDE

❑ Building your CD database application with KDE/Qt

Introducing KDE and Qt
KDE (K Desktop Environment) is an open source desktop environment based on the Qt GUI
library. A host of applications and utilities are part of KDE, including a complete office suite, a
Web browser, and even a fully featured IDE for programming KDE/Qt applications (KDevelop,
covered in Chapter 9). Industry recognition of how advanced KDE’s applications are came when
Apple chose to use KDE’s Web browser as the core of the primary Web browser for Mac OS X,
called Safari, known as a very fast browser.

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 701

The KDE project’s homepage is at http://www.kde.org, where you can find detailed information,
download KDE and KDE applications, find documentation, join mailing lists, and get other developer
information.

The latest version of KDE at the time of writing is 3.5.7, and because this is the version that ships with
current Linux distributions, we’ll assume you have KDE 3.5 or higher installed. Work progresses on a
major upgrade called KDE 4.0. You can also download pre-release versions of KDE 4.0. Similarly, the
latest version of Qt is 4.3 but most Linux distributions have set up a version of Qt 3, such as 3.3, as
the default Qt version. This chapter covers Qt 3.3, because it is most commonly available.

From a programmer’s perspective, KDE offers dozens of KDE widgets, usually derived from their Qt
counterparts to provide enhancements and greater ease of use. KDE widgets offer greater integration
with the KDE desktop than you get with Qt alone; for example, you get session management.

Qt is a mature, cross-platform GUI toolkit written in C++. Qt is the brainchild of Trolltech, a Norwegian
company that develops, markets, and supports Qt and Qt-related software for the commercial market.
Trolltech loudly touts the cross-platform capabilities of Qt, which is undeniably impressive; Qt has
native support on Linux and UNIX derivatives, Windows, Mac OS X, and even embedded platforms,
which gives Qt a great competitive advantage over its rivals.

A specialized version of Qt runs on cell phones. Another version runs on the Sharp Zaurus PDA and
similar platform. Qt Jambi provides a Java version of the toolkit.

Trolltech currently sells the commercial versions of Qt at a prohibitively high price for the casual user
or hobbyist. Fortunately, Trolltech realizes the value in offering a zero-price version to the free software
community, and therefore it offers a free version, Qt Open Source Edition for Linux, Windows, and Mac
OS X. In return for a free version of Qt, Trolltech gets a large user install base, a large programmer com-
munity, and a high profile for its product.

Qt Open Source Edition is licensed under the GPL, which means you can program using the Qt libraries
and distribute your own GPL software free of charge. As far as we can tell, the two main differences
between the Open Source and the professional versions are the lack of support and the fact that you
can’t use Qt software in commercial applications. Trolltech’s website at http://www.trolltech.com
has all the API documentation that you need.

Installing Qt
Unless you have a particular reason to compile from source, it’s easiest to find a binary package or RPM
for your distribution. Fedora Linux 7 ships with qt-3.3.8-4.i386.rpm, which you can install using
the following command:

$ rpm –Uvh qt-3.3.8-4.i386.rpm

You can also install Qt and the KDE programming libraries with the Package Manager application (see
Figure 17-1).

702

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 702

Figure 17-1

If you do want to download the source code and build Qt yourself, you can get the latest source from the
Trolltech FTP site at ftp://ftp.trolltech.com/qt/source/. The source package comes with exten-
sive instructions on how to compile and install Qt in the INSTALL file in the tarred package:

$ cd /usr/local
$ tar –xvzf qt-x11-free-3.3.8.tar.gz
$./configure
$ make

You’ll also need to add a line to /etc/ld.so.conf:

/usr/lib/qt-3.3/lib

You can add this line anywhere in the file.

On Fedora and Red Hat Linux systems, the line should be stored in /etc/ld.so.conf.d/
qt-i386.conf. If you have installed Qt as shown in Figure 17-1, this step will already be done.

When Qt is properly installed, the QTDIR environment variable should be set to the Qt installation direc-
tory. You can check that this is the case as follows:

$ echo $QTDIR
/usr/lib/qt-3.3

Also make sure the lib directory is added to /etc/ld.so.conf.

703

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 703

Then run the following command as superuser:

ldconfig

Try out the simplest Qt program and make sure your installation is working properly.

Try It Out QMainWindow
Type (or copy and paste from the code downloads) this program and call it qt1.cpp:

#include <qapplication.h>
#include <qmainwindow.h>

int main(int argc, char **argv)
{
QApplication app(argc, argv);
QMainWindow *window = new QMainWindow();

app.setMainWidget(window);

window->show();

return app.exec();
}

To compile, you’ll need to include the Qt include and lib directories:

$ g++ -o qt1 qt1.cpp –I$QTDIR/include –L$QTDIR/lib –lqui

On some platforms, the library at the end will be -lqt. With Qt 3.3, though, use -lqui.

When you run the application, you should get a Qt window (see Figure 17-2).

$./qt1

Figure 17-2

How It Works
Unlike GTK+, there’s no all-encompassing qt.h header file, so you must explicitly include header files
for each object you use.

The first object you encounter is QApplication. This is the main Qt object you must construct, passing
in the command-line arguments before you begin. Each Qt application must have one and only one

704

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 704

QApplication object that you must create before doing anything else. QApplication deals with under-
the-hood Qt operations such as event handling, string localization, and controlling the look and feel.

There are two QApplication methods you’ll use: setMainWidget, which sets the main widget of
your application, and exec, which starts the event loop running. exec doesn’t return until either
QApplication::quit() is called or the main widget is closed.

QMainWindow is the Qt base window widget that has support for menus, a toolbar, and a status bar. It’s
featured a great deal in this chapter as you learn how to extend it and add widgets to create an interface.

Next we introduce the mechanism of event-driven programming, and you’ll add a PushButton widget
to the application.

Signals and Slots
As you saw in Chapter 16, signals and signal handling are the primary mechanisms a GUI application
uses to respond to user input and are central features of all GUI libraries. Qt’s signal-handling mecha-
nism consists of signals and slots, which are Qt’s names for signals and callback functions in GTK+ or
Java events and event handlers.

Note that a Qt signal is quite separate from a UNIX signal, as discussed in Chapter 11.

Here’s a reminder of how event-driven programming works: A GUI consists of menus, toolbars, buttons,
entry boxes, and many other GUI elements that are collectively known as widgets. When the user inter-
acts with a widget, for example activating a menu item or entering some text in an entry box, the widget
will emit a named signal such as clicked, text_changed, or key_pressed. You’ll usually want to do
something in response to the user’s action, such as save a document or quit the application, and you
do this by connecting a signal to a callback function or, in Qt parlance, a slot.

Using signals and slots in Qt is rather special — Qt defines two new aptly named pseudo-keywords,
signals and slots, to identify in your code the signals and slots of the class. This is great for readabil-
ity and code maintenance, but it means you must pass your code through a separate pre-preprocessing
stage to search and replace these pseudo-keywords with additional C++ code.

Qt code, therefore, is not true C++ code. This has sometimes been an issue for some developers. See
http://doc.trolltech.com/ for Qt documentation, including reasons for these new pseudo C++
keywords. Furthermore, the use of signals and slots does not differ all that much from the Microsoft
Foundation Classes, or MFC, on Windows, which also uses a modified definition of the C++ language.

There are some restrictions to how signals and slots can be used in Qt, but these are not significantly
limiting:

❑ Signals and slots must be member functions of a class derived from QObject.

❑ If using multiple inheritance, QObject must appear first in the class list.

❑ A Q_OBJECT statement must appear in the class declaration.

❑ Signals cannot be used in templates.

705

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 705

❑ Function pointers cannot be used as arguments to signals and slots.

❑ Signals and slots cannot be overridden and upgraded to public status.

Because you need to write your signals and slots in a descendant of QObject, it is logical to create your
interface by extending and customizing a widget, since QWidget, the base Qt widget, is derived from
QObject. In Qt, you’ll nearly always create interfaces by extending widgets such as QMainWindow.

A typical class definition MyWindow.h for your GUI will look something like this:

class MyWindow : public QMainWindow
{
Q_OBJECT
public:
MyWindow();
virtual ~MyWindow();

signals:
void aSignal();

private slots:
void doSomething();

}

Your class derives from QMainWindow, which provides functionality for the main window in the applica-
tion. Similarly, you’ll subclass QDialog when you want a dialog box. First is the Q_OBJECT statement
that acts as a marker for the preprocessor, followed by the usual constructor and destructor prototypes.
Next are the signal and slot definitions.

You have one signal and one slot, both with no arguments. To emit aSignal(), all you need to do is call
emit somewhere in your code:

emit aSignal();

That’s it — everything else is handled by Qt. You don’t even need an aSignal() implementation.

To use slots, you must connect them to a signal. You do this with the appropriately named static connect
method in the QObject class:

bool QObject::connect (const QObject * sender, const char * signal,
const QObject * receiver, const char * member)

Simply pass in the object that owns the signal (the sender), the signal function, the object that owns the
slot (the receiver), and finally the name of the slot.

In the MyWindow example, if you wanted to connect the clicked signal of a QPushButton widget to
your doSomething slot, you’d write

connect (button, SIGNAL(clicked()), this, SLOT(doSomething()));

706

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 706

Note that you must use SIGNAL and SLOT macros to surround the signal and slot functions. Just as in
GTK+, you can connect any number of slots to a given signal and also connect a slot to any number of
signals by multiple connect calls. If connect fails for any reason, it returns FALSE.

All that remains is to implement your slot, and this takes the form of an ordinary member function:

void MyWindow::doSomething()
{
// Slot code

}

Try It Out Signals and Slots
Now that you’ve seen the principles of signals and slots, let’s put this to use with an example. Extend
QMainWindow and add a button, and connect the button’s clicked signal to a slot.

1. Enter this class declaration, and call it ButtonWindow.h:

#include <qmainwindow.h>

class ButtonWindow : public QMainWindow
{
Q_OBJECT

public:
ButtonWindow(QWidget *parent = 0, const char *name = 0);
virtual ~ButtonWindow();

private slots:
void Clicked();

};

2. Next is the class implementation, ButtonWindow.cpp:

#include “ButtonWindow.moc”
#include <qpushbutton.h>
#include <qapplication.h>
#include <iostream>

3. In the constructor, you set the window title, create the button, and connect the button’s clicked sig-
nal to your slot. setCaption is a QMainWindow method that unsurprisingly sets the window title.

ButtonWindow::ButtonWindow(QWidget *parent, const char *name)
: QMainWindow(parent, name)

{
this->setCaption(“This is the window Title”);
QPushButton *button = new QPushButton(“Click Me!”, this, “Button1”);
button->setGeometry(50,30,70,20);
connect (button, SIGNAL(clicked()), this, SLOT(Clicked()));

}

707

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 707

4. Qt manages the destruction of widgets automatically, so your destructor is empty:

ButtonWindow::~ButtonWindow()
{
}

5. Next, the slot implementation:

void ButtonWindow::Clicked(void)
{
std::cout << “clicked!\n”;

}

6. Finally, in main you just create an instance of ButtonWindow, set it as your application’s main
window, and show the window onscreen:

int main(int argc, char **argv)
{
QApplication app(argc,argv);
ButtonWindow *window = new ButtonWindow();

app.setMainWidget(window);
window->show();

return app.exec();
}

7. Before you can compile this example, you need to run the preprocessor on the header file. This
preprocessor program is called the Meta Object Compiler (moc) and should be present in the
Qt package. Run moc on ButtonWindow.h, saving the output as ButtonWindow.moc:

$ moc ButtonWindow.h –o ButtonWindow.moc

Now you can compile as usual, linking in the moc output:

$ g++ -o button ButtonWindow.cpp –I$QTDIR/include –L$QTDIR/lib –lqui

When you run the program, you get the example shown in Figure 17-3.

How It Works
We’ve introduced a new widget and some new functions here, so let’s take a look at these. QPushButton
is a simple button widget that can hold a label and bitmap graphic and can be activated by the user
clicking with the mouse or using the keyboard.

The constructor of QPushButton used is quite simple:

QPushButton::QPushButton(const QString &text, QWidget *parent, const char* name=0)

The first argument is the text of the button label, then the parent widget, and last the name of the button
used internally by Qt.

708

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 708

Figure 17-3

The parent parameter is common to all QWidgets, and the parent widget controls when it is displayed
and destroyed, and various other characteristics. Passing NULL as the parent argument denotes that
the widget is top-level and creates a blank window to contain it. In the example you pass the current
ButtonWindow object using this, which adds the button to the ButtonWindow main area.

The name argument sets the name of the widget for use internally by Qt. If Qt encounters an error, the
widget name will be printed in the error message, so it’s a good idea to choose the appropriate widget
name, because it’s a great timesaver when debugging.

You might have noticed that the code rather crudely added the QPushButton to the ButtonWindow by
using the parent parameter of the QPushButton constructor, without specifying the positioning, size,
border, or anything like that. If you want precise control over widget layout, which is critical in creating
an attractive interface, you must use Qt’s layout objects. Let’s take a look at these now.

There are a number of ways to arrange the positioning and layout of widgets in Qt. You’ve already seen
using absolute coordinates by calling setGeometry, but this is rarely used, because the widgets don’t
scale and adjust to fit the window if it is resized.

The preferred method of arranging widgets is by using the QLayout classes or box widgets, which intel-
ligently resize, after you’ve given them hints on margins and spacing between widgets.

The key difference between the QLayout classes and box widgets is that layout objects are not widgets.

The layout classes derive from QObject and not Qwidget, so you are constrained in how you can use
them. You cannot, for instance, make a QVBoxLayout a central widget of a QMainWindow.

Box widgets (such as QHBox and QVBox), by contrast, are derived from QWidget, and therefore you can
treat them as ordinary widgets. You might well wonder why Qt has both QLayouts and QBox widgets
with duplicate functionality. Actually QBox widgets are just for convenience, and in essence wrap a

709

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 709

QLayout within a QWidget. QLayouts have the advantage of automatically resizing, whereas widgets
must be manually resized by calling QWidget::resizeEvent().

The QLayout subclasses QVBoxLayout and QHBoxLayout are the most popular way of creating an inter-
face, and the ones you will most often see in Qt code.

QVBoxLayout and QHBoxLayout are invisible container objects that hold other widgets and layouts in
a vertical and a horizontal orientation, respectively. You can create arbitrarily complex arrangements of
widgets because you can nest layouts by placing a horizontal layout as an element inside a vertical lay-
out, for example.

There are three QVBoxLayout constructors of interest (QHBoxLayout has an identical API):

QVBoxLayout::QVBoxLayout (QWidget *parent, int margin, int spacing, const char
*name)

QVBoxLayout::QVBoxLayout (QLayout *parentLayout, int spacing, const char * name)
QVBoxLayout::QVBoxLayout (int spacing, const char *name)

The parent of the QLayout can be either a widget or another QLayout. If you specify no parent, you can
only add the layout to another QLayout later, using the addLayout method.

margin and spacing set the empty space in pixels placed around the outside of the QLayout and in
between individual widgets.

Once you’ve created your QLayout, you add child widgets or layouts using a couple of methods:

QBoxLayout::addWidget (QWidget *widget, int stretch = 0, int alignment = 0)
QBoxLayout::addLayout (QLayout *layout, int stretch = 0)

Try It Out Using QBoxLayout Classes
In this example, you see the QBoxLayout classes in action by arranging QLabel widgets in a
QMainWindow.

1. First, enter the header file, LayoutWindow.h:

#include <qmainwindow.h>

class LayoutWindow : public QMainWindow
{
Q_OBJECT

public:
LayoutWindow(QWidget *parent = 0, const char *name = 0);
virtual ~LayoutWindow();

};

710

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 710

2. Now enter the implementation, LayoutWindow.cpp:

#include <qapplication.h>
#include <qlabel.h>
#include <qlayout.h>

#include “LayoutWindow.moc”

LayoutWindow::LayoutWindow(QWidget *parent, const char *name) : QMainWindow(parent, name)
{
this->setCaption(“Layouts”);

3. You need to create a dummy QWidget to hold your QHBoxLayout because you cannot add a
QLayout directly to a QMainWindow:

QWidget *widget = new QWidget(this);
setCentralWidget(widget);

QHBoxLayout *horizontal = new QHBoxLayout(widget, 5, 10, “horizontal”);
QVBoxLayout *vertical = new QVBoxLayout();

QLabel* label1 = new QLabel(“Top”, widget, “textLabel1”);
QLabel* label2 = new QLabel(“Bottom”, widget, “textLabel2”);
QLabel* label3 = new QLabel(“Right”, widget, “textLabel3”);

vertical->addWidget(label1);
vertical->addWidget(label2);
horizontal->addLayout(vertical);
horizontal->addWidget(label3);
resize(150, 100);

}

LayoutWindow::~LayoutWindow()
{
}

int main(int argc, char **argv)
{
QApplication app(argc,argv);
LayoutWindow *window = new LayoutWindow();

app.setMainWidget(window);
window->show();

return app.exec();
}

As before, you need to run moc on the header file before compiling:

$ moc LayoutWindow.h –o LayoutWindow.moc
$ g++ -o layout LayoutWindow.cpp –I$QTDIR/include –L$QTDIR/lib –lqui

When you run this program, you get your arrangement of QLabels (see Figure 17-4). Try resizing the
window and see how the labels expand and shrink to fit the available space.

711

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 711

Figure 17-4

How It Works
The LayoutWindow.cpp code creates two box layout widgets for laying out widgets, both a horizontal
and a vertical box layout. The vertical layout gets two labels, described appropriately enough, as Top and
Bottom. The horizontal box layout also holds two widgets, a label shown as Right, as well as the vertical
box layout. You can freely place layout widgets inside of layout widgets as shown in this example.

Try changing the code in LayoutWindow.cpp to experiment and better see how the box layouts work.

We’ve covered the basic principles of using Qt — signals and slots, moc, and layouts — so it’s time to
investigate the widgets more closely.

Qt Widgets
There are widgets for every occasion in Qt, and looking at them all would take up the rest of the book.
In this section you take a look at the common Qt widgets, including data entry widgets, buttons, combo
box, and list widgets.

QLineEdit
QLineEdit is Qt’s single-line text entry widget. Use it for inputting brief amounts of text, such as a user’s
first name. With a QLineEdit widget, you can limit text input using an input mask to fit a template or, for
the ultimate control, you can apply a validator function, for example, to ensure the user enters a proper
date, phone number, or other similar value. QLineEdit has editing features, enabling you to select parts
of the text, cut and paste, undo, redo, and the like from both a user’s perspective and using the API.

The constructors and most useful methods are

#include <qlineedit.h>

QLineEdit::QlineEdit (QWidget *parent, const char* name = 0)
QLineEdit::QLineEdit (const QString &contents, QWidget *parent,

const char *name = 0)
QLineEdit::QLineEdit (const QString &contents, const QString &inputMask,

QWidget *parent, const char *name = 0)

void setInputMask (const QString &inputMask)
void insert (const QString &newText)
bool isModified (void)
void setMaxLength (int length)
void setReadOnly (bool read)

712

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 712

void setText (const QString &text)
QString text (void)
void setEchoMode(EchoMode mode)

In the constructors, you set the parent widget and widget name as usual with parent and name.

An interesting property is EchoMode, which determines how the text appears in the widget.

It can take one of three values:

❑ QLineEdit::Normal: Display inputted characters (default)

❑ QLineEdit::Password: Display asterisks in place of characters

❑ QLineEdit::NoEcho: Display nothing

Set the mode using the setEchoMode:

lineEdit->setEchoMode(QLineEdit::Password);

An enhancement introduced in Qt 3.2 is inputMask, which restricts input according to the mask rule.

inputMask is a string made up of characters, each of which corresponds to a rule that accepts a certain
range of characters. If you’re familiar with regular expressions, inputMask uses much the same principle.

There are two sorts of inputMask characters: those that denote a certain character must be present, and
those that, if a character is present, restrict it to fall under the rule. The following table shows examples
of these characters and their meanings.

Our inputMask is a string made up from a combination of these characters, optionally terminated by a
semicolon. There are further special characters that also have meaning as shown in the following table.

Continued on next page

Character Meaning

Plus/minus permitted but not required.

> Converts following input to uppercase.

Required Character Characters That Are
Permitted But Not Required

Meaning

A a ASCII A–Z, a–z

N n ASCII A–Z, a–z, 0–9

X x Any character

9 0 Numeric 0–9

D d Numeric 1–9

713

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 713

All other characters in the inputMask act as separators in the QLineEdit.

The following table shows some examples of masks and their allowed input.

Try It Out QLineEdit
Now see QLineEdit in action.

1. First, the header file, LineEdit.h:

#include <qmainwindow.h>
#include <qlineedit.h>
#include <qstring.h>

class LineEdit : public QMainWindow
{
Q_OBJECT

public:
LineEdit(QWidget *parent = 0, const char *name = 0);
QLineEdit *password_entry;

private slots:
void Clicked();

};

2. LineEdit.cpp is the now-familiar class implementation file:

#include “LineEdit.moc”
#include <qpushbutton.h>
#include <qapplication.h>
#include <qlabel.h>
#include <qlayout.h>

Character Meaning

< Converts following input to lowercase.

! Stops converting case.

\ Escape character to use special characters as separators.

Example Allowed Input

“AAAAAA-999D” Allows Athens-2004 but not Sydney-2000 or Atlanta-1996.

“AAAAnn-99-99;” Allows March-03-12 but not May-03-12 or September-03-12.

“000.000.000.000” Allows IP address, for example, 192.168.0.1.

714

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 714

#include <iostream>

LineEdit::LineEdit(QWidget *parent, const char *name) : QMainWindow(parent, name)
{
QWidget *widget = new QWidget(this);
setCentralWidget(widget);

3. Use a QGridLayout to arrange the widgets. Specify the number of rows and columns, the mar-
gin settings, and the spacing:

QGridLayout *grid = new QGridLayout(widget,3,2,10, 10,”grid”);

QLineEdit *username_entry = new QLineEdit(widget, “username_entry”);
password_entry = new QLineEdit(widget, “password_entry”);
password_entry->setEchoMode(QLineEdit::Password);

grid->addWidget(new QLabel(“Username”, widget, “userlabel”), 0, 0, 0);
grid->addWidget(new QLabel(“Password”, widget, “passwordlabel”), 1, 0, 0);

grid->addWidget(username_entry, 0,1, 0);
grid->addWidget(password_entry, 1,1, 0);

QPushButton *button = new QPushButton (“Ok”, widget, “button”);
grid->addWidget(button, 2,1,Qt::AlignRight);

resize(350, 200);

connect (button, SIGNAL(clicked()), this, SLOT(Clicked()));
}

void LineEdit::Clicked(void)
{
std::cout << password_entry->text() << “\n”;

}

int main(int argc, char **argv)
{
QApplication app(argc,argv);
LineEdit *window = new LineEdit();

app.setMainWidget(window);
window->show();

return app.exec();
}

When you run this program, you should get the example shown in Figure 17-5.

How It Works
You’ve created two QLineEdit widgets, made one a password entry by setting the EchoMode, and set it
to print its contents when you click the PushButton. Note the introduction of the QGridLayout widget,
which is very useful for laying out widgets in a grid pattern. When you add a widget to the grid, you
pass the row and column number, starting at 0, 0 for the top-left cell.

715

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 715

Figure 17-5

Qt Buttons
Button widgets are ubiquitous widgets, and they vary little in appearance, usage, and API from toolkit
to toolkit. It’s no surprise that Qt offers standard PushButton, CheckBox, and RadioButton variants.

QButton: The Button Base Class
Button widgets in Qt all derive from the abstract QButton class. This class has methods to query and
toggle the on/off state of the button and to set the button’s text or pixmap.

You should never need to instantiate a QButton widget itself (don’t get confused between a QButton and
QPushButton!), so you needn’t show the constructors; however, here are the useful member functions:

#include <qbutton.h>

virtual void QButton::setText (const QString &)
virtual void QButton::setPixmap (const QPixmap &)
bool QButton::isToggleButton () const
virtual void QButton::setDown (bool)
bool QButton::isDown () const
bool QButton::isOn () const
enum QButton::ToggleState { Off, NoChange, On }
ToggleState QButton::state () const

The isDown and isOn functions are identical in meaning. They both return TRUE if the button is pressed
or activated.

Often, you’ll want to disable or gray out an option if it isn’t currently available. You can disable any
widget including QButtons by calling QWidget::setEnable(FALSE).

716

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 716

There are three subclasses of QButton of interest here:

❑ QPushButton: A simple button widget that performs some action when clicked

❑ QCheckBox: A button widget that can toggle between on and off states to indicate some option

❑ QRadioButton: A button widget normally used in groups where only one button can be active
in a group at a time

QPushButton
QPushButton is the standard generic button that contains text such as “OK” or “Cancel” and/or a
pixmap icon. Like all QButtons, it emits the clicked signal when it’s activated, and is usually used to
connect a slot and perform some action.

You’ve already used QPushButton in your examples, and there’s really only one other thing of interest
to say about this simplest of Qt widgets. QPushButton can be switched from a stateless button into a
toggle button (that is, can be turned on or off) by calling setToggleButton. (If you recall from the pre-
ceding chapter, GTK+ has separate widgets for the purpose.)

For completeness, here are the constructors and useful methods:

#include <qpushbutton.h>

QPushButton (QWidget *parent, const char *name = 0)
QPushButton (const QString &text, QWidget *parent, const char *name = 0)
QPushButton (const QIconSet &icon, const QString &text,

QWidget *parent, const char * name = 0)

void QPushButton::setToggleButton (bool);

QCheckBox
QCheckBox is a button that has state; that is, it can be turned on or off. The appearance of QCheckBox
depends on the current windowing style (Motif, Windows, and so on) but is usually drawn as a ticked
box with text to the right.

You can also set QCheckBox to be a third, in-between state that indicates “no change.” This is useful on
the rare occasions when you can’t read the state of the option the QCheckBox represents (and therefore
set the QCheckBox on or off yourself), but still want to give the user a chance to leave it unchanged as
well as actively set it on or off.

#include <qcheckbox.h>

QCheckBox (QWidget *parent, const char *name = 0)
QCheckBox (const QString &text, QWidget *parent, const char *name = 0)

bool QCheckBox::isChecked ()
void QCheckBox::setTristate (bool y = TRUE)
bool QCheckBox::isTristate ()

717

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 717

QRadioButton
Radio buttons are toggle buttons used to represent exclusive choices when you can select only one option
out of a group of options presented (think back to those old car radios, where only one station button could
be pressed in at a time). QRadioButtons themselves are hardly any different from QCheckBoxes, because
the grouping and exclusivity are all handled by the QButtonGroup class, the main difference being that
radio buttons appear as round buttons rather than ticked boxes.

QButtonGroup is a widget that makes handling groups of buttons easier by providing convenience
methods:

#include <qbuttongroup.h>

QButtonGroup (QWidget *parent = 0, const char * name = 0)
QButtonGroup (const QString & title, QWidget * parent = 0, const char * name = 0)

int insert (QButton *button, int id = -1)
void remove (QButton *button)
int id (QButton *button) const
int count () const
int selectedId () const

Using a QButtonGroup couldn’t be simpler; it even offers an optional frame around the buttons if you
use the title constructor.

You can add a button to a QButtonGroup using either insert or by specifying the QButtonGroup as
the parent widget of the button. You can specify an id with insert to uniquely identify each button in
the group. This is especially useful when querying which button is selected, because selectedId
returns the id of the selected button.

All QRadioButtons you add to the group are automatically set to be exclusive.

The QRadioButton constructors and one unique method shouldn’t be too surprising:

#include <qradiobutton.h>

QRadioButton (QWidget *parent, const char *name = 0)
QRadioButton (const QString &text, QWidget *parent, const char *name = 0)

bool QRadioButton::isChecked ()

Try It Out QButtons
Now put this knowledge to some use, with a Qt buttons example. The following program creates different
types of buttons (radio, checkbox, and pushbuttons) to show how to use these widgets in your applications.

1. Enter Buttons.h:

#include <qmainwindow.h>
#include <qcheckbox.h>
#include <qbutton.h>

718

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 718

#include <qradiobutton.h>

class Buttons : public QMainWindow
{
Q_OBJECT

public:
Buttons(QWidget *parent = 0, const char *name = 0);

2. You’ll query the state of your buttons later in the slot function, so declare the button pointers as
private in the class definition, as well as a helper function PrintActive:

private:
void PrintActive(QButton *button);
QCheckBox *checkbox;
QRadioButton *radiobutton1, *radiobutton2;

private slots:
void Clicked();

};

3. Here’s Buttons.cpp:

#include “Buttons.moc”
#include <qbuttongroup.h>

#include <qpushbutton.h>

#include <qapplication.h>
#include <qlabel.h>
#include <qlayout.h>

#include <iostream>

Buttons::Buttons(QWidget *parent, const char *name) : QMainWindow(parent, name)
{
QWidget *widget = new QWidget(this);
setCentralWidget(widget);

QVBoxLayout *vbox = new QVBoxLayout(widget,5, 10,”vbox”);

checkbox = new QCheckBox(“CheckButton”, widget, “check”);
vbox->addWidget(checkbox);

4. Here you create a QButtonGroup for your two radio buttons:

QButtonGroup *buttongroup = new QButtonGroup(0);

radiobutton1 = new QRadioButton(“RadioButton1”, widget, “radio1”);
buttongroup->insert(radiobutton1);
vbox->addWidget(radiobutton1);

719

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 719

radiobutton2 = new QRadioButton(“RadioButton2”, widget, “radio2”);
buttongroup->insert(radiobutton2);
vbox->addWidget(radiobutton2);

QPushButton *button = new QPushButton (“Ok”, widget, “button”);
vbox->addWidget(button);

resize(350, 200);

connect (button, SIGNAL(clicked()), this, SLOT(Clicked()));
}

5. Next is a convenience method for printing the state of the given QButton:

void Buttons::PrintActive(QButton *button)
{
if (button->isOn())
std::cout << button->name() << “ is checked\n”;

else
std::cout << button->name() << “ is not checked\n”;

}

void Buttons::Clicked(void)
{

PrintActive(checkbox);
PrintActive(radiobutton1);
PrintActive(radiobutton2);
std::cout << “\n”;

}

int main(int argc, char **argv)
{
QApplication app(argc,argv);
Buttons *window = new Buttons();

app.setMainWidget(window);
window->show();

return app.exec();
}

How It Works
This simple example shows how to query various Qt button widget types. As you can see, these widgets
all work the same once created, for the most part. For example, the PrintActive function shows how
to get the state of a button, on or off. Notice how this works for all the state-maintaining button types,
such as the checkbox and radio buttons. For the most part, just the calls to create a button widget differ.
And, radio buttons, being the most complex (because only one in a group can be on), require the most
work to create. For radio buttons, you need to create a QButtonGroup to ensure that only one radio but-
ton in the group can be active at any time.

720

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 720

QComboBox
Radio buttons are an excellent way of enabling the user to select from a small number of options, say
six or fewer. When you have more than six, things start to get out of hand and it becomes increasingly so
as the number of options increases to keep the window to a sensible size. A perfect solution is to use an
entry box with drop-down menu, also known as a combo box. The options appear when you click and
reveal the menu, and the number of options is limited only by how practical it becomes to search
through the list.

QComboBox combines the functionality of a QLineEdit, QPushButton, and drop-down menus, enabling
the user to pick a single option from an unlimited choice of options.

A QComboBox can be either read/write or read-only. If it is read/write the user can type an alternative to
the options offered; otherwise the user is limited to selecting from the drop-down list.

When you create a QComboBox, you can specify whether it’s read/write or read-only as a boolean in the
constructor:

QComboBox *combo = new QComboBox(TRUE, parent, “widgetname”);

Passing TRUE sets the QComboBox to Read/Write mode. The other parameters are the usual parent
widget pointer and widget name.

Like all Qt widgets, QComboBox is flexible in the way you can use it and it offers a good deal of functionality.
You can add options individually or as a set, either as QStrings or using the traditional char* format.

To insert a single item, call insertItem:

combo->insertItem(QString(“An Item”), 1);

This takes a QString object and a position index. Here, the value of 1 sets the item to be first in the list.
To add it to the end, just pass any negative integer.

More commonly you’ll add several items at a time, and for this you can use the QStrList class, or, as
here, a char* array:

char* weather[] = {“Thunder”, “Lightning”, “Rain”, 0};
combo->insertStrList(weather, 3);

Again, you can specify an index for the inserted items in the list.

If the QComboBox is read/write, values that the user types in can be automatically added to the list of
options. This is a useful time-saving feature that saves the user from repeated typing if he or she wants
to select the same typed-in value more than once.

InsertionPolicy controls where the new entry is added in the option list. You can pick from one of the
options shown in the following table.

721

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 721

To set the policy, call the setInsertionPolicy method on the QComboBox:

combo->setInsertionPolicy(QComboBox::AtTop);

Let’s take a peek at the constructors and a selection of the QComboBox methods:

#include <qcombobox.h>

QComboBox (QWidget *parent = 0, const char *name = 0)
QComboBox (bool readwrite, QWidget *parent = 0, const char *name = 0)

int count ()
void insertStringList (const QStringList &list, int index = -1)
void insertStrList (const QStrList &list, int index = -1)
void insertStrList (const QStrList *list, int index = -1)
void insertStrList (const char **strings, int numStrings = -1, int index = -1)
void insertItem (const QString &t, int index = -1)
void removeItem (int index)
virtual void setCurrentItem (int index)
QString currentText ()
virtual void setCurrentText (const QString &)
void setEditable (bool)

The function count returns the number of options in the list. QStringList and QStrList are Qt string
collection classes you can use to add options. You can remove options using removeItem, get and set
the current option using currentText and setCurrentText, and toggle the editable state using
setEditable.

QComboBox emits the textChanged(QString&) signal whenever a new option is selected, passing the
newly selected option as an argument.

Try It Out QComboBox
In this example you have a go at using QComboBox, and see how signals and slots with parameters work
in action. You’ll create a ComboBox class that inherits QMainWindow. It’ll have two QComboBoxes, one

Options What It Does

QComboBox::AtTop Inserts the new entry as the first option in the list.

QComboBox::AtBottom Inserts the new entry as the last option.

QComboBox::AtCurrent Replaces the previously selected option.

QComboBox::BeforeCurrent Inserts the entry before the previously selected option.

QComboBox::AfterCurrent Inserts the entry after the previously selected option.

QComboBox::NoInsertion New entry is not inserted into option list.

722

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 722

read/write and one read-only, and you’ll connect to the textChanged signal to get the currently
selected value each time it changes.

1. Enter the following and name the file ComboBox.h:

#include <qmainwindow.h>
#include <qcombobox.h>

class ComboBox : public QMainWindow
{
Q_OBJECT

public:
ComboBox(QWidget *parent = 0, const char *name = 0);

private slots:
void Changed(const QString& s);

};

2. The interface consists of two QComboBox widgets, one editable and the other read-only. You
populate both widgets with the same list of items:

#include “ComboBox.moc”

#include <qlayout.h>
#include <iostream>

ComboBox::ComboBox(QWidget *parent, const char *name) : QMainWindow(parent, name)
{
QWidget *widget = new QWidget(this);
setCentralWidget(widget);

QVBoxLayout *vbox = new QVBoxLayout(widget, 5, 10,”vbox”);

QComboBox *editablecombo = new QComboBox(TRUE, widget, “editable”);
vbox->addWidget(editablecombo);
QComboBox *readonlycombo = new QComboBox(FALSE, widget, “readonly”);
vbox->addWidget(readonlycombo);

static const char* items[] = { “Macbeth”, “Twelfth Night”, “Othello”, 0 };
editablecombo->insertStrList (items);
readonlycombo->insertStrList (items);

connect (editablecombo, SIGNAL(textChanged(const QString&)),
this, SLOT(Changed(const QString&)));

resize(350, 200);

}

3. This is the slot function. Note the QString parameter s that’s passed by the signal:

void ComboBox::Changed(const QString& s)
{
std::cout << s << “\n”;

}

723

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 723

int main(int argc, char **argv)
{
QApplication app(argc,argv);
ComboBox *window = new ComboBox();

app.setMainWidget(window);
window->show();

return app.exec();
}

You can see the newly selected options from the editable QComboBox printed out on the command line in
Figure 17-6.

Figure 17-6

How It Works
Create combo box widgets much like you create any other widget. The key new element lies in calling
the insertStrList function to store the list of combo box choices.

Like other text-holding widgets, you can set up a function to get called whenever the value, or more
generically, the text, of the combo box changes.

QListView
Lists and trees in Qt are provided by the QListView widget. QListView displays both plain lists and hier-
archical data divided into rows and columns. It’s perfect for displaying things like directory structures,

724

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 724

because the child elements can be expanded and contracted by clicking the plus and minus boxes, just like
a file viewer.

Unlike the GTK+ ListView widget, QListView handles both the data and the view, which makes for
ease of use if not outstanding flexibility.

With QListView, you can select rows or individual cells; then cut and paste the data, sort by column,
and you’ll have QCheckBox widgets rendered in cells. There’s a great amount of functionality built in —
all you need to do as a programmer is add data and set up some formatting rules.

Creating a QListView is done in the usual fashion, specifying the parent and widget name:

QListView *view = new QListView(parent, “name”);

To set column headings, use the aptly named addColumn method:

view->addColumn(“Left Column”, width1); // Fixed width
view->addColumn(“Right Column”); // Width autosizes

The column’s width is set in pixels or, if omitted, defaults to the width of the widest element in the
column. The column will then autosize as elements are added and removed.

Data is added to the QListView using a QListViewItem object to represent a row of data. All you need
do is pass the QListView and row elements to the constructor, and it’s appended to the view for you:

QListViewItem *toplevel = new QListViewItem(view, “Left Data”, “Right Data”);

The first parameter is either a QListView, as in this case, or another QListViewItem. If you pass a
QListViewItem, the row appears as the child of that QListViewItem. The tree structure is therefore
formed by passing the QListView for top-level nodes and then successive QListViewItems for the
child nodes.

The remaining parameters are the data for each column that default to NULL if not specified.

Adding a child node is then just a case of passing in the top-level pointer. If you aren’t adding further
child nodes to a QListViewItem, you needn’t store the returned pointer:

new QListViewItem(toplevel, “Left Data”, “Right Data”); // A Child of toplevel

If you look at the QListViewItem API, you can see the methods to traverse the tree, should you wish to
modify particular rows:

#include <qlistview.h>

virtual void insertItem (QListViewItem * newChild)
virtual void setText (int column, const QString & text)
virtual QString text (int column) const
QListViewItem *firstChild () const
QListViewItem *nextSibling () const
QListViewItem *parent () const
QListViewItem *itemAbove ()
QListViewItem *itemBelow ()

725

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 725

You can get the first row in the tree by calling firstChild on the QListView itself. You can then repeat-
edly call firstChild and nextSibling to return parts or the entire tree.

This code snippet prints out the first column of all the top-level nodes:

QListViewItem *child = view->firstChild();
while(child)
{
cout << myChild->text(1) << “\n”;
myChild = myChild->nextSibling();

}

You can find all the details about QListView, QListViewItem, and QCheckListView in the Qt API
documentation.

Try It Out QListView
In this Try It Out, you put everything together and write a short example of a QListView widget.

Let’s skip the header file for brevity and see the class implementation, ListView.cpp:

#include “ListView.moc”

ListView::ListView(QWidget *parent, const char *name) : QMainWindow(parent, name)
{
listview = new QListView(this, “listview1”);

listview->addColumn(“Artist”);
listview->addColumn(“Title”);
listview->addColumn(“Catalogue”);

listview->setRootIsDecorated(TRUE);

QListViewItem *toplevel = new QListViewItem(listview, “Avril Lavigne”,
“Let Go”, “AVCD01”);

new QListViewItem(toplevel, “Complicated”);
new QListViewItem(toplevel, “Sk8er Boi”);

setCentralWidget(listview);
}

int main(int argc, char **argv)
{
QApplication app(argc,argv);
ListView *window = new ListView();

app.setMainWidget(window);
window->show();

return app.exec();
}

726

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 726

How It Works
The QListView widget seems complicated in that it acts as both a list of items as well as a tree of items.
Your code needs to create QListViewItem instances for each item you want in the list. Each of these
QListViewItem instances has a parent. Those items with the widget itself as the parent appear as top-
level items. Items with another QListViewItem as a parent appear as child items. This example shows
QListViewItem instances just one level deep, but you can create far deeper trees of items.

After compiling and running the ListView example, you see the QListView widget in action as shown
in Figure 17-7.

Figure 17-7

Note how the child rows are indented with respect to their parent. The plus and minus boxes
indicating there are hidden or collapsible rows are not present by default; here you set them with
setRootIsDecorated.

Dialogs
Up until now, you’ve been subclassing QMainWindow to create your interfaces. QMainWindow is appro-
priate for the primary window in your application, but for short-lived dialogs, you should look at using
the QDialog widget.

Dialogs are useful whenever you want the user to input specific information for a particular task, or
impart small amounts of information to the user, such as a warning or error message. It’s preferable to
subclass QDialog for these tasks because you get convenient methods for running the dialog and pur-
pose-designed signals and slots to handle the user response.

As well as the usual modal and nonmodal (or modeless in Qt-speak) dialogs, Qt also offers a semimodal
dialog box. The following list is a reminder of the differences between modal and nonmodal, and includes
semimodal as well:

❑ Modal dialog box: Blocks input to all other windows to force the user to respond to the
dialog. Modal dialogs are useful for grabbing an immediate response from the user and dis-
playing critical error messages.

727

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 727

❑ Nonmodal dialog box: Nonblocking window that operates normally with other windows in the
application. Nonmodal dialog boxes are useful for search or input windows where you might
want to copy and paste values to and from the main window, for instance.

❑ Semimodal dialog box: A modal dialog that does not have its own event loop. This enables con-
trol to be returned to the application, but to still have input blocked to anything other than the
dialog box. A semimodal dialog is useful in the rare occasions when you have a progress meter
indicate the progress of time-consuming critical operation that you want to give the user the
opportunity to cancel. Because it doesn’t have its own event loop, you must call
QApplication::processEvents periodically to update the dialog.

QDialog
QDialog is the base dialog class in Qt that provides exec and show methods for handling modal and
nonmodal dialogs, has an integral QLayout you can use, and has several signals and slots useful for
responding to button presses.

You’ll normally create a class for your dialog, inherit from QDialog, and add widgets to create the
dialog interface:

#include <qdialog.h>

MyDialog::MyDialog(QWidget *parent, const char *name) : QDialog(parent, name)
{
QHBoxLayout *hbox = new QHBoxLayout(this);

hbox->addWidget(new Qlabel(“Enter your name”));
hbox->addWidget(new QLineEdit());
hbox->addWidget(ok_pushbutton);
hbox->addWidget(cancel_pushbutton);

connect (ok_pushbutton, SIGNAL(clicked()), this, SLOT(accept()));
connect (cancel_pushbutton, SIGNAL(clicked()), this, SLOT(reject()));

}

Unlike with the QMainWindow, you can directly specify MyDialog as the parent of your QLayout object
without creating a dummy QWidget and using that as the parent.

Note that this example omits the code to create the ok_pushbutton and cancel_pushbutton widgets.

QDialog has two slots — accept and reject — that are used to indicate the dialog result. This result is
returned by the exec method. Normally, you’ll connect OK and Cancel buttons to the slots, as in MyDialog.

Modal Dialogs
To use your dialog as a modal dialog, you call exec, which brings up the dialog and returns either
QDialog::Accepted or QDialog::Rejected according to which slot was activated:

MyDialog *dialog = new MyDialog(this, “mydialog”);
if (dialog->exec() == QDialog::Accepted)
{
// User clicked ‘Ok’

728

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 728

doSomething();
}
else
{
// user clicked ‘Cancel’ or dialog killed
doSomethingElse();

}
delete dialog;

The dialog is automatically hidden when the exec returns, but you still delete the object from memory.

Note that all processing is blocked when exec is called, so if there is any time-critical code in your appli-
cation, a nonmodal or semimodal dialog is more appropriate.

Nonmodal Dialogs
Nonmodal dialogs are little different from ordinary main windows, the key difference being that they
position themselves over their parent window, share their taskbar entry, and hide automatically when
the accept or reject slot is called.

To display a nonmodal dialog, call show as you would a QMainWindow:

MyDialog *dialog = new MyDialog(this, “mydialog”);
dialog->show();

The show function displays the dialog and immediately returns to continue the processing loop. To handle
button presses you need to write and connect to slots:

MyDialog::MyDialog(QWidget *parent, const char *name) : QDialog(parent, name)
{
...
connect (ok_pushbutton, SIGNAL(clicked()), this, SLOT(OkClicked()));
connect (cancel_pushbutton, SIGNAL(clicked()), this, SLOT(CancelClicked()));

}

MyDialog::OkClicked()
{
//Do some processing

}
MyDialog::CancelClicked()
{
//Do some other processing

}

The dialog is again automatically hidden when a button is pressed, as with a modal dialog.

Semimodal Dialog
To create a semimodal dialog you must set the modal flag in the QDialog constructor and use the
show method:

QDialog (QWidget *parent=0, const char *name=0, bool modal=FALSE, WFlags f=0)

729

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 729

The reason you didn’t set modal to TRUE with the modal dialog is that calling exec forces the dialog to
be modal regardless of this flag.

Your dialog constructor will look something like this:

MySMDialog::MySMDialog(QWidget *parent, const char *name):QDialog(parent, name, TRUE)
{
...

}

Once you’ve got your dialog defined, you call show as normal and then progress with your processing,
periodically calling QApplication::processEvents to keep the dialog updated:

MySMDialog *dialog = MySMDialog(this, “semimodal”);
dialog->show();
while (processing)
{
doSomeProcessing();
app->processEvents();
if (dialog->wasCancelled())
break;

}

Check that the dialog hasn’t been canceled before continuing processing. Note that wasCancelled isn’t
part of QDialog — you have to provide that yourself.

Qt provides ready-made subclasses of QDialog, specialized for particular tasks such as a file selec-
tion, text entry, progress meter, and message box. Using these widgets whenever you can saves you a
lot of trouble.

QMessageBox
A QMessageBox is a modal dialog that displays a simple message with an icon and buttons. The icon
depends on the severity of the message, which can be regular information or warnings and other critical
information.

The QMessageBox class has static methods to create and show each of these three types:

#include <qmessagebox.h>

int information (QWidget *parent, const QString &caption, const QString &text,
int button0, int button1=0, int button2=0)

int warning (QWidget *parent, const QString &caption, const QString &text,
int button0, int button1, int button2=0)

int critical (QWidget *parent, const QString &caption, const QString &text,
int button0, int button1, int button2=0)

You can choose buttons from a list of stock QMessageBox buttons, which match up with the returned
value of the static methods:

❑ QMessageBox::Ok

❑ QMessageBox::Cancel

730

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 730

❑ QMessageBox::Yes

❑ QMessageBox::No

❑ QMessageBox::Abort

❑ QMessageBox::Retry

❑ QMessageBox::Ignore

A typical use of QMessageBox will look something like this:

int result = QMessageBox::information(this,
“Engine Room Query”, “Do you wish to engage the HyperDrive?”,
QMessageBox::Yes | QMessageBox::Default,
QMessageBox::No | QMessageBox::Escape);

switch (result) {
case QMessageBox::Yes:

hyperdrive->engage();
break;

case QMessageBox::No:
// do something else
break;

}

You OR the button codes with Default and Escape to set the default actions when the Enter (or Return)
and Escape buttons are pressed on the keyboard. Figure 17-8 shows the resulting dialog.

Figure 17-8

QInputDialog
QInputDialog is useful for inputting single values from the user, which can either be text, an option
from a drop-down list, an integer, or a floating-point value. The QInputDialog class has static methods
like QMessageBox that are a bit of a handful because they have many parameters, but fortunately most
have default values.

#include <qinputdialog.h>

QString getText (const QString &caption, const QString &label,
QLineEdit::EchoMode mode=QLineEdit::Normal,
const QString &text=QString::null, bool * ok = 0,
QWidget * parent = 0, const char * name = 0)

QString getItem (const QString &caption, const QString &label,

731

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 731

const QStringList &list, int current=0, bool editable=TRUE,
bool * ok=0, QWidget *parent = 0, const char *name=0)

int getInteger (const QString &caption, const QString &label, int num=0,
int from = -2147483647, int to = 2147483647, int step = 1,
bool * ok = 0, QWidget * parent = 0, const char * name = 0)

double getDouble (const QString &caption, const QString &label, double num = 0,
double from = -2147483647, double to = 2147483647,
int decimals = 1, bool * ok = 0, QWidget * parent = 0,
const char * name = 0)

To input a line of text, you can write this:

bool result;
QString text = QInputDialog::getText(“Question”, “What is your Quest?:”,

QLineEdit::Normal,
QString::null, &result, this, “input”);

if (result) {
doSomething(text);

} else {
// user pressed cancel
}

QInputDialog is made up of a QLineEdit widget and OK and Cancel buttons, as you see in Figure 17-9.

Figure 17-9

The dialog created by QInputDialog::getText uses a QLineEdit widget. The edit mode parameter
you pass to the getText function controls how the text will be echoed back to the user, exactly like the
same mode for the QLineEdit widget. You can also specify default text or set it to empty as shown here.
Every QInputDialog has OK and Cancel buttons, and passes a bool pointer to the method to indicate
which button was pressed — result is TRUE if the user clicks OK.

getItem offers the user a list of options through a QComboBox:

bool result;
QStringList options;
options << “London” << “New York” << “Paris”;
QString city = QInputDialog::getItem(“Holiday”, “Please select a destination:”,

options, 1, TRUE, &result, this, “combo”);
if (result)
selectDestination(city);

The resulting dialog is shown in Figure 17-10.

732

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 732

Figure 17-10

getInteger and getDouble work in much the same way, so we won’t expand on them here.

Using qmake to Simplify Writing Makefiles
Compiling applications with both the KDE and Qt libraries becomes quite a chore because your makefile
gets ever more complicated with the need to use moc and having libraries here, there, and everywhere.
Fortunately, Qt comes with a utility called qmake to create makefiles for you.

If you’ve used Qt before, you may be familiar with tmake — an earlier (and now deprecated) incarna-
tion of qmake that shipped with previous versions of Qt.

qmake takes a .pro file as input. This file contains the very basic information that the compilation
requires, such as the sources, headers, target binary, and KDE/Qt library locations.

A typical KDE .pro file looks like this:

TARGET = app
MOC_DIR = moc
OBJECTS_DIR = obj
INCLUDEPATH = /usr/include/kde
QMAKE_LIBDIR_X11 += /usr/lib
QMAKE_LIBS_X11 += -lkdeui -lkdecore
SOURCES = main.cpp window.cpp
HEADERS = window.h

You specify the target binary, temporary moc and object directories, the KDE library path, and the sources
and headers to build from. Note that the location of the KDE header and library files depends on your
distribution. SUSE users should set INCLUDEPATH to /opt/kde3/include and QMAKE_LIBS_X11 to
/opt/kde3/lib.

$ qmake file.pro –o Makefile

Then you can run make as normal; it’s that straightforward. For a KDE/Qt program of any complexity,
you should use qmake to simplify the build routine.

Menus and Toolbars with KDE
As a demonstration of the power of KDE widgets, we’ve saved menus and toolbars to describe last,
because they’re a pretty good example of how the KDE libraries save time and effort compared to using
plain Qt or other graphical user interface toolkits.

733

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 733

Usually in GUI libraries, menu items and toolbar items are distinct elements, each with their own item
widgets. You have to create separate objects for each entry and keep track of changes; for example, dis-
abling certain options individually.

The KDE programmers came up with a better solution. Instead of this detached approach, KDE defines
a KAction widget to represent an action that the application can perform. This action could be opening a
new document, saving a file, or showing a help box.

The KAction is given text, a keyboard accelerator, an icon, and a slot that’s called when the KAction
is activated:

KAction *new_file = new KAction(“New”, “filenew”,
KstdAccel::shortcut(KstdAccel::New),
this, SLOT(newFile()), this, “newaction”);

The KAction can then be plugged into a menu and toolbar without any further description:

new_file->plug(a_menu);
new_file->plug(a_toolbar);

You’ve now created a New menu and toolbar entry that calls newFile when clicked.

Now if you need to disable the KAction — say if you don’t want the user to be able to create a new
file — the call is centralized:

new_file->setEnabled(FALSE);

That’s all there is to menus and toolbars with KDE — it’s very easy indeed. Take a look at the KAction
constructor:

#include <kde/kaction.h>

KAction (const QString &text, const KShortcut &cut, const QObject *receiver,
const char *slot, QObject *parent, const char *name = 0)

KDE provides you with standard KAction objects to make sure text, icons, and keyboard accelerators
are standard between KDE applications:

#include <kde/kaction.h>

KAction * openNew (const QObject *recvr, const char *slot,
KActionCollection* parent,
const char *name = 0)

KAction * save ...
KAction * saveAs ...
KAction * revert ...
KAction * close ...
KAction * print ...
etc...

734

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 734

Each standard action takes the same parameters: the slot receiver and function, a KActionCollection,
and the KAction name. The KActionCollection object manages the KActions in a window, and you
can get the current object using the actionCollection method of KMainWindow:

KAction *saveas = KStdAction::saveAs(this, SLOT(saveAs()), actionCollection(),
“saveas”);

Try It Out A KDE Application with Menus and Toolbars
You try using KActions in a KDE application with this next example.

1. Start with the header file KDEMenu.h. KDEMenu is a subclass of KMainWindow, itself a subclass
of QMainWindow. KMainWindow handles session management within KDE and has an integral
toolbar and status bar.

#include <kde/kmainwindow.h>

class KDEMenu : public KMainWindow
{
Q_OBJECT

public:
KDEMenu(const char * name = 0);

private slots:
void newFile();
void aboutApp();

};

2. In KDEMenu.cpp, start with #include directives for the widgets you’ll be using:

#include “KDEMenu.h”

#include <kde/kapp.h>
#include <kde/kaction.h>
#include <kde/kstdaccel.h>
#include <kde/kmenubar.h>
#include <kde/kaboutdialog.h>

3. In the constructor, create three KAction widgets. new_file is created using a manual definition
and quit_action and help_action use standard KAction definitions:

KDEMenu::KDEMenu(const char *name = 0) : KMainWindow (0L, name)
{
KAction *new_file = new KAction(“New”, “filenew”,

KstdAccel::shortcut(KstdAccel::New),
this, SLOT(newFile()), this, “newaction”);

KAction *quit_action = KStdAction::quit(KApplication::kApplication(),
SLOT(quit()), actionCollection());

KAction *help_action = KStdAction::aboutApp(this, SLOT(aboutApp()),
actionCollection());

735

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 735

4. Create two top-level menus and insert them into the KApplication menuBar:

QPopupMenu *file_menu = new QPopupMenu;
QPopupMenu *help_menu = new QPopupMenu;

menuBar()->insertItem(“&File”, file_menu);
menuBar()->insertItem(“&Help”, help_menu);

5. Now plug the actions in the menus and toolbar, inserting a separator line between new_file
and quit_action:

new_file->plug(file_menu);
file_menu->insertSeparator();
quit_action->plug(file_menu);
help_action->plug(help_menu);

new_file->plug(toolBar());
quit_action->plug(toolBar());

}

6. Finally some slot definitions: aboutApp creates a KAbout dialog to display information about
the program. Note that the quit slot is defined as part of KApplication:

void KDEMenu::newFile()
{
// Create new File

}

void KDEMenu::aboutApp()
{

KAboutDialog *about = new KAboutDialog(this, “dialog”);
about->setAuthor(QString(“A. N. Author”), QString(“an@email.net”),

QString(“http://url.com”), QString(“work”));
about->setVersion(“1.0”);
about->show();

}

int main(int argc, char **argv)
{
KApplication app(argc, argv, “cdapp”);;
KDEMenu *window = new KDEMenu(“kdemenu”);

app.setMainWidget(window);
window->show();

return app.exec();
}

7. Next you need a menu.pro file for qmake:

TARGET = kdemenu
MOC_DIR = moc
OBJECTS_DIR = obj

736

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 736

INCLUDEPATH = /usr/include/kde
QMAKE_LIBDIR_X11 += -L$KDEDIR/lib
QMAKE_LIBS_X11 += -lkdeui -lkdecore
SOURCES = KDEMenu.cpp
HEADERS = KDEMenu.h

8. Now run qmake to create your Makefile, compile, and run.

$ qmake menu.pro –o Makefile
$ make
$./kdemenu

How It Works
Though this example appears longer than the other examples, the code is relatively terse for all the work
it does creating a menu bar and menus. The best part of the KAction widgets is that you can use each one
in multiple places, such as on the toolbar and in a menu on the menu bar, both shown in this example.

Building KDE applications requires more work than building most programs, at least at first glance. In
reality, the menu.pro file and the qmake command hide a large number of settings you would otherwise
have to place manually in your makefile.

Figures 17-11 and 17-12 show how the menus and toolbar buttons appear in the window.

Figure 17-11

Figure 17-12

And that’s it! We’ve finished the tour of Qt and KDE, looking at the basic elements of all GUI applica-
tions, windows, layouts, buttons, dialogs, and menus. There are countless Qt and KDE widgets we
haven’t covered, from QColorDialog — a color-choosing dialog — to KHTML — a Web browser
widget — all fully documented on the Trolltech and KDE websites.

737

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 737

CD Database Application Using KDE/Qt
It’s time to turn your attention to the CD application once again, now that you can use the power of
KDE/Qt to bring it to life. You’ll follow the same layout as in Chapter 16 and code similar functionality.

Remember what you want your CD database application to do:

❑ Log on to the database from the GUI

❑ Search for a CD

❑ Display CD and track information

❑ Add a CD to the database

❑ Display an About window

MainWindow
Start off with coding the main window of your application, which contains the search entry widget and
search result list.

1. Start by typing in the code for MainWindow.h (or downloading it from the book’s website).
Because the window contains a QLineEdit widget for searching for CDs and a QListView to
display the results, you need to include the qlistview.h and qlineedit.h header files:

#include <kde/kmainwindow.h>
#include <qlistview.h>
#include <qlineedit.h>

class MainWindow : public KMainWindow
{
Q_OBJECT

public:
MainWindow (const char *name);

public slots:
void doSearch();
void AddCd();

private:
QListView *list;
QLineEdit *search_entry;

};

2. MainWindow.cpp is the most complicated part of the program. In the constructor, you create the
main window interface and connect the necessary signals to your slots. As usual, start off with
the #include files:

#include “MainWindow.h”
#include “AddCdDialog.h”
#include “app_mysql.h”

738

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 738

#include <qvbox.h>
#include <qlineedit.h>
#include <qpushbutton.h>
#include <qlabel.h>
#include <qlistview.h>
#include <kde/kapp.h>
#include <kde/kmenubar.h>
#include <kde/klocale.h>
#include <kde/kpopupmenu.h>
#include <kde/kstatusbar.h>
#include <kde/kaction.h>
#include <kde/kstdaccel.h>

#include <string.h>

MainWindow::MainWindow (const char * name) : KMainWindow (0L, name)
{
setCaption(“CD Database”);

3. Now create your menu and toolbar entries using the KAction widget:

KAction *addcd_action = new KAction(“&Add CD”, “filenew”,
KStdAccel::shortcut(KStdAccel::New),
this,
SLOT(AddCd()),
this);

KAction *quit_action = KStdAction::quit(KApplication::kApplication(),
SLOT(quit()), actionCollection());

QPopupMenu * filemenu = new QPopupMenu;
QString about = (“CD App\n\n”

“(C) 2007 Wrox Press\n”
“email@email.com\n”);

QPopupMenu *helpmenu = helpMenu(about);
menuBar()->insertItem(“&File”, filemenu);
menuBar()->insertItem(i18n(“&Help”), helpmenu);

addcd_action->plug(filemenu);
filemenu->insertSeparator();
quit_action->plug(filemenu);

addcd_action->plug(toolBar());
quit_action->plug(toolBar());

4. In the interest of variety, you’ll use QBox layout widgets instead of the usual QLayout classes:

QVBox *vbox = new QVBox (this);
QHBox *hbox = new QHBox (vbox);

739

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 739

QLabel *label = new QLabel(hbox);
label->setText(“Search Text:”);

search_entry = new QLineEdit (hbox);
QPushButton *button = new QPushButton(“Search”, hbox);

5. Next up is the QListView widget, which occupies the majority of the window area. Then you
connect the requisite signals to your doSearch slot to perform the CD database search. The
KMainWindow status bar is made visible by adding an empty message:

list = new QListView(vbox, “name”, 0L);
list->setRootIsDecorated(TRUE);
list->addColumn(“Title”);
list->addColumn(“Artist”);
list->addColumn(“Catalogue”);

connect(button, SIGNAL (clicked()), this, SLOT (doSearch()));
connect(search_entry , SIGNAL(returnPressed()), this, SLOT(doSearch()));

statusBar()->message(“”);
setCentralWidget(vbox);
resize (300,400);

}

6. The doSearch slot is the business end of the application. It reads the search string and fetches
all matching CDs and their tracks. The logic is identical to the GNOME/GTK+ doSearch func-
tion in Chapter 16.

void MainWindow::doSearch()
{
cd_search_st *cd_res = new cd_search_st;
current_cd_st *cd = new current_cd_st;
struct current_tracks_st ct;
int res1, i, j, res2, res3;
char track_title[110];
char search_text[100];
char statusBar_text[200];
QListViewItem *cd_item;

strcpy(search_text, search_entry->text());

7. Fetch the matching CD ids and update the status bar to display the search results:

res1 = find_cds(search_text, cd_res);
sprintf(statusBar_text, “ Displaying %d result(s) for search string ‘ %s ‘“,

res1, search_text);
statusBar()->message(statusBar_text);

i = 0;
list->clear();

740

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 740

8. For each id, get the CD information, insert into the QListView, and get all tracks for this CD:

while (i < res1) {

res2 = get_cd(cd_res->cd_id[i], cd);

cd_item = new QListViewItem(list, cd->title, cd->artist_name, cd->catalogue);

res3 = get_cd_tracks(cd_res->cd_id[i++], &ct);
j = 0;
/* Populate the tree with the current cd’s tracks */
while (j < res3) {

sprintf(track_title, “ Track %d. “, j+1);
strcat(track_title, ct.track[j++]);

new QListViewItem(cd_item, track_title);
}

}
}

9. The AddCd slot is called when the addcd_action menu item or toolbar button is activated:

void MainWindow::AddCd()
{
AddCdDialog *dialog = new AddCdDialog(this);
dialog->show();

}

The result is shown in Figure 17-13.

Figure 17-13

741

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 741

AddCdDialog
To add a CD to the database, you’ll need to code a dialog with the necessary fields you need to input.

1. Enter the following code and call it AddCdDialog.h. Note that AddCdDialog inherits from
KDialogBase, the KDE dialog widget.

#include <kde/kdialogbase.h>
#include <qlineedit.h>

class AddCdDialog : public KDialogBase
{
Q_OBJECT

public:
AddCdDialog (QWidget *parent);

private:
QLineEdit *artist_entry, *title_entry, *catalogue_entry;

public slots:
void okClicked();

};

2. Next is AddCdDialog.cpp, which calls the add_cd function from the MySQL interface code in
the okClicked slot:

#include “AddCdDialog.h”
#include “app_mysql.h”

#include <qlayout.h>
#include <qlabel.h>

AddCdDialog::AddCdDialog(QWidget *parent)
: KDialogBase(parent, “AddCD”, false, “Add CD”,
KDialogBase::Ok|KDialogBase::Cancel, KDialogBase::Ok, true)

{

QWidget *widget = new QWidget(this);
setMainWidget(widget);

QGridLayout *grid = new QGridLayout(widget,3,2,10, 5,”grid”);

grid->addWidget(new QLabel(“Artist”, widget, “artistlabel”), 0, 0, 0);
grid->addWidget(new QLabel(“Title”, widget, “titlelabel”), 1, 0, 0);
grid->addWidget(new QLabel(“Catalogue”, widget, “cataloguelabel”), 2, 0, 0);

artist_entry = new QLineEdit(widget, “artist_entry”);
title_entry = new QLineEdit(widget, “title_entry”);
catalogue_entry = new QLineEdit(widget, “catalogue_entry”);

grid->addWidget(artist_entry, 0,1, 0);
grid->addWidget(title_entry, 1,1, 0);

742

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 742

grid->addWidget(catalogue_entry, 2,1, 0);

connect (this, SIGNAL(okClicked()), this, SLOT(okClicked()));
}

void AddCdDialog::okClicked()
{
char artist[200];
char title[200];
char catalogue[200];
int cd_id = 0;

strcpy(artist, artist_entry->text());
strcpy(title, title_entry->text());
strcpy(catalogue, catalogue_entry->text());
add_cd(artist, title, catalogue, &cd_id);

}

Figure 17-14 shows the AddCdDialog in action.

Figure 17-14

LogonDialog
Of course, you can’t query the database without first logging on, so you need a simple dialog to enter
your credentials. Call this class LogonDialog. (Yes, another subtle and imaginative title!)

1. First, the header file. Enter this, calling it LogonDialog.h. Note that for variety this time you
inherit from QDialog rather than KDialogBase.

#include <qdialog.h>
#include <qlineedit.h>

class LogonDialog : public QDialog
{
Q_OBJECT

public:
LogonDialog (QWidget *parent = 0, const char *name = 0);
QString getUsername();
QString getPassword();

743

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 743

private:
QLineEdit *username_entry, *password_entry;

};

2. Rather than encapsulating the database_start call in LogonDialog.cpp, you have better
methods for the username and password. Here’s LogonDialog.cpp:

#include “LogonDialog.h”
#include “app_mysql.h”

#include <qpushbutton.h>
#include <qlayout.h>
#include <qlabel.h>

LogonDialog::LogonDialog(QWidget *parent, const char *name): QDialog(parent, name)
{
QGridLayout *grid = new QGridLayout(this, 3, 2, 10, 5,”grid”);

grid->addWidget(new QLabel(“Username”, this, “usernamelabel”), 0, 0, 0);
grid->addWidget(new QLabel(“Password”, this, “passwordlabel”), 1, 0, 0);

username_entry = new QLineEdit(this, “username_entry”);
password_entry = new QLineEdit(this, “password_entry”);
password_entry->setEchoMode(QLineEdit::Password);

grid->addWidget(username_entry, 0, 1, 0);
grid->addWidget(password_entry, 1, 1, 0);

QPushButton *button = new QPushButton (“Ok”, this, “button”);
grid->addWidget(button, 2, 1,Qt::AlignRight);

connect (button, SIGNAL(clicked()), this, SLOT(accept()));

}

QString LogonDialog::getUsername()
{
if (username_entry == NULL)
return NULL;

return username_entry->text();
}

QString LogonDialog::getPassword()
{
if (password_entry == NULL)
return NULL;

return password_entry->text();
}

Figure 17-15 shows how the dialog will look.

744

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 744

Figure 17-15

main.cpp
The only remaining code is the main function that you place in a separate source file, main.cpp.

1. In main.cpp, you open a LogonDialog and get a successful logon from database_start. If
logging on isn’t successful, you display a QMessageBox, or if you try to exit the LogonDialog,
ask the users to confirm that they want to quit.

#include “MainWindow.h”
#include “app_mysql.h”
#include “LogonDialog.h”

#include <kde/kapp.h>
#include <qmessagebox.h>

int main(int argc, char **argv)
{
char username[100];
char password[100];

KApplication a(argc, argv, “cdapp”);

LogonDialog *dialog = new LogonDialog();

while (1)
{
if (dialog->exec() == QDialog::Accepted)
{
strcpy(username, dialog->getUsername());
strcpy(password, dialog->getPassword());

if (database_start(username, password))
break;

QMessageBox::information(0, “Title”,
“Could not Logon: Check username and/or password”,
QMessageBox::Ok);

continue;
}
else
{
if (QMessageBox::information(0, “Title”,

“Are you sure you want to quit?”,
QMessageBox::Yes, QMessageBox::No)

745

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 745

== QMessageBox::Yes)
{
return 0;

}
}

}
delete dialog;

MainWindow *window = new MainWindow(“Cd App”);
window->resize(600, 400);

a.setMainWidget(window);
window->show();

return a.exec();
}

2. All that remains is to write a .pro file to pass to qmake. Call this cdapp.pro:

TARGET = app
MOC_DIR = moc
OBJECTS_DIR = obj
INCLUDEPATH = /usr/include/kde /usr/include/mysql
QMAKE_LIBDIR_X11 += -/usr/lib
QMAKE_LIBDIR_X11 += /usr/lib/mysql
QMAKE_LIBS_X11 += -lkdeui -lkdecore -lmysqlclient
SOURCES = MainWindow.cpp main.cpp app_mysql.cpp AddCdDialog.cpp LogonDialog.cpp
HEADERS = MainWindow.h app_mysql.h AddCdDialog.h LogonDialog.h

Note that the code lets you cheat slightly by simply renaming app_mysql.c to app_mysql.cpp;
therefore, you can treat it like an ordinary C++ source file. This avoids the (minor) complication of hav-
ing to link a C object file to C++.

$ qmake cdapp.pro –o Makefile
$ make
$./app

If all is well, you should have a working CD database!

You might like to try implementing the other functions in the MySQL interface, such as adding tracks to
CDs or deleting CDs, to get a closer understanding of KDE/Qt. You’ll need to create dialog boxes, new
menu entries, and toolbar entries, and you’ll have to write the underlying logic. Give it a shot!

Summary
In this chapter, you’ve learned about using the Qt GUI library and seen KDE widgets in action. You’ve
seen that Qt is a C++ library that uses a signal/slot mechanism to implement event-driven programming.
You took a tour of the basic Qt widgets and wrote several example programs to demonstrate how to use
them in practice. Finally, you implemented a GUI front end to your CD application using KDE/Qt.

746

Chapter 17: Programming KDE Using Qt

47627c17.qxd:WroxPro 9/29/07 3:41 PM Page 746

18
Standards for Linux

Linux started as just a kernel. Unfortunately, a kernel on its own is not very useful; programs are
needed for logging in, managing files, compiling new programs, and so forth. To make a useful
system, tools were added from the GNU project. These were clones of familiar programs available
on the UNIX and UNIX-like systems around at the time. Making Linux look and feel like UNIX set
the first standards for Linux, providing a familiar environment for C programmers.

Different UNIX (and later Linux) vendors added proprietary extensions to the commands and utilities
they made available, and the layout of the file systems they used varied slightly. It became difficult to
create applications that would work on more than one system. Even worse, a programmer could not
even rely on system facilities being provided in the same way or configuration files being maintained
in the same place.

It was clear that some standardization was needed to prevent the UNIX systems from fragmenting,
and some excellent UNIX standardization work is now in place.

Over time not only have these standards moved forward, but Linux itself has been enhanced at
an impressive speed by the community, often supported by commercial organizations like Red Hat
and Canonical, and even non-Linux vendors such as IBM. As Linux has progressed, it, along with
the gcc compiler collection, has not only tracked the relevant standards rather well, but has also
defined new standards as existing standards have been found to be insufficient. Indeed, as Linux
and its associated tools and utilities have become ever more popular, the UNIX vendors have
started making changes to their UNIX offerings to make them more compatible with Linux.

In this final chapter, we are going to look at these standards, pointing out areas that you should
be aware of if you want not only to write applications that work on your Linux systems through
upgrades, but also to create code that will be portable to other Linux distributions, and maybe
even other UNIX-style systems, so that you can share your programs with others.

In particular, we look at

❑ The C programming language standard

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 747

❑ The UNIX standards, particularly the POSIX standard developed by the IEEE and The Single
UNIX Specification developed by the Open Group

❑ Work by the Free Standards Group, particularly the Linux Standard Base, which defines a stan-
dard Linux file system layout

A good starting place for standards relating to Linux is the Linux Standard Base (LSB), which you can
find from the Linux Foundation web site at http://www.linux-foundation.org/.

We are not going to look in detail at the contents of the standards; many of them are as long as this book. We
are going to point out the key standards you should know about, give you a little historic background on
how those standards arose, and help you decide which standards you might find helpful when writing your
own programs.

The C Programming Language
The programming language C is the de facto language for programming Linux, so in order to write
portable C programs for Linux, it’s worth understanding a little of its origins, how it has changed, and,
most important, how to check that your program is conforming correctly to standards.

A Brief History Lesson
For those not enamored of history, don’t worry; because this book is about programming, not history, we
will keep this discussion very brief.

The C programming language dates from around 1970 and was based, in part, on the earlier programming
language BCPL and extensions to the language B. Dennis M. Ritchie wrote a reference manual for the lan-
guage in 1974, and C was used as the basis for a rewrite of the UNIX kernel on a PDP-11 around the same
time. In 1978 Brian W. Kernighan and Ritchie wrote the classic reference book for the language, The C
Programming Language.

The language became very popular very quickly, influenced no doubt in part by the rapid growth in
the popularity of UNIX, but also by its own power and clean syntax. The C language syntax continued
to evolve by consensus, but as it diverged further and further from the language described in the origi-
nal book, it became clear that a standard that was both consistent with current usage, and more pre-
cise, was needed.

In 1983 ANSI established the X3J11 standards committee to develop a clean and concise definition of
the language. Along the way they made some minor additions to the language, particularly giving it the
very welcome ability to declare the type of parameters, but in general the committee simply clarified and
rationalized the existing definition of what constituted common usage of the language. The standard was
finally published in 1989 as the ANSI standard Programming Language C, X3.159-1989, or more briefly
C89, or sometimes C90. (This later became an ISO standard, ISO/IEC 9899:1990, Programming
Languages — C. The two standards are technically identical.)

As with most standards, publication did not end the work of the committee, which continued work on
clarifying minor discrepancies found in the specification, and in 1993 started work on the next version of
the standard, dubbed C9X. The committee also published minor corrections and updates to the current
standard in 1994, 1995, and 1996.

748

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 748

The new edition of the standard just made it into the 1990s, and officially become the C99 standard; it
was adopted by ISO as ISO/IEC 9899:1999. There is still a working committee, J11, looking at standardi-
zation of the C language and its libraries, but it is now working under the InterNational Committee for
Information Technology Standards group. You can find more details on the current standards work for
C at http://j11.incits.org/.

The GNU Compiler Collection
After developing the Emacs editor (yes, we love Emacs), the GNU project’s next major accomplishment, as
discussed in Chapter 1, was a completely free C compiler, gcc, with the first official version released in 1987.

Originally, gcc was the GNU C Compiler, but because the same basic compiler framework now supports
many other languages, such as C++, Objective-C, FORTRAN, Java and Ada, as well as libraries for these
languages, the definition has been adjusted to the more appropriate GNU Compiler Collection.

gcc has always been, and looks set to remain, the standard compiler for Linux, and C or C++ the primary
language for writing programs on Linux. You can find the gcc home page at http://gcc.gnu.org/.

The GNU C Compiler has always been good at accurately tracking the developing C standard, although it
does allow some extensions, and there are inevitably slight delays, as with almost all compilers, between
the standard’s becoming available and compilers that exactly implement that specification. Occasionally
the opposite happens, and gcc anticipates that a standard will change slightly, which can also be quite
confusing. gcc has a number of command-line and other options that allow you to specify the version of
C standard you want gcc to conform to, as well as other options to control just how persnickety you
would like the compiler to be.

gcc Options
Now that you know a little of the background of the C standard, let’s look at the options the gcc compiler
offers for ensuring that the C you write conforms accurately to the language standard. There are three ways
to ensure your C code is both in conformity with standards and clean: options that control the version of
the standard you intend to be compatible with; defines to control header files; and warning options that
invoke more stringent checking of the code.

gcc has a huge range of options, and we look here only at the options we consider most important. You
can find the full list of options on the gcc manual pages. We also look briefly at some additional #define
options that can be used; these must normally be set in your source code before any #include lines or
defined on the gcc command line. You might wonder why so many options are required for selecting the
standard to use, rather than simply a flag that says to enforce the current standard. The reason is that
many older programs rely on the historic behavior of the compiler and would require significant rework-
ing to update them to the latest standards. Rarely, if ever, do we want a compiler update to start breaking
working code. As the standards change, it’s important to be able to work against a defined standard, even
if that is not always the very latest version of the standard.

Even if you are just writing a small program for personal use, when maybe conforming to standards doesn’t
seem that important, it can often be worth turning on more of gcc’s warnings to let the compiler find a mis-
take in your code before you even run the program. This is always more efficient than stepping through

749

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 749

code in the debugger wondering where the problem might be. The compiler has many options that go well
beyond simple checking for conformance to standards, such as the ability to spot code that does conform to
the standard but may have dubious semantics. For example, there may be an order of execution that will
allow a variable to be accessed before it is initialized.

If you do need to write code for other people to use, then — having selected the level of standards com-
pliance and compiler warning you think appropriate — it’s very important to put in that extra bit of
effort to ensure that your code compiles with no warnings at all. If you allow some warnings to appear
and make it a habit just to ignore them, then one day a more serious warning will appear that you may
miss. If your code always compiles completely clean, a new warning will be obvious. Compiling clean
code is a good habit to get into.

Compiler Options for Standards Tracking
These options are passed to gcc on the command line; we show only the most important options here:

❑ -ansi: This is the most important standards option, and tells the compiler to work to the ISO C90
standard of the language. It turns off certain gcc extensions that are incompatible with the stan-
dard, disables C++ (//) style comments in C programs, and enables the ANSI trigraph features.
It also defines the macro __STRICT_ANSI__, which turns off some gcc extensions in header files
that are incompatible with the standard. Later versions of the compiler may change the lan-
guage standard targeted.

❑ -std=: This option allows more fine-grained control of the standard in use by supplying a
parameter that sets the exact standard required. The main options are

❑ c89 supports the c89 standard.

❑ iso9899:1999 supports the latest ISO C90 standard.

❑ gnu89 supports the C89 standard, but allows GNU extensions and some C99 features as
well. As of version 4.2 of gcc this is the default behavior.

Define Options for Standard Tracking
These are constants (#defines) that can either be set by options on the compiler command line or, alter-
natively, as definitions in the source code. We generally suggest using the compiler command line for
these options.

❑ __STRICT_ANSI__: Force the use of ISO standard C. Defined when -ansi is given as a compile
line option.

❑ _POSIX_C_SOURCE=2: Turn on features defined by the IEEE Std 1003.1 and 1003.2 standards.
We mention these standards again later in this chapter.

❑ _BSD_SOURCE: This enables BSD-type features. If those features conflict with POSIX defini-
tions, the BSD definitions take precedence.

❑ _GNU_SOURCE: Allows a wide range of features, including GNU extensions. If those features
conflict with POSIX definitions, the POSIX definitions take precedence.

750

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 750

Compiler Options for Warnings
These options are passed to the compiler on the command line. Again we just list the main options; you
can find a full list in the gcc manual pages.

❑ -pedantic: This is the most powerful compiler option for checking clean C code. Apart from
turning on the option to check for standard conformant C, it also turns off some traditional C
constructs that are not permitted by the standard, and disables all the GNU extensions to the
standard. This is the option to use if you want your C code to be as portable as possible. The
downside is that the compiler is very fussy indeed about your code being clean, and sometimes
it can require you to think very carefully in order to get rid of the last few warnings.

❑ -Wformat: Checks that the argument types to the printf family of functions are correct.

❑ -Wparentheses: Checks that parentheses are always provided, even in some circumstances
where they are not needed. This is quite a useful option for checking that initialization of
complex structures is as intended.

❑ -Wswitch-default: Checks that all switch statements have a default case, which is generally
good coding practice.

❑ -Wunused: Checks a variety of cases such as static functions declared but never defined, unused
parameters, and discarded results.

❑ -Wall: Turns on most of gcc’s warnings, including all of the preceding -W options (it does not
select -pedantic) and is a good way to keep your code clean.

There are many, many more warning options; see the gcc web pages for the full details. In general we
suggest you use –Wall; it’s a good compromise between checking for good quality code and having the
compiler generate so many trivial warnings it becomes a serious impediment to keeping the number of
warnings from the compiler to zero.

Interfaces and the Linux Standards Base
We are now going to move up a level from the raw C code and look at the interfaces (system functions)
provided by the operating system. This level of standardization has various components: the functions pro-
vided by libraries and the system calls provided by the underlying operating system. In both of these there
are two levels of detail: which interfaces are present and the definition of what an interface does.

The definitive document in this area for Linux is The Linux Standards Base (LSB), which you can find at
http://www.linuxbase.org or http://www.linux-foundation.org/en/LSB. Several versions of
the standard have been issued, and work is ongoing.

You can find a list of distributions that have passed the certification at http://www.linux-foundation
.org/en/Products. Various versions of Red Hat, SUSE, and Ubuntu are certified, but do remember it
takes a while after a distribution is released for certification to be checked. The site also has a list of distri-
butions that are undergoing testing, or only require some updates to pass the certification tests.

751

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 751

The Linux Standards Base defines (as of version 3.1) three areas for compliance:

❑ Core: The main libraries, utilities and some key file system locations.

❑ C++: The C++ libraries.

❑ Desktop: Additional files for desktop installs, principally various graphic libraries.

The main area we are interested in is the Core part of the specification.

The LSB specification covers a number of areas as part of its own documentation, but also refers to some
external standards for particular interface definitions. The areas covered are

❑ Object formats for binary compatibility

❑ Dynamic linking standards

❑ Standard libraries, both base libraries and the X Window System libraries

❑ The shell and other command-line programs

❑ The execution environment, including users and groups

❑ System initialization and run levels

In this chapter, we are really only interested in the standard libraries, users, and system initialization, so
those are the areas we look at here.

LSB Standard Libraries
The Linux Standard Base defines the interfaces that must be present in two ways. For some functions, pri-
marily those that are implemented by the GNU C library or tend to be Linux-only standards, it defines the
interface and its behavior. For other interfaces, mostly those that come from Linux being UNIX-like, the
specification simply states that a particular interface must be present and must behave as defined by another
standard, usually that of the Common Application Environment (CAE) or more commonly The Single UNIX
Specification, which is available from The Open Group, http://www.opengroup.org. Some parts are
available (currently registration is required) on the web at http://www.unix.org/online.html.

Unfortunately, the underlying standards for Linux, the UNIX standards, have a rather complex past, and
rather too many standards to choose from, although mostly the various versions of the standards are
closely compatible.

A Brief History Lesson
UNIX started in the late 1960s at AT&T Bell Laboratories, when Ken Thompson and Dennis Ritchie
wrote an operating system, originally intended only for their personal use, that they called Unics. The
name somehow changed into UNIX. AT&T allowed universities to have the source code for their own
research, and UNIX quickly became extremely popular because of its very clean design and powerful
concepts. The fact that the source code was available must also have been a significant incentive because
it allowed people to make changes and experiment.

752

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 752

The BSD operating system was a variant that came out of work done at the University of California at
Berkeley, where a lot of work was being done on networking.

When AT&T started to make UNIX commercial, which occurred mostly around the mid 1980s, it termed
its releases UNIX System, and the most popular was UNIX System V.

Many other variants also appeared, far too numerous to list here, all of which had slight differences
from and additions to the base standards, as companies have tried to add value by making proprietary
extensions.

Things started to get really complicated when AT&T sold its UNIX business to Novell, which, in 1994,
decided to exit the UNIX business, and the ownership of the rights and trademarks became somewhat
confused and the subject of various court cases.

In 1988 the IEEE (http://www.ieee.org) issued the first of a set of standards: the POSIX, or IEEE 1003,
standards, which were intended to be a definitive portable interface specification for computer environ-
ments. Although it’s a good and well-defined standard, POSIX is also very much a core specification and
is quite limited in scope.

In 1994 the X/OPEN Company, a vendor-neutral organization, produced a much larger set of specifications,
the X/OPEN CAE, or Common Applications Environment, which is a superset of the IEEE POSIX standards
and is technically identical to it in many areas. The X/OPEN company later merged with the OSF to found
The Open Group; its home page is at http://www.opengroup.org/. The CAE standard was updated and
released in 2002 as The Single UNIX Specification, Version 3, available from The Open Group.

It is this specification to which the Linux standards base most frequently refers.

It should be noted that “Linux” is a trademark, owned by Linus Torvalds (see http://www
.linuxmark.org/).

Using the LSB Standard for Libraries
That’s enough about history of the standards. What does this mean for people writing C (or C++) pro-
grams that they want to be portable?

First, you should check that the library function you are using is listed in the LSB specification. If it isn’t
there, you may well be doing something that is not going to port easily, and you should look for a stan-
dard way of performing whatever you are trying to achieve. You might like to try the apropos Linux
command, which searches the online manual pages for appropriate references.

Second, and more difficult, is to check that the function behavior you are using is part of the specifica-
tion, and you are not relying on behavior that is not specified. You may have to refer to The Single UNIX
Specification to do this if the function usage is not defined by the LSB.

A particularly good place to check for undefined or possibly erroneous behavior is the online Linux
manuals. Many of the pages have a BUGS section, which is an invaluable source of information about
where a particular call in Linux may not perfectly implement the standards or where there are known
defects or oddities in behavior.

753

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 753

LSB Users and Groups
This section of the specification is nice and brief, and very easy to understand. Following are a few of the
specifications:

❑ The specification tells us never to read files like /etc/passwd directly, but to always use the stan-
dard library calls such as getpwent, or standard utilities like passwd for accessing user details.

❑ It tells us that there must be a user called root in the root group, and that root is an adminis-
trative user with full privileges. We also discover that there are a number of optional user and
group names that should never be used by standard applications; they are intended for use
by distributions.

❑ It also tells us that user IDs below 100 are system accounts, 100–499 are allocated by system
administrators and post-install scripts, and 500 and higher are for normal user accounts.

Generally, that is about all most Linux programmers need to know about the standards for users.

LSB System Initialization
The area of system initialization has always, at least to us, been an annoyance because of subtle differ-
ences between distributions.

Linux has inherited from UNIX-like operating systems the idea of run levels that define the services that
are running at any time. For Linux, the usual definitions are given in the following table.

The LSB lists these levels but doesn’t require them to be used, although they are very common.

Accompanying these run levels is a set of initialization scripts used to start, stop, and restart services.
Previously these have lived in various locations under /etc, often /etc/init.d or /etc/rc.d/init.d.
This variation was often a source of confusion, because people who changed distributions could no longer
find the initialization scripts where they expected to find them, and install programs failed while trying to
put initialization scripts in the wrong directory.

Run Level Used for

0 Halt. Used as a logical state to change to when the system is shut down.

1 Single user mode, directories other than / may not be mounted, and net-
working will not be enabled. It is normally used for system maintenance.

2 Multiuser mode; however, networking is not enabled.

3 Normal multiuser mode with networking, using a text mode
login screen.

4 Reserved.

5 Normal multiuser mode with networking and a graphical login screen.

6 A pseudo-level used for rebooting.

754

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 754

The LSB 3.1 defines the location of these initialization scripts as /etc/init.d, though it does allow this
to be a link to a different location.

Each script in /etc/init.d has a name that relates to the service it provides. Because this is a common
namespace that all services on Linux must share, it’s important that names are unique. For example, life
would get difficult if both MySQL and PostgreSQL decided to call their scripts “database.” To avoid this
conflict there is another set of standards. This is The Linux Assigned Names And Numbers Authority
(LANANA), which you can find at http://www.lanana.org/. Fortunately, you need to know very
little about it except that they keep a list of registered names for scripts and packages, and thereby make
life easier for users of Linux systems.

An initialization script must take a parameter that controls what it should do. The defined parameters
are as follows:

All commands return 0 on success, or an error code indicating the reason for failure. In the case of status,
0 is returned if the service is running; all other codes indicate the service is not running for some reason.

The Filesystem Hierarchy Standard
The last of the standards we are going to look at in this chapter is the Filesystem Hierarchy Standard
(FHS), which you can find at http://www.pathname.com/fhs/.

The purpose of this standard is to define standard places in the Linux file system, so that developers
and users alike can have reasonable expectations of where to find things. Long-time users of the various
UNIX-like operating systems have long bemoaned the subtle differences between the way file systems
are laid out, and the FHS provides a way for Linux distributions to avoid going down the same frag-
mented path.

Parameter Meaning

start Start (or restart) the service.

stop Stop the service.

restart Restart the service; this is commonly implemented as simply a stop fol-
lowed by a start of the service.

reload This should reset the service, reloading any parameters, without actually stop-
ping the service. Not all services can support this option, so this parameter
may not be accepted by all scripts, or may be accepted but have no effect.

force-reload This attempts to cause a reload if the service supports it, but if not, it does
a restart.

status This prints a textual message about the status of the service and returns
a status code that can be used to determine the status of the service.

755

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 755

The arrangement of files in a Linux system may seem at first to be a semi-arbitrary arrangement of files
and directories, based on historic practice. To an extent that’s true, but over the years the layout has
evolved for good reasons into the hierarchy we see today. The general idea is to separate files and direc-
tories into three groups:

❑ Files and directories that are unique to a particular system running Linux, such as start-up
scripts and configuration files

❑ Files and directories that are read-only and may be shared between systems running Linux,
such as application executables

❑ Directories that are read/write, but may be shared between systems running Linux or other
operating systems, such as user home directories

In this book, we are not overly interested in sharing files among different versions of Linux, although,
where a network of Linux machines is in use, it can be an excellent way of ensuring that only a single
copy of the key program directories exists, and of sharing that among many machines. This is particu-
larly useful for diskless workstations.

The top-level structure is defined by FHS to have several mandatory subdirectories and a small number
of optional directories; the main ones are shown in the following table.

Directory Required? Use

/bin Y Important system binary files.

/boot Y Files required to boot the system.

/dev Y Devices.

/etc Y System configuration files.

/home N Directories for user files.

/lib Y Standard libraries.

/media Y A place for removable media to be mounted, with separate
subdirectories for each media type supported by the system.

/mnt Y A convenient point to temporarily mount devices, such as
CD-ROMs and flash memory sticks.

/opt Y Additional application software.

/root N Files for the root user.

/sbin Y Important system binary files that are required during sys-
tem startup.

/srv Y Read-only data for services provided by this system.

/tmp Y Temporary files.

756

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 756

In addition, there can be other directories starting with lib, although this is not common. You will also
usually see a /lost+found directory (for file system recovery by fsck) and a /proc directory, which
is a pseudo file system, providing a mapping into the current running system. The /proc file system is
strongly encouraged by the current version of FHS standard, but is not required to be present. Details of
the /proc system are generally beyond the scope of this book, though we took a brief tour in Chapter 4.

Here we look briefly at the purposes of each of the standard subdirectories of the / (root) directory:

❑ /bin — This contains binary files that can be used both by the root user and ordinary users, but
are essential to operation in single-user mode, when some other directory structures may not be
mounted. For example, core commands such as cat and ls would normally be found in here,
as will sh.

❑ /boot — This directory is used for files required during booting of the Linux system. It is fre-
quently quite small, less than 100 MB, and often a separate partition. This is handy on PC-based
systems, where there are frequently BIOS limitations on the active partition, requiring it to be in
the first 2 G or 4 G of the disk. Having this as a separate partition allows more flexibility when
deciding how to lay out the rest of the disk partitions.

❑ /dev — This contains the special device files that map to hardware. For example, /dev/hda will
be mapped to the first IDE disk.

❑ /etc — This contains configuration files. Historically some binaries could also be found in here,
but that is no longer true on most Linux systems. The best known file in the /etc directory is
probably passwd, which contains information on users. Other useful files are fstab, listing
mount options; hosts, listing IP to host name mappings, and the httpd directory, which con-
tains configuration for the Apache server.

❑ /home — This is a directory for user files. Normally each user will have a single directory under this
directory with the same name as their login, and this will be their default login directory. For exam-
ple, after logging in, the user rick will almost certainly find himself in the /home/rick directory.

❑ /lib — This contains essential shared libraries and kernel modules, specifically those that will
be required while the system is booting or in single-user mode.

❑ /media — This is intended as a top-level directory to contain other directory mount points for
removable media. The intention is to remove unnecessary top-level directories, such as /cdrom
and /floppy.

❑ /mnt — This is simply a convenient place for mounting additional file systems temporarily.
Historically some distributions have added subdirectories for the different devices, such as
/cdrom and /floppy under /mnt, but the preferred location for these is now under /media,
returning /mnt to its original purpose, as a single top-level temporary mount location.

Directory Required? Use

/usr Y A secondary hierarchy. Traditionally user files were also
stored here, but that is now considered bad practice, and
/usr should not be writable by ordinary users.

/var Y Variable data, such as log files.

757

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 757

❑ /opt — This is a directory for software vendors to use when adding additional software appli-
cations to the base distribution. Distributions should not use it for software they distribute as
part of the standard distribution, but leave it free for third-party vendors to use. Generally, ven-
dors will create a subdirectory with their name, and then further subdirectories such as /bin
and /lib for files specific to their application.

By convention, many Open Source Linux packages use /usr/local for installation.

❑ /root — This is for files used by the root user. It is not in the /home directory part of the tree,
because that may not be mounted in single-user mode.

❑ /sbin — This is used for commands normally used only by the system administrator, and
required while the system is booting or in single-user mode. Commands such as fsck, halt,
and swapon live here.

❑ /srv — This is intended as a location for site-specific read-only configuration data, however it
is currently not in common use.

❑ /tmp — This is used for temporary files. It is usually, but not always, cleared when the system
is booted.

❑ /usr — This is a rather complex secondary file system, generally containing all the system-type
commands and libraries not required during system booting or in single-user mode. It has many
subdirectories, such as /bin, /lib, /X11R6, and /local.

In the early days of UNIX and Linux, /usr also had subdirectories for logs, mail spooling, and the like.
These have all now been removed from the usr directory and placed in the var directory. This has the
advantage that /usr can now be a mountable file system, and in particular can be mounted read-only
most of the time. When /usr is mounted read-only, it can be shared to other systems across a network
and is less vulnerable to corruption should the system stop in an uncontrolled manner, perhaps because
the power failed.

❑ /var — This contains data that changes frequently, such as spool files for printing, application
log files, and mail-spooling directories.

Fur ther Reading about Standards
There are, of course, many more things to consider if you want to write, and deploy, a fully portable
Linux application.

Do you want to localize your application so that it works with different languages and locales? Even
if you stick to English, there are still the issues of currency, number separators, date formats, and many
other considerations. There are, you guessed it, people working on those standards; you can see their
work at http://www.openi18n.org/.

Another consideration is what options, library versions, and so forth the target system has installed.
Fortunately, this problem is getting less acute, largely thanks to the standardization work we have
looked at in this chapter, but it can still be a difficult problem. There are a pair of GNU tools which
help considerably with this problem: autoconf and automake. Although you may not have used them

758

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 758

directly, you have almost certainly seen the benefits of them when installing software from source, when
you typed ./configure; make.

The use of these tools is beyond the scope of this book, but you can find more about them on the GNU web
pages http://www.gnu.org/software/autoconf/ and http://www.gnu.org/software/automake.

Summary
In this final chapter, we have looked briefly at some of the many standards that are helping to make Linux
an easier platform to program for, and that ensure that the many different distributions of Linux conform
to some basic standards. Conforming to standards helps to make life easier for us, its programmers and
users, and we urge you use the standards and to encourage others to do so.

759

Chapter 18: Standards for Linux

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 759

47627c18.qxd:WroxPro 9/29/07 3:42 PM Page 760

Index

SYMBOLS
: command, 50
. command, 51–52
$# environment variable, 29
$$ environment variable, 29
$0 environment variable, 29
/proc file system, 128–132
$ shell prompt, 23
> shell prompt, 23
[command, 31–34

A
Abiword, 646
abusing memory, 260–261
accept function, 618
accept system call, 618
addresses, socket addresses, 615–616
address_len parameter, sockets, 618
AF_APPLETALK socket domain, 615
AF_INET socket domain, 612, 614
AF_IPX socket domain, 615
AF_ISO socket domain, 615
AF_NS socket domain, 615
AF_UNIX socket domain, 613–614, 614
AIX, 2
alarm clock program, 485–487
AND list, 43–44
Anjuta, 425
apostrophes, 654
applications, 8–9
archives, 10–13
argc, 137
arguments, 137–140
argv, 137
assert macro, 452–453
assertions, 452–453
attrset function, curses library, 219

B
backticks, 654
bash shell, 19, 20

version, 19
Bell Laboraties, 1
binary semaphores, 579
Boolean data types, MySQL, 329
Bourne shell, 19, 20
box widgets, 658
break command, 49–50
breakpoints, debugging, 441–444
built-in rules, makefiles, 387
buttons, Qt

QButton, 716–717
QCheckBox, 717
QPushButton, 717
QRadioButton, 718

C
C#, GUIs and, 648
C language

compiler, Hello World, 7–8
gcc options, 749–751
GNU compiler, 749
GTK+ and, 649
history of, 748–749
menu routines in, 176–177
shell, 20

CAE (Common Application Environment), 752
callbacks

GTK+, 655–658
connecting, 656

prototype, 656
calloc function, 264
canonical mode, terminal, 178
case statement, 40–43
catching signals, 481

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 761

cbreak, curses library, 222
CD management program, 693–697, 738–746

application, 84–91
summary, 574

callbacks.c, 693–697
cdapp.gnome.h, 688–689
client interface functions, 558–564
cliserv.h, 557–558
curses library, 240–254
dbm database and, 289–308
design, 82–84
GTK, 688–697
interface.c, 689–693
IPC facilities

client functions, 602–603
server functions, 600–602

KDE, 738–746
makefile, 553–554
message queue status, 605
MySQL

access application data from C, 364–374
add data to tables, 362–364
table creation, 359–362

pipes, 555–556
client-side functions, 572–574
implementation header, 569
server-side functions, 569–572

Qt, 738–746
requirements, 82
semaphore status, 604
server.c, 565–568
shared memory status, 604–605

character data types, MySQL, 329
characters, curses library, 218–221
chdir system call, 122
child processes, 466

pipes and, 535–540
chmod system call, 120
chown system call, 120
chreak function, curses library, 222
ci command, 394
clear function, curses library, 218
clients, sockets

multiple clients, 632–642
select system call, 635–638

close system call, 619
close system variable, 103
closed pipes, reading, 536–537
closedir function, 124
closing sockets, 619
co command, 394–395
code

critical sections, 577–578
reuse, 18

code inspection, debugging, 433
coding errors, 430
color, curses and, 235–238
command line, dialog utility, 76
commands

:, 50
., 51–52
[, 31–34
arithmetic expansion, 69–70
break, 49–50
ci, 394
co, 394–395
continue, 50–51
echo, 52–53
eval, 53
exec, 53–54
execution, 68–73
exit, 25
exit n, 54
export, 54–55
expr, 55–56
find, 61–65
grep, 65–66
here documents, 73
ident, 398–399
kill, 482, 485
make, 378
man, 14
netstat, 622
parameter expansion, 70–73
printf, 56–58
ps, 462
rcs, 393–394
rcsdiff, 396–397
return, 58
rlog, 395–396

762

cbreak

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 762

rpmbuild, 415, 422–424
set, 58
shift, 58–59
sort, 22
trap, 59–61
unset, 61

comments, makefiles, 382
competing locks, 276–280
compiling, curses library and, 212–213
conditions, 31

[command, 31–34
test command, 31–34

connections, sockets
accepting, 617–618
requesting, 618–619

continue command, 50–51
control structures

case statement, 40–43
elif statement, 35–36
if statement, 34–35
lists, 43–45
for statement, 37–38
statement blocks, 45–46
until statement, 39–40
while statement, 39

cooked mode, curses library, 222
Coordinated Universal Time (UTC), 151
copying files, 104–106
critical sections, 266, 577–578
ctime function, 152–154
curscr.stdscr, 213
curses library, 211

attrset function, 219
cbreak, 222
CD management program, 240–254
characters, attributes, 218–221
chreak function, 222
chtype, 217
clear function, 218
clearing screen, 218
color and, 235–238
compiling and, 212–213
cooked mode, 222
curscr.stdscr, 213
delwin call, 224
echo function, 221

endwin, 216
erase function, 218
Hello World program, 215
inch function, 217
initscr, 216
innstr function, 217
insch function, 217
instr function, 217
keyboard control, 221–222

input, 222–224
keypad, 232–235
keypad mode, 233
leaveok function, 218
move function, 218
moving cursor, 218
newwin call, 224
output to screen, 216–217
pads, 238–240
printw function, 217
reading from screen, 217
refresh function, 217
screen refreshes, 229–230
screens, 213
stdscr, 213
subwindows, 213, 230–232

subwin function, 230
versions, 212
windows, 213

creating, 224
destroying, 224
functions, 225
moving, 225–229
multiple, 226–229
mvwin function, 225
screen refreshes, 229–230
scrollok function, 226
touchwin, 226
updating, 225–229
wclear function, 226
werase function, 226
WINDOW structure, 224–225
wrefresh function, 226

CVS (Concurrent Versions System), 399–400
front ends, 404–405
local use, 400–403
networks and, 403–404

763

CVS (Concurrent Versions System)

In
de

x

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 763

D
daemons, Internet daemon, 629–631
data types, MySQL

Boolean, 329
character, 329
number, 329–330
temporal, 330

databases
creating, MySQL, 328
dbm database

CD management program, 289–308
datum type, 283
dbm_clearerr function, 287
dbm_close function, 284
dbm_delete function, 287
dbm_error function, 287
dbm_fetch function, 284
dbm_firstkey function, 288
dbm_nextkey function, 288
dbm_open function, 284
dbm_store function, 284
deleting from, 288–289
introduction, 281–282
reinstalling, 282
retrieving from, 288–289
routines, 283
troubleshooting, 282
writing program, 284–287

datagram sockets, 614
datagrams, 642–644
DATE macro, 434
daytime service

connecting to, 627–629
datagrams and, 642

dbm database
CD management program, 289–308
datum type, 283
dbm_clearerr function, 287
dbm_close function, 284
dbm_delete function, 287
dbm_error function, 287
dbm_fetch function, 284
dbm_firstkey function, 288
dbm_nextkey function, 288
dbm_open function, 284
dbm_store function, 284

deleting from, 288–289
introduction, 281–282
reinstalling, 282
retrieving from, 288–289
routines, 283
troubleshooting, 282
writing program, 284–287

DDL (data definition language), 331
deadlocks, 280–281
DEBUG macro, 434
debugging

breakpoints, setting, 441–444
cflow, 450–451
code inspection, 433
controlled execution and, 436–437
ctags, 449
cxref, 449–450
execution profiling, 451
gdb

breakpoints, 441–444
listing program, 440–441
patching and, 444–445
running programs, 438
stack trace, 438–439
starting, 437–438
variables and, 439–440

instrumentation, 434–436
lint, 446–449
macros

DATE, 434
DEBUG, 434
FILE, 434
LINE, 434
TIME, 434

memory debugging, 453–454
ElectricFence, 454–455
valgrind, 455–458

recompiling and, 435–436
scripts, 74–75
segmentation violation, 438
stages, 430

Dekker’s Algorithm, 578
deleting, files, 94
dependencies

make command, 379–380
makefiles, 378, 379–380
RPM, 419

764

daemons

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 764

design errors, 430
detached threads, 512
/dev/console, 95
/dev/null, 96
/dev/tty, 95

terminal and, 181–182
development environments, 424–426

Anjuta, 425
Eclipse, 425
KDevelop, 425
QtEZ, 425
SlickEdit, 425

device drivers, 96–97
devices, 95–96
dialog utility, 75–81

command line, 76
output, 77

dialogs, 727–728
GtkDialog, 682–684
modal dialog box, 684–685
nonmodal, 685–686
QDialog, 728

modal dialogs, 728–729
nonmodal dialogs, 729
semimodal dialogs, 729–730

QInputDialog, 731–733
QMessageBox, 730–731

difftime function, 150
directories, 94–95

scanning, 122
closedir, 124
opendir function, 123
program for, 124–126
readdir function, 123
seekdir function, 124
telldir, 123

subdirectories, 94
makefiles and, 391

distributing software
patch, 410–411
as source code, 410
utilities, 411–413

documents, here documents, 73–74
dpkg utility, 424
drivers. See device drivers

terminal, 182–183

dup system call, 108–109
pipes and, 538–540

dup2 system call, 108–109
duplicating process images, 472–475

E
echo command, 52–53
echo function, curses library, 221
Eclipse, 425
ElectricFence, 454–455
elif statement, 34–35
Emacs, 6
endwin, curses, 216
environ variable, 147–148
environment variables, 29, 144–146

$#, 29
$$, 29
$0, 29
environ, 147–148
$HOME, 29
$IFS, 29
$PATH, 29
$PS1, 29
$PS2, 29
using, 146–147

environments
development environments, 424–426

Anjuta, 425
Eclipse, 425
KDevelop, 425
QtEZ, 425
SlickEdit, 425

multitasking, 137
erase function, curses library, 218
errno variable, 119

threads and, 497
error handling, MySQL, 341–342
errors

coding errors, 430
design errors, 430
perror function, 127–128
specification, 429
stream, stdio library, 119
strerror function, 127

eval command, 53

765

eval command

In
de

x

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 765

events, GTK+, 655–658
exec command, 53–54

pipes and, 535–536
exec function, 470
execlp call, 471–472
executable scripts, 25–26
executables, 5
executing commands, 68–73
execution profiling, 451
exit command, 25
exit n command, 54
export command, 54–55
expr command, 55–56

F
fclose I/O function, 111
fcntl system call, 132–133, 268

locking files, 271–273
ferror function, 119
fflush I/O function, 111
fgetc I/O function, 112
F_GETLK command, 270
fgets I/O function, 113
FHS (Filesystem Hierarchy Standard), 755–758
FIFOs, 541

accessing, 542–543
client/server, 549–553
inter-process communication with, 547–549
open call and, 543–545
reading, 546–549
writing, 546–549

file descriptors
creating, 100–101
output, 21
streams and, 119–120

FILE macro, 434
file-region locking, 268
file-segment locking, 268
filenames, libraries, 10
files

copying, 104–106
deleting, 94
devices and, 95–96
directories, 94–95
header files, 9

inode, 94
library files, 9–10
locking, 264–265

deadlocks, 280–281
fcntl call, 268, 271–273
F_GETLK command, 270
file-region locking, 268
file-segment locking, 268
F_SETLK command, 270–271
F_SETLKW command, 271
lock files, cooperative, 266–268
lock files, creating, 265–268
lockf call, 268, 280
read call, 271
testing locks, 273–276
write call, 271

package files, RPM, 414–415
system calls, 96–97, 98–99

dup, 108–109
fstat, 106–108
ioctl, 97, 104
lseek, 106
lstat, 106–108
open, 100–101
read, 99–100
stat, 106–108
write, 98–99

temporary, 156–157
tmpfile function, 156–157
tmpnam function, 156–157
user information, 158–161

find command, 61–65
fopen I/O function, 110
for statement, 37–38

wildcard expansion and, 38
fork

pipes and, 533–534
processes and, 472–474
threads, 495
zombie processes, 477–478

fprintf I/O function, 113–115
fputc I/O function, 112
fread I/O function, 111
free call, 262
Free Software Foundation, 3

766

events

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 766

FreeBSD, 2
freeing memory, 262–264
fscanf I/O function, 115–117
fseek I/O function, 112
F_SETLK command, 270–271
F_SETLKW command, 271
fstat system call, 106–108
functions, 46. See also I/O functions

accept, 618
closedir, 124
ctime, 152–154
defining, 47
difftime, 150
exec, 470
ferror, 119
getchoice, 177, 203–204
getenv, 145–146
gethostname, 161
getlogin, 158
getopt, 140–142
getopt_long, 142–144
getpriority, 169
getrlimit, 170
getrusage, 169
getuid, 158
gmtime, 150–152
htonl, 623
htons, 623
library functions, 97–98
local keyword, 47
logmask, 166–167
mkfifo, 542
mktemp, 157
mmap, 133–135
msgct, 596–597
msgget, 594–595
msgrcv, 595–596
msgsnd, 595
opendir, 123
openlog, 166
parameters, 47
pclose, 527
perror, 127–128
pipe, 531–534
popen, 526–527
putenv, 145–146

readdir, 123
returning numeric values, 47
returning values, 48–49
seekdir, 124
semaphores, 580
semctl, 582
sem_destroy, 504
semget, 581
semop, 581–582
sem_post, 504
sem_wait, 504
setpriority, 169
setrlimit, 170
setsockopt, 631–632
shmat, 588–589
shmctl, 589–590
shmdt, 589
shmget, 588
sigaddset, 489
sigdelset, 489
sigemptyset, 489
sigfillset, 489
sigismember, 489
sigprocmask, 489
sigsuspend, 490
strerror, 127
strftime, 153–154, 154–155
strptime, 154–155
syslog, 164–165
telldir, 123
time, 148–150
tmpfile, 156–157
tmpnam function, 156–157
uname, 161

fwrite I/O function, 111

G
gcc compiler, C options, 749–751
gcc compiler, GNU make and, 391–392
gdb

listing program, 440–441
patching and, 444–445
running programs, 437–438
stack trace, 438–439
starting, 437–438
variables and, 439–440

767

gdb

In
de

x

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 767

general semaphores, 579
getc I/O function, 112
getchar I/O function, 112, 178
getchoice function, 177, 203–204
getcwd system call, 122
getenv function, 145–146
gethostname function, 161
getlogin function, 158
getopt function, 140–142
getopt_long function, 142–144
getpriority function, 169
getrlimit function, 170
getrusage function, 169
gets I/O function, 113
getty program, 466
getuid function, 158
get_window_set_position, 662
Gimp, 4
GIMP (GNU Image Manipulation Program), 651
globbing, 23
gmtime function, 150–152
GNOME, 4, 646

introduction, 651–652
libraries, installing, 652–655
menus, 677–682

code, 679–681
macros, 681–682

widgets, 676–677
windows, 677

GnomeApp widget, 677
gnome_program_init, 676
GNOMEUIInfo structs, 677
GnomeUIInfoTypes, 678
GNU (GNU’s Not Unix), 3

C compiler, 749
GNU make

gcc compiler and, 391–392
RCS and, 398

GObject library, 650
grant command (MySQL), 325–326
Greeewich Mean Time, 151
grep command, 65–66
groff, manual pages, 408
GTI (General Terminal Interface), 183

hardware, 183–184

GTK+, 648–649
C and, 649
callbacks, 655–658

connecting, 656
demo application, 653
events, 655–658
GLib type system, 649–650
GObject library, 650
GtkTreeView, 672–676
inheritance, 650
libraries, 649

initializing, 654
installing, 652–655

MVC design, 673
object system, 650–651
polymorphism, 650
signals, 655–658

GtkObject and, 655
widgets, 661

GtkEntry, 663–664
GtkWindow, 662–663

GtkAdjustment object, 667
GtkBox, 658
gtk_box_pack_end, 659
gtk_box_pack_start, 659
GtkButton, 657–658

GtkCheckButton, 669–671
GtkRadioButton, 669–671
GtkToggleButton, 668–669, 669–671

GtkButtonsType, 686
GtkCellRenderer, 674
GtkCheckButton, 669
GtkDialog, 682–684

GtkWindow and, 682
simple dialog boxes, 686

GTK_DIALOG_MODAL, 684
gtk_dialog_new_with_buttons, 684
gtk_dialog_run, 684
GtkEntry, 663–664

password entry, 664–666
username entry, 664–666

gtk_entry_append_text, 663
gtk_entry_get_text, 663
gtk_entry_modify_text, 663
gtk_entry_new, 663
gtk_entry_new_with_max_length, 663

768

general semaphores

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 768

gtk_entry_set_invisible_char, 664
gtk_entry_set_text, 663
gtk_entry_set_visibility, 664
GtkHBox, 658
GtkHScale, 667
GtkLabel, 670
GtkMessageDialog, 686–687
GTK_MESSAGE_OTHER, 686
GtkObject, signals and, 655
GTK_RESPONSE_ACCEPT, 683
GTK_RESPONSE_NONE, 684
GTK_RESPONSE_REJECT, 683
GtkSpinButton, 666–668
gtk_spin_button_new, 667
GtkTreeIter, 673
GtkTreeStore, creating, 673
GtkTreeView, 672–676, 674–676

GtkCellRenderer, 672
GtkTreeModel, 672
GtkTreeViewColumn, 672

GtkVBox, 658
GtkVScale, 667
GtkWidgets, 654
gtk_widget_show, 684
GtkWindow, 653–655, 662–663

size, 663
GTK_WINDOW_POPUP, 655
gtk_window_set_default_size, 663
gtk_window_set_title, 662
gtk_window_show, 662
GTK_WINDOW_TOPLEVEL, 655
GUIs

creating, 648
widgets, 658

H
handling redirected output, 179–180
header files, 9
Hello World C program, 7–8
here documents, 73–74
$HOME environment variable, 29
host information, 161–163
host ordering, 622–623
HP-UX, 2
htonl function, 623
htons function, 623

I
I/O functions

fclose, 111
fflush, 111
fgetc, 112
fgets, 113
fopen, 110
fprintf, 113–115
fputc, 112
fread, 110–111
fscanf, 115–117
fseek, 112
fwrite, 111
getc, 112
getchar, 112, 178
gets, 113
printf, 113–115
putc, 112
putchar, 112
scanf, 115–117
sprintf, 113–115
sscanf, 115–117

I/O system calls, 109
ident command, 398–399
IEEE (Institute of Electrical and Electronic

Engineers), 2
POSIX committee, threads and, 496

if statement, 34–35
$IFS environment variable, 29
images, process

duplicating, 472–475
replacing, 470–472

inch function, curses library, 217
info, 14–16
initscr, curses, 216
InnoDB storage engine, 315
innstr function, curses library, 217
inode, 94
input

pipes and, 537–540
redirecting, 22

processes, 479–480
insch function, curses library, 217
installation, Qt, 702–705
instr function, curses library, 217
instrumentation, debugging, 434–436

769

instrumentation

In
de

x

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 769

interactive programs, 23–24
interfaces, signals, 487–489
Internet daemon, 629–631
ioctl system call, 97, 104
IP addresses

determining, 624
socket domains, 612–613

IP (Internet Protocol), socket domains and,
612–613

IP ports, 613

J
Java, GUIs and, 648

K
KAction widget, 734
kbhit, 205–207
KDE, 4, 646

CD management program, 738–746
menus and, 733–734

code, 735–737
Qt and, 701–702
toolbars and, 733–734

code, 735–737
widgets, 702

KAction, 734
KDevelop, 425
kernel, memory allocation and, 259
keyboard, input, curses library, 222–224
keys, semaphores, 581
keystroke detection, 205–207

pseudo-terminals, 208
virtual consoles, 207–208

keywords
local, 47
MySQL, table creation, 331

kill command, 482, 485
Korn shell, 20

L
languages, 5
ldd, 14
ld.so, 14
leaveok function, curses library, 218

libraries, 9–10
curses, 211

compiling and, 212–213
filenames, 10
GNOME, installing, 652–655
GTK+, 649

initializing, 654
installing, 652–655

LSB, 752–753
make command and, 389–390
shared, 13–14
static, 10–13
system libraries, 10

library functions, 97–98
limitations on resources, 167–172
LINE macro, 434
link system call, 121
lint (debugging), 446–449
Linux, 2

distributions, 4
introduction, 3
programming, 4–5

LinuxThreads, 496
lists

AND list, 43–44
OR list, 44–45

local keyword, 47
lockf call, 268, 280
locking files, 264–265

critical sections, 266
deadlocks, 280–281
fcntl call, 268, 271–273
F_GETLK command, 270
file-region locking, 268
file-segment locking, 268
F_SETLK command, 270–271
F_SETLKW command, 271
lock files

cooperative, 266–268
creating, 265–268

lockf call, 268, 280
read call, 271
regions, 268–270
testing locks, 273–276
write call, 271

locks, competing, 276–280

770

interactive programs

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 770

logging
logmask function, 166–167
messages, 163–164
openlog function, 166
syslog function, 164–165

logmask function, 166–167
low-level file access

open system call, 100–101
permissions, initial, 101–106
read system call, 99–100
write system call, 98–99

LSB (Linux Standards Base)
groups, 754
libraries, 752–753
system initialization, 754–755
users, 754

lseek system call, 106
lstat system call, 106–108

M
macros

assert, 452–453
DATE, 434
DEBUG, 434
FILE, 434
GNOME menus, 681–682
LINE, 434
makefiles, 382–384
manual pages, 408
TIME, 434

main, 137
make command, 378

clean option, 384
dependencies, 379–380
-f option, 379
GNU make

gcc compiler and, 391–392
RCS and, 398

install option, 384
-k option, 379
library management and, 389–390
-n option, 379
options, 379–382
parameters, 379–382
rules, 380

makefiles, 378
CD management program, 553–554
comments, 382
creating, 380–382
dependencies, 378, 379–380
macros, 382–384
make command, 378
qmake and, 733
rules, 378, 380

built-in, 387
pattern, 388–389
suffix, 388–389

subdirectories and, 391
syntax, 378
targets, multiple, 384–386

malloc call, 256
man command, 14
manual pages, 14

groff, 408
macros, 408
nroff, 406
writing, 406–409

match patterns, regular expressions, 67
memory

abusing, 260–261
freeing, 262–264
null pointer, 261–262
OOM (out of memory) killer, 260
page faults, 259
paged virtual memory system, 259
shared, 586–588

attaching to address space, 588–589
code, 590–593
creating, 588
detaching from process, 589
shmat function, 588–589
shmctl function, 589–590
shmdt function, 589
shmget function, 588

virtual, 259
memory allocation, 256–257

all physical memory, 257–258
available memory, 258–260
calloc function, 264
kernel and, 259
realloc function, 264
swap space and, 259

771

memory allocation

In
de

x

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 771

memory debugging, 453–454
ElectricFence, 454–455
valgrind, 455–458

memory management, 255
menus

GNOME, 677–682
macros, 681–682

KDE and, 733–735
message queues, 594

accessing, 594–595
adding messages, 595
code, 597–599
creating, 594–595
msgctl function, 596–597
msgget function, 594–595
msgrcv function, 595–596
msgsnd function, 595

metadata, 352
Minix, 3
mkdir system call, 121
mkfifo function, 542
mktemp function, 157
mmap function, 133–135
modal dialog boxes, 684–685, 728–729
move function, curses library, 218
msgct function, 596–597
msgget function, 594–595
msgrcv function, 595–596
msgsnd function, 595
multiple source files, problems of,

377–378
multitasking environments, 137
mutexes, semaphores, 508–512
MVC design, 673
myisamchk utility, 320–321
MySQL, 311

automatic IDs from C program,
346–348

commands, parameters, 320
configuration, 314–319
data types

Boolean, 329
character, 329
number, 329–330
temporal, 330

databases
connecting to from C, 337–341
creating, 328

development libraries, 312
DROP TABLE syntax, 331
error handling, 341–342
functions, miscellaneous, 357–358
grant command, 318, 325–326
graphical tools

MySQL Administrator, 334–335
query browser, 333–334

installation
packages, 312–314
troubleshooting, 319

myisamchk utility, 320–321
mysql, 321–322
mysqladmin utility, 322
mysqlbug, 322
mysqldump utility, 323–324
mysqlimport command, 324
mysqlshow utility, 324
packages, 312–314
password, 316
passwords, 327–328
revoke command, 326–327
root user, 315–316
Standard build, 312
startup, automatic, 312
storage engines, 315
tables

creating, 330–333
keywords, 331

users
creating, 318, 324–327
permissions, 324–327
privileges, 318

MySQL Administrator, 334–335
mysqladmin utility, 320, 322
mysqlbug, 322
mysql_data_seek function, 349
mysqldump utility, 323–324
mysql_errno, 341
mysql_error, 341
mysql_fetch_row function, 349
MYSQL_FIELD structure, 353–354

772

memory debugging

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 772

mysql_field_count function, 352
mysql_free_result function, 349
mysqlimport command, 324
mysql_options routine, 338
mysql_query, 342
mysql_row_tell function, 349
mysqlshow utility, 324

N
named pipes, 540. See also FIFOs

creating, 541–542
O_NONBLOCK, 545–546
O_RDONLY, 545–546
O_WRONLY, 545–546

naming sockets, 616–617
netstat command, 622
network byte ordering, 622–623
network information, 624–629

code, 625–627
Internet daemon, 629–631

NGPT (New Generation POSIX Threads), 496
non-canonical mode, terminal, 178
nonmodal dialogs, 685–686, 729
NPTL (Native POSIX Thread Library), 496
nroff, 406
null pointer, 261–262
number data types, MySQL, 329–330
numeric characters, limiting entry to, 666–668

O
OOM (out of memory) killer, 260
open system call, 100–101

FIFOs and, 543–545
opendir function, 123
openlog function, 166
OR list, 44–45
output

dialog utility, 77
file descriptors, 21
formatted, 113–115
pipes and, 537–540
popen and, 528–531
redirected, 179–180

processes, 479–480
redirecting, 21–22

P
package files, RPM, 414–415

building
RPM spec file, 417–421
rpmbuild, 422–424
software gathering, 415–417

Package Management tool, 652
pads, curses library, 238–240
page faults, 259
paged virtual memory system, 259
parameter variables, 30–31
parameters, functions, 47
parent processes, 466

pipes and, 535–540
passwords, GtkEntry and, 664–666
passwords, MySQL, 316, 327–328
patch utility, 410–411
patching, gdb and, 444–445
$PATH environment variable, 29
pattern rules, makefiles, 388–389
pclose function, 527
Perl, GUIs and, 648
permissions

close system variable, 103
ioctl system call, 104
umask system variable, 102–103
users, MySQL, 324–327

perror function, 127–128
PID (process identifier), 462
pipe function, 531–534
pipes, 22–23, 525–526

CD management program, 555–556
child processes, 535–540
closed, reading, 536–537
dup and, 538–540
exec call, 535–536
fork and, 533–534
input and, 537–540
named, 540

creating, 541–542
O_NONBLOCK, 545–546
O_RDONLY, 545–546
O_WRONLY, 545–546

output and, 537–540
parent processes, 535–540
process pipes, 526–528

773

pipes

In
de

x

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 773

popen function, 526–527
implementing, 530–531
output and, 528–531

POSIX (Portable Operating System Interface), 2
NGPT, 496
NPTL, 496
threads, 495–496

printf command, 56–58
printf I/O function, 113–115
printw function, curses library, 217
process identifiers, 462
process pipes, 526–528
processes, 98, 461–462

child processes, 466
fork and, 472–474
images

duplicating, 472–475
replacing, 470–472

input redirection, 479–480
output redirection, 479–480
parent processes, 466
process table, 463
ps command, 462
scheduling, 467–468
stack space, 463
structure, 462–463
system library function, 468–470
system processes, 464–466

STAT codes, 465
threads, 480
viewing, 463–464
wait system call, 475–477
zombies, 477–478

prof program, 451
programming, 4–5

interactive programs, 23–24
languages, 5
shell as programming language, 23–26

protocol sockets, 614
ps command, 462
$PS1 environment variable, 29
$PS2 environment variable, 29
pseudo-terminals, 208
pthread_attr_init, 512
pthread_detach, 512

pthread_join, 512
putc I/O function, 112
putchar I/O function, 112
putenv function, 145–146
Python, GUIs and, 648

Q
QBoxLayout classes, 710–712
QButton, 716–717

code, 718–720
QButtonGroup, 718
QCheckBox, 717
QComboBox, 721–724
QDialog, 728

modal dialogs, 728–729
nonmodal dialogs, 729
semimodal dialogs, 729–730

QInputDialog, 731–733
QLayout classes, 709
QLineEdit, 712–716
QListView, 724–727

code, 726–727
qmake, makefiles and, 733
QMessageBox, 730–731
QObject

signals and, 706
slots and, 706

Q_OBJECT statement, 706
QPushButton, 709–710, 716–717
QRadioButton, 718
Qt

buttons
QButton, 716–717
QCheckBox, 717
QPushButton, 717
QRadioButton, 718

CD management program, 738–746
inputMask, 713–714
installation, 702–705
KDE and, 701–702
Open Source Edition, 702
QApplication, 704–705
QMainWindow, 704–705
qmake, makefiles and, 733
QTDIR environment variable, 703

774

popen function

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 774

signals, 705–712
slots, 705–712
Trolltech, 702
widgets

QComboBox, 721–724
QLineEdit, 712–716
QListView, 724–727
Qt buttons, 716–717

QtEZ, 425
query browser (MySQL), 333–334
queues, sockets, creating, 617
quotes, variables, 28
QVBoxLayout, 710
Qwidget, 709

R
raising signals, 481
rcs command, 393–394
RCS (Revision Control System), 393

checking in files, 394
checking out files, 394–395
ci command, 394
co command, 394–395
GNU make and, 398
ident command, 398–399
initializing files, 394
logs, 395–396
rcs command, 393–394
rcsdiff command, 396–397
revisions

changes between, 396–397
identifying, 397–398

rlog command, 395–396
SCCS comparison, 399–400

rcsdiff command, 396–397
re-entrant routines, threads and, 497
read system call, 99–100

locking files, 271
readdir function, 123
reading, FIFOs, 546–549
realloc function, 264
recvfrom system call, 644
redirected input, processes, 479–480
redirected output, 179–180

processes, 479–480

redirection
input, 22
output, 21–22

refresh function, curses library, 217
regular expressions

$, 66
^, 66
., 66
[], 66
match patterns, 67

reinstalling dbm database, 282
replacing process images, 470–472
resources

limitations, 167–172
system time, 168
user time, 168

return command, 58
returning values, 48–49
revoke command (MySQL), 326–327
rlog command, 395–396
rmdir system call, 121
root user, MySQL, 315–316
/root

/bin, 757
/boot, 757
/dev, 757
/etc, 757
/home, 757
/lib, 757
/media, 757
/mnt, 757
/opt, 758
/root, 758
/sbin, 758
/srv, 758
/tmp, 758
/usr, 758

RPM, 413–414
advantages, 414
dependencies, 419
package files, 414–415

rpmbuild, 422–424
software gathering, 415–417
spec files, 417–421

packages, installation, 415
tarballs, 416

775

RPM

In
de

x

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 775

RPM packages, 653
rpmbuild command, 415, 422–424
rules, makefiles, 378, 380

built-in, 387
pattern, 388–389
suffix, 388–389

S
scanf I/O function, 115–117
scanning directories, 122

closedir, 124
opendir function, 123
program for, 124–126
readdir function, 123
seekdir function, 124
telldir, 123

SCCS, RCS comparison, 399–400
scheduling processes, 467–468
screens, curses library, 213
scripts, 5

creating, 24–25
debugging, 74–75
executable, 25–26
exit command, 25

seekdir function, 124
select system call, 635–638
semaphores, 577–578

binary, 579
controlling information, 582
function definitions, 580
general, 579
keys, obtaining, 581
mutexes, 508–512
semctl function, 582
semget function, 581
semop function, 581–582
signal, 578
synchronization and, 503–508
theoretical example, 579–580
using, 583–586
values, changing, 581–582
wait, 578

semctl function, 582
sem_destroy function, 504
semget function, 581

semimodal dialogs, 729–730
semop function, 581–582
sem_post function, 504
sem_wait function, 504
sending signals, 484–487
sendto system call, 644
set command, 58
setpriority function, 169
setrlimit function, 170
setsockopt function, 631–632
setupterm function, 200
shared libraries, 13–14
shared memory, 586–588

attaching to address space, 588–589
code, 590–593
creating, 588
detaching from process, 589
shmat function, 588–589
shmctl function, 589–590
shmdt function, 589
shmget function, 588

shells, 5
bash, 19, 20
Bourne, 19, 20
C, 20
changing, 19
Korn, 20
overview, 19–21
as programming language, 23–26
reasons to use, 18
variables, 27–28

quoting, 28
wildcard expansion, 23

shift command, 58–59
shmat function, 588–589
shmctl function, 589–590
shmdt function, 589
shmget function, 588
sigaction, 487–489
sigaction flags, 490–492
sigaddset function, 489
sigdelset function, 489
sigemptyset function, 489
sigfillset function, 489
sigismember function, 489

776

RPM packages

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 776

signals
catching, 481
GTK+, 655–658
interface, 487–489
names, 481–482
QObject and, 706
Qt, 705–712
raising, 481
sending, 484–487
sigaction flags, 490–492
sigaction interface, 487–489
signal handling, 483–484
signal reference, 492–493
signal sets, 489–493

sigprocmask function, 489
sigsuspend function, 490
SlickEdit, 425
slots

QObject and, 706
Qt, 705–712

SOCK_DGRAM, 614, 615
socket interface, 607
socket system call, 614–615
sockets

addresses, 615–616
address_len parameter, 618
Appletalk DDS, 615
ARPA, 614
attributes

domains, 612–613
protocols, 614
types, 613–614

client, 609–610
clients

multiple, 632–642
select system call, 635–638
server for multiple, 632–635

closing, 619
connections, 608

accepting, 617–618
requesting, 618–619

creating, 614–615
datagram sockets, 614
domains

AF_APPLETALK, 615
AF_INET, 614

AF_IPX, 615
AF_ISO, 615
AF_NS, 615
AF_UNIX, 614

host ordering, 622–623
ISO standard protocols, 615
naming, 616–617
network byte ordering, 622–623
network client, 620–621
network server, 621–622
Novell IPX, 615
options, 631–632
overview, 608
queues, creating, 617
server, 610–612
setsockopt function, 631–632
SOCK_DGRAM, 615
SOCK_STREAM, 615
stream sockets, 613–614
UNIX, 614
WinSock, 607
Xerox Network Systems, 615

SOCK_STREAM, 613, 615
software, distributing, 409

patch, 410–411
as source code, 410
utilities, 411–413

Solaris, 2
sort command, 22
source files, multiple, problems of, 377–378
specification errors, 429
sprintf I/O function, 113–115, 262
SQL (Structured Query Language)

AUTO_INCREMENT field, 345–346
DELETE statement, 342
INSERT statement, 342
retrieving data, 350–351
SELECT statement, 348
statements

no data returned, 342–345
processing returned data, 352–357
returning data, 348–351

UPDATE statement, 342
sscanf I/O function, 115–117
stack space, processes, 463
stages of debugging, 430

777

stages of debugging

In
de

x

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 777

Stallman, Richard, 3
standard I/O library (stdio), 109
standard mode, terminal, 178
stat system call, 106–108
statement blocks, 45–46
static libraries, 10–13
stdio (standard I/O library), 109

stream errors, 119
stdscr, curses library, 213, 224
storage engines, MySQL, 315
stream sockets, 613–614
streams, 109

errors, stdio library, 119
file descriptors and, 119–120

strerror function, 127
strftime function, 153–154, 154–155
strptime function, 154–155
subdirectories, makefiles and, 391
Subversion, 405–406
suffix rules, makefiles, 388–389
swap space, 259
symlink system call, 121
synchronization, semaphores, 503–508
syntax, makefiles, 378
syslog function, 164–165
system calls

accept, 618
chdir, 122
chmod, 120
chown, 120
close, 619
fcntl, 132–133
file management, 96–97

dup, 108–109
dup2, 108–109
fstat, 106–108
ioctl, 97, 104
lseek, 106
lstat, 106–108
open, 100–101
read, 99–100
stat, 106–108
write, 98–99

getcwd, 122
I/O, 109

link, 121
mkdir, 121
recvfrom, 644
rmdir, 121
select, 635–638
sendto, 644
symlink, 121
unlink, 121

system libraries, 10
system library function, 468–470
system processes, 464–466

STAT codes, 465
system time, 168

T
tables, creating, MySQL, 330–333
Tanenbaum, Andy, 3
tarballs, 416
targets, multiple, 384–386
Tcl/Tk, GUIs and, 648
telldir function, 123
temporal data types (MySQL), 330
temporary files, 156–157

mktemp function, 157
tmpfile function, 156–157
tmpnam function, 156–157

TERM variable, 197
terminal

buffering, 183
canonical mode, 178
CR/LF, 183
/dev/tty and, 181–182
driver, 182–183
echo, 183
GTI (General Terminal Interface), 183

hardware, 183–184
line editing, 183
line speeds, 183
non-canonical mode, 178
output, 196

terminal type, 197
terminal type, identifying, 197–199

reading from, 175–180
termios, 184–186

additional functions, 192–196

778

Stallman, Richard

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 778

control characters, 188–191
control modes, 187–188
input modes, 186
local modes, 188
output modes, 186–187
terminal speed, 192

writing to, 175–180
terminfo, 197, 198

getchoice function, 203–204
putp function, 202
setupterm function, 200
TERMINAL structure, 200
tigetflag function, 201
tigetnum function, 201
tigetstr function, 201
tputs function, 202

termios
additional functions, 192–196
control characters, 188–189

MIN value, 190
terminal modes, 190–191
terminal modes, command prompt, 191
terminal modes, shell, 190–191
TIME value, 190

control modes, 187–188
input modes, 186
local modes, 188
output modes, 186–187
terminal speed, 192

test command, 31–34
text editors, 6
The Open Group, 2
The Single UNIX Specification, 2
threads, 495

advantages, 496–497
attributes, 512–517

scheduling, 516–517
canceling, 517–520
detached, 512
disadvantages, 497
errno, 497
fork and, 495
IEEE POSIX committee, 496
LinuxThreads, 496
multiple, 520–524

mutexes, 509–512
processes, 480
pthread_attr_init, 512
pthread_detach, 512
pthread_join, 512
re-entrant routines, 497
semphores, 505–507
simple program, 499–501
simultaneous execution, 501–503

time and date
ctime function, 152–154
difftime function, 150
gmtime function, 150–152
Greenwich Mean Time, 151
strftime function, 153–154, 154–155
strptime function, 154–155
time function, 148–150
UTC (Coordinated Universal Time), 151

time function, 148–150
TIME macro, 434
tmpfile function, 156–157
tmpnam function, 156–157
toolbars, KDE and, 733–735
toolkits, 647
Torvalds, Linus, 3
trap command, 59–61
Trolltech, 702
troubleshooting

dbm database, 282
MySQL, 319

U
UDP, datagrams and, 642
UID (user identifier), 158–161
umask system variable, 102–103
uname function, 161
UNIX, 1

history of, 2
The Open Group, 2
philosophy of, 2–3
The Single UNIX Specification, 2

unlink system call, 121
unset command, 61
until statement, 39–40
user information, files, 158–161

779

user information

In
de

x

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 779

user time, 168
usernames, GtkEntry and, 664–666
users, MySQL

creating, 324–327
permissions, 324–327

UTC (Coordinated Universal Time), 151

V
valgrind, 455–458
values

returning, 48–49
semaphores, changing, 581–582

variables, 27–28
debugging and, 439–440
declaring, 27
environment, 29, 144–146

environ, 147–148
using, 146–147

parameter, 30–31
quotes, 28
user input, assigning, 28

version control
CVS, 400–405
RCS, 393–399
SCCS, 399–400
Subversion, 405–406

Vi editor, 6
virtual consoles, 207–208
virtual memory, 259
VPN (Virtual Private Network),

X clients, 646

W
wait system call, 475–477
while statement, 39
widgets

absolute coordinates, 658
box widgets, 658
container layout, 659–661
GNOME, 676–677

GTK+
GtkEntry, 663–664
GtkWindow, 662–663

GUIs, 658
KDE, 702

KAction, 734
Qt

QComboBox, 721–724
QLineEdit, 712–716
QListView, 724–727

Qt buttons, 716–717
wildcards, expansion, for statement, 38
window managers, X, 647–648
WINDOW structure, curses library, 224–225
windows

curses library, 213
GNOME, 677

WinSock, 607
write system call, 98–99

locking files, 271
writing, FIFOs, 546–549

X
X, 645–646

toolkits, 647
window managers, 647–648
X client, 646
X Protocol, 646
X server, 646
X Window System. See X
xcalc, 646
XEmacs, 6
XFree86, 646
Xfree86Config, 646
xinetd/inetd, 629–631
Xlib, 647
xorg.conf, 646
xterm, 646

Z
zombie processes, 477–478

780

user time

47627bindex.qxd:WroxPro 9/29/07 3:43 PM Page 780

47627badvert.qxd:WroxPro 10/1/07 7:19 AM Page 781

47627badvert.qxd:WroxPro 10/1/07 7:19 AM Page 782

47627badvert.qxd:WroxPro 10/1/07 7:19 AM Page 783

47627badvert.qxd:WroxPro 10/1/07 7:19 AM Page 784

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

47627badvert.qxd:WroxPro 10/1/07 7:19 AM Page 785

47627badvert.qxd:WroxPro 10/1/07 7:19 AM Page 786

	Beginning Linux Programming, 4th Edition
	About the Authors
	Credits
	Acknowledgments
	Contents
	Foreword
	Introduction
	Who's This Book For?
	What's Covered in the Book
	What You Need to Use This Book
	Source Code
	Conventions
	Errata
	p2p.wrox.com

	Chapter 1: Getting Started
	An Introduction to UNIX, Linux, and GNU
	Programming Linux
	Getting Help
	Summary

	Chapter 2: Shell Programming
	Why Program with a Shell?
	A Bit of Philosophy
	What Is a Shell?
	Pipes and Redirection
	The Shell as a Programming Language
	Shell Syntax
	Going Graphical — The dialog Utility
	Putting It All Together
	Summary

	Chapter 3: Working with Files
	Linux File Structure
	System Calls and Device Drivers
	Library Functions
	Low-Level File Access
	The Standard I/O Library
	Formatted Input and Output
	File and Directory Maintenance
	Scanning Directories
	Errors
	The /proc File System
	Advanced Topics: fcntl and mmap
	Summary

	Chapter 4: The Linux Environment
	Program Arguments
	Environment Variables
	Time and Date
	Temporary Files
	User Information
	Host Information
	Logging
	Resources and Limits
	Summary

	Chapter 5: Terminals
	Reading from and Writing to the Terminal
	Talking to the Terminal
	The Terminal Driver and the General Terminal Interface
	The termios Structure
	Terminal Output
	Detecting Keystrokes
	Summary

	Chapter 6: Managing Text-Based Screens with curses
	Compiling with curses
	Curses Terminology and Concepts
	The Screen
	The Keyboard
	Windows
	Subwindows
	The Keypad
	Using Color
	Pads
	The CD Collection Application
	Summary

	Chapter 7: Data Management
	Managing Memory
	File Locking
	Databases
	The CD Application
	Summary

	Chapter 8: MySQL
	Installation
	MySQL Administration
	Accessing MySQL Data from C
	The CD Database Application
	Summary

	Chapter 9: Development Tools
	Problems of Multiple Source Files
	The make Command and Makefiles
	Source Code Control
	Writing a Manual Page
	Distributing Software
	RPM Packages
	Other Package Formats
	Development Environments
	Summary

	Chapter 10: Debugging
	Types of Errors
	General Debugging Techniques
	Debugging with gdb
	More Debugging Tools
	Assertions
	Memory Debugging
	Summary

	Chapter 11: Processes and Signals
	What Is a Process?
	Process Structure
	Starting New Processes
	Signals
	Summary

	Chapter 12: POSIX Threads
	What Is a Thread?
	Advantages and Drawbacks of Threads
	A First Threads Program
	Simultaneous Execution
	Synchronization
	Thread Attributes
	Canceling a Thread
	Threads in Abundance
	Summary

	Chapter 13: Inter-Process Communication: Pipes
	What Is a Pipe?
	Process Pipes
	Sending Output to popen
	The Pipe Call
	Parent and Child Processes
	Named Pipes: FIFOs
	The CD Database Application
	Summary

	Chapter 14: Semaphores, Shared Memory, and Message Queues
	Semaphores
	Shared Memory
	Message Queues
	The CD Database Application
	IPC Status Commands
	Summary

	Chapter 15: Sockets
	What Is a Socket?
	Socket Connections
	Network Information
	Multiple Clients
	Datagrams
	Summary

	Chapter 16: Programming GNOME Using GTK+
	Introducing X
	Introducing GTK+
	Events, Signals, and Callbacks
	Packing Box Widgets
	GTK+ Widgets
	GNOME Widgets
	GNOME Menus
	Dialogs
	CD Database Application
	Summary

	Chapter 17: Programming KDE Using Qt
	Introducing KDE and Qt
	Installing Qt
	Signals and Slots
	Qt Widgets
	Dialogs
	Menus and Toolbars with KDE
	CD Database Application Using KDE/Qt
	Summary

	Chapter 18: Standards for Linux
	The C Programming Language
	Interfaces and the Linux Standards Base
	The Filesystem Hierarchy Standard
	Further Reading about Standards
	Summary

	Index

